26 research outputs found

    Frames in Outdoor 802.11 WLANs Provide a Hybrid Binary-Symmetric/Packet-Erasure Channel

    Get PDF
    Corrupted frames with CRC errors potentially provide a useful channel through which information can be transmitted. Using measurements taken in an outdoor environment, it is demonstrated that for 802.11 wireless links the channel provided by corrupted frames alone (i.e. ignoring frames with PHY errors and frames received correctly) can be accurately modelled as a binary symmetric channel (BSC) provided appropriate pre- and post- processing is carried out. Also, the channel provided by corrupted frames and other frames combined can be accurately modelled as a hybrid binary-symmetric/packet-erasure channel. Importantly, it is found that this hybrid channel offers capacity increases of more than 100% compared to a conventional packet erasure channel over a wide range of RSSIs. This indicates that the potential exists for significant network throughput gains if the information contained in 802.11 corrupted packets is exploited

    Frames in Outdoor 802.11 WLANs Provide a Hybrid Binary-Symmetric/Packet-Erasure Channel

    Get PDF
    Corrupted frames with CRC errors potentially provide a useful channel through which information can be transmitted. Using measurements taken in an outdoor environment, it is demonstrated that for 802.11 wireless links the channel provided by corrupted frames alone (i.e. ignoring frames with PHY errors and frames received correctly) can be accurately modelled as a binary symmetric channel (BSC) provided appropriate pre- and post- processing is carried out. Also, the channel provided by corrupted frames and other frames combined can be accurately modelled as a hybrid binary-symmetric/packet-erasure channel. Importantly, it is found that this hybrid channel offers capacity increases of more than 100% compared to a conventional packet erasure channel over a wide range of RSSIs. This indicates that the potential exists for significant network throughput gains if the information contained in 802.11 corrupted packets is exploited

    Coding in 802.11 WLANs

    Get PDF
    Forward error correction (FEC) coding is widely used in communication systems to correct transmis- sion errors. In IEEE 802.11a/g transmitters, convolutional codes are used for FEC at the physical (PHY) layer. As is typical in wireless systems, only a limited choice of pre-speci¯ed coding rates is supported. These are implemented in hardware and thus di±cult to change, and the coding rates are selected with point to point operation in mind. This thesis is concerned with using FEC coding in 802.11 WLANs in more interesting ways that are better aligned with application requirements. For example, coding to support multicast tra±c rather than simple point to point tra±c; coding that is cognisant of the multiuser nature of the wireless channel; and coding which takes account of delay requirements as well as losses. We consider layering additional coding on top of the existing 802.11 PHY layer coding, and investigate the tradeo® between higher layer coding and PHY layer modulation and FEC coding as well as MAC layer scheduling. Firstly we consider the joint multicast performance of higher-layer fountain coding concatenated with 802.11a/g OFDM PHY modulation/coding. A study on the optimal choice of PHY rates with and without fountain coding is carried out for standard 802.11 WLANs. We ¯nd that, in contrast to studies in cellular networks, in 802.11a/g WLANs the PHY rate that optimizes uncoded multicast performance is also close to optimal for fountain-coded multicast tra±c. This indicates that in 802.11a/g WLANs cross-layer rate control for higher-layer fountain coding concatenated with physical layer modulation and FEC would bring few bene¯ts. Secondly, using experimental measurements taken in an outdoor environment, we model the chan- nel provided by outdoor 802.11 links as a hybrid binary symmetric/packet erasure channel. This hybrid channel o®ers capacity increases of more than 100% compared to a conventional packet erasure channel (PEC) over a wide range of RSSIs. Based upon the established channel model, we further consider the potential performance gains of adopting a binary symmetric channel (BSC) paradigm for multi-destination aggregations in 802.11 WLANs. We consider two BSC-based higher-layer coding approaches, i.e. superposition coding and a simpler time-sharing coding, for multi-destination aggre- gated packets. The performance results for both unicast and multicast tra±c, taking account of MAC layer overheads, demonstrate that increases in network throughput of more than 100% are possible over a wide range of channel conditions, and that the simpler time-sharing approach yields most of these gains and have minor loss of performance. Finally, we consider the proportional fair allocation of high-layer coding rates and airtimes in 802.11 WLANs, taking link losses and delay constraints into account. We ¯nd that a layered approach of separating MAC scheduling and higher-layer coding rate selection is optimal. The proportional fair coding rate and airtime allocation (i) assigns equal total airtime (i.e. airtime including both successful and failed transmissions) to every station in a WLAN, (ii) the station airtimes sum to unity (ensuring operation at the rate region boundary), and (iii) the optimal coding rate is selected to maximise goodput (treating packets decoded after the delay deadline as losses)

    Multi-destination Aggregation with Binary Symmetric Broadcast Channel Based Coding in 802.11 WLANs

