10,266 research outputs found

    Context-adaptive learning designs by using semantic web services

    Get PDF
    IMS Learning Design (IMS-LD) is a promising technology aimed at supporting learning processes. IMS-LD packages contain the learning process metadata as well as the learning resources. However, the allocation of resources - whether data or services - within the learning design is done manually at design-time on the basis of the subjective appraisals of a learning designer. Since the actual learning context is known at runtime only, IMS-LD applications cannot adapt to a specific context or learner. Therefore, the reusability is limited and high development costs have to be taken into account to support a variety of contexts. To overcome these issues, we propose a highly dynamic approach based on Semantic Web Services (SWS) technology. Our aim is moving from the current data- and metadata-based to a context-adaptive service-orientated paradigm We introduce semantic descriptions of a learning process in terms of user objectives (learning goals) to abstract from any specific metadata standards and used learning resources. At runtime, learning goals are accomplished by automatically selecting and invoking the services that fit the actual user needs and process contexts. As a result, we obtain a dynamic adaptation to different contexts at runtime. Semantic mappings from our standard-independent process models will enable the automatic development of versatile, reusable IMS-LD applications as well as the reusability across multiple metadata standards. To illustrate our approach, we describe a prototype application based on our principles

    Preventing Distributed Denial-of-Service Attacks on the IMS Emergency Services Support through Adaptive Firewall Pinholing

    Full text link
    Emergency services are vital services that Next Generation Networks (NGNs) have to provide. As the IP Multimedia Subsystem (IMS) is in the heart of NGNs, 3GPP has carried the burden of specifying a standardized IMS-based emergency services framework. Unfortunately, like any other IP-based standards, the IMS-based emergency service framework is prone to Distributed Denial of Service (DDoS) attacks. We propose in this work, a simple but efficient solution that can prevent certain types of such attacks by creating firewall pinholes that regular clients will surely be able to pass in contrast to the attackers clients. Our solution was implemented, tested in an appropriate testbed, and its efficiency was proven.Comment: 17 Pages, IJNGN Journa

    The added value of implementing the Planet Game scenario with Collage and Gridcole

    Get PDF
    This paper discusses the suitability and the added value of Collage and Gridcole when contrasted with other solutions participating in the ICALT 2006 workshop titled “Comparing educational modelling languages on a case study.” In this workshop each proposed solution was challenged to implement a Computer-Supported Collaborative Learning situation (CSCL) posed by the workshop’s organizers. Collage is a pattern-based authoring tool for the creation of CSCL scripts compliant with IMS Learning Design (IMS LD). These IMS LD scripts can be enacted by the Gridcole tailorable CSCL system. The analysis presented in the paper is organized as a case study which considers the data recorded in the workshop discussion as well the information reported in the workshop contributions. The results of this analysis show how Collage and Gridcole succeed in implementing the scenario and also point out some significant advantages in terms of design reusability and generality, user-friendliness, and enactment flexibility

    A case study for measuring informal learning in PLEs

    Get PDF
    The technological support for learning and teaching processes is constantly changing. Information and Communication Technologies (ICT) applied to education, cause changes that affect the way in which people learn. This application introduces new software systems and solutions to carry out teaching and learning activities. Connected to ICT application, the emergence of Web 2.0 and its use in learning contexts enables an online implementation of the student-centred learning paradigm. In addition, 2.0 trends provide “new” ways to exchange, making easier for informal learning to become patent. Given this context, open and user-centered learning environments are needed to integrate such kinds of tools and trends and are commonly described as Personal Learning Environments. Such environments coexist with the institutional learning management systems and they should interact and exchange information between them. This interaction would allow the assessment of what happens in the personal environment from the institutional side. This article describes a solution to make the interoperability possible between these systems. It is based on a set of interoperability scenarios and some components and communication channels. In order to test the solution it is implemented as a proof of concept and the scenarios are validated through several pilot experiences. In this article one of such scenarios and its evaluation experiment is described to conclude that functionalities from the institutional environments and the personal ones can be combined and it is possible to assess what happens in the activities based on them.Peer ReviewedPostprint (published version

    Implementation and design of a service-based framework to integrate personal and institutional learning environments

    Get PDF
    The landscape of teaching and learning has changed in recent years because of the application of Information and Communications technology. Among the most representative innovations in this regard are Learning Management Systems. Despite of their popularity in institutional contexts and the wide set of tools and services that they provide to learners and teachers, they present several issues. Learning Management Systems are linked to an institution and a period of time, and are not adapted to learners' needs. In order to address these problems Personal Learning Environments are defined, but it is clear that these will not replace Learning Management Systems and other institutional contexts. Both types of environment should therefore coexist and interact. This paper presents a service-based framework to facilitate such interoperability. It supports the export of functionalities from the institutional to the personal environment and also the integration within the institution of learning outcomes from personal activities. In order to achieve this in a flexible, extensible and open way, web services and interoperability specifications are used. In addition some interoperability scenarios are posed. The framework has been tested in real learning contexts and the results show that interoperability is possible, and that it benefits learners, teachers and institutions.Peer ReviewedPostprint (author's final draft

    Adapting e-learning and learning services for people with disabilities

    Get PDF
    Providing learning materials and support services that are adapted to the needs of individuals has the potential to enable learners to obtain maximal benefit from university level studies. This paper describes EU4ALL project which has been exploring how to present customized learning materials and services for people with disabilities. A number of the technical components of the EU4ALL framework are described. This is followed with a brief description of prototype implementations. This is then followed by a discussion of a number of research directions that may enhance the adaptability, usability and accessibility of information and support systems can be used and consumed by a diverse user population
    corecore