28,239 research outputs found

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    Combining a hierarchical task network planner with a constraint satisfaction solver for assembly operations involving routing problems in a multi-robot context

    Get PDF
    This work addresses the combination of a symbolic hierarchical task network planner and a constraint satisfaction solver for the vehicle routing problem in a multi-robot context for structure assembly operations. Each planner has its own problem domain and search space, and the article describes how both planners interact in a loop sharing information in order to improve the cost of the solutions. The vehicle routing problem solver gives an initial assignment of parts to robots, making the distribution based on the distance among parts and robots, trying also to maximize the parallelism of the future assembly operations evaluating during the process the dependencies among the parts assigned to each robot. Then, the hierarchical task network planner computes a scheduling for the given assignment and estimates the cost in terms of time spent on the structure assembly. This cost value is then given back to the vehicle routing problem solver as feedback to compute a better assignment, closing the loop and repeating again the whole process. This interaction scheme has been tested with different constraint satisfaction solvers for the vehicle routing problem. The article presents simulation results in a scenario with a team of aerial robots assembling a structure, comparing the results obtained with different configurations of the vehicle routing problem solver and showing the suitability of using this approach.Unión Europea ARCAS FP7-ICT-287617Unión Europea H2020-ICT-644271Unión europea H2020-ICT-73166

    Organizational alternatives for flexible manufacturing systems

    Get PDF
    There is an increasing importance of different productive architectures related to worker involvement in the decision making, where is given due attention to the intuitive capabilities and the human knowledge in the optimization and flexibilization of manufacturing processes. Thus having reference point architecture of a flexible manufacturing and assembling system existent at UNINOVA-CRI, we will present some exploratory hypothesis about applicability of the concept of hybridization and its repercussions on the definition of jobs, in those organizations and in the formation of working teams.flexibility; robotics; work organization; manufacturing industry

    Automatic Throughput and Critical Path Analysis of x86 and ARM Assembly Kernels

    Full text link
    Useful models of loop kernel runtimes on out-of-order architectures require an analysis of the in-core performance behavior of instructions and their dependencies. While an instruction throughput prediction sets a lower bound to the kernel runtime, the critical path defines an upper bound. Such predictions are an essential part of analytic (i.e., white-box) performance models like the Roofline and Execution-Cache-Memory (ECM) models. They enable a better understanding of the performance-relevant interactions between hardware architecture and loop code. The Open Source Architecture Code Analyzer (OSACA) is a static analysis tool for predicting the execution time of sequential loops. It previously supported only x86 (Intel and AMD) architectures and simple, optimistic full-throughput execution. We have heavily extended OSACA to support ARM instructions and critical path prediction including the detection of loop-carried dependencies, which turns it into a versatile cross-architecture modeling tool. We show runtime predictions for code on Intel Cascade Lake, AMD Zen, and Marvell ThunderX2 micro-architectures based on machine models from available documentation and semi-automatic benchmarking. The predictions are compared with actual measurements.Comment: 6 pages, 3 figure

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested
    corecore