    Get PDF
    In this paper we consider the potential benefits of adopting a binary symmetric broadcast channel paradigm for multi-destination aggregation in 802.11 WLANs, as opposed to a more conventional packet erasure channel paradigm. We propose two approaches for multi-destination aggregation, i.e. superposition coding and a simpler time-sharing coding. Theoretical and simulation results for both unicast and multicast traffic demonstrate that increases in network throughput of more than 100% are possible over a wide range of network conditions and that the much simpler time-sharing scheme yields most of these gains and have minimal loss of performance. Importantly, these performance gains are achieved exclusively through software rather than hardware changes

    Scalable and rate adaptive wireless multimedia multicast

    Get PDF
    The methods that are described in this work enable highly efficient audio-visual streaming over wireless digital communication systems to an arbitrary number of receivers. In the focus of this thesis is thus point-to-multipoint transmission at constrained end-to-end delay. A fundamental difference as compared to point-to-point connections between exactly two communicating sending and receiving stations is in conveying information about successful or unsuccessful packet reception at the receiver side. The information to be transmitted is available at the sender, whereas the information about successful reception is only available to the receiver. Therefore, feedback about reception from the receiver to the sender is necessary. This information may be used for simple packet repetition in case of error, or adaptation of the bit rate of transmission to the momentary bit rate capacity of the channel, or both. This work focuses on the single transmission (including retransmissions) of data from one source to multiple destinations at the same time. A comparison with multi-receiver sequentially redundant transmission systems (simulcast MIMO) is made. With respect to feedback, this work considers time division multiple access systems, in which a single channel is used for data transmission and feedback. Therefore, the amount of time that can be spent for transmitting feedback is limited. An increase in time used for feedback transmissions from potentially many receivers results in a decrease in residual time which is usable for data transmission. This has direct impact on data throughput and hence, the quality of service. In the literature, an approach to reduce feedback overhead which is based on simultaneous feedback exists. In the scope of this work, simultaneous feedback implies equal carrier frequency, bandwidth and signal shape, in this case orthogonal frequency-division multiplex signals, during the event of the herein termed feedback aggregation in time. For this scheme, a constant amount of time is spent for feedback, independent of the number of receivers giving feedback about reception. Therefore, also data throughput remains independent of the number of receivers. This property of audio-visual digital transmission is taken for granted for statically configured, single purpose systems, such as terrestrial television. In the scope of this work are, however, multi-user and multi-purpose digital communication networks. Wireless LANs are a well-known example and are covered in detail herein. In suchlike systems, it is of great importance to remain independent of the number of receivers, as otherwise the service of ubiquitous digital connectivity is at the risk of being degraded. In this regard, the thesis at hand elaborates at what bit rates audio-visual transmission to multiple receivers may take place in conjunction with feedback aggregation. It is shown that the scheme achieves a multi-user throughput gain when used in conjunction with adaptivity of the bit rate to the channel. An assumption is the use of an ideal overlay packet erasure correcting code in this case. Furthermore, for delay constrained transmission, such as in so-called live television, throughput bit rates are examined. Applications have to be tolerant to a certain level of residual error in case of delay constrained transmission. Improvement of the rate adaptation algorithm is shown to increase throughput while residual error rates are decreased. Finally, with a consumer hardware prototype for digital live-TV re-distribution in the local wireless network, most of the mechanisms as described herein can be demonstrated.Die in vorliegender Arbeit aufgezeigten Methoden der paketbasierten drahtlosen digitalen Kommunikation ermöglichen es, Fernsehinhalte, aber auch audio-visuelle Datenströme im Allgemeinen, bei hoher Effizienz an beliebig große Gruppen von Empfängern zu verteilen. Im Fokus dieser Arbeit steht damit die Punkt- zu Mehrpunktübertragung bei begrenzter Ende-zu-Ende Verzögerung. Ein grundlegender Unterschied zur Punkt-zu-Punkt Verbindung zwischen genau zwei miteinander kommunizierenden Sender- und Empfängerstationen liegt in der Übermittlung der Information über erfolgreichen oder nicht erfolgreichen Paketempfang auf Seite der Empfänger. Da die zu übertragende Information am Sender vorliegt, die Information über den Erfolg der Übertragung jedoch ausschließlich beim jeweiligen Empfänger, muss eine Erfolgsmeldung auf dem Rückweg von Empfänger zu Sender erfolgen. Diese Information wird dann zum Beispiel zur einfachen Paketwiederholung im nicht erfolgreichen Fall genutzt, oder aber um die Übertragungsrate an die Kapazität des Kanals anzupassen, oder beides. Grundsätzlich beschäftigt sich diese Arbeit mit der einmaligen, gleichzeitigen Übertragung von Information (einschließlich Wiederholungen) an mehrere Empfänger, wobei ein Vergleich zu an mehrere Empfänger sequentiell redundant übertragenden Systemen (Simulcast MIMO) angestellt wird. In dieser Arbeit ist die Betrachtung bezüglich eines Rückkanals auf Zeitduplexsysteme beschränkt. In diesen Systemen wird der Kanal für Hin- und Rückweg zeitlich orthogonalisiert. Damit steht für die Übermittlung der Erfolgsmeldung eine beschränkte Zeitdauer zur Verfügung. Je mehr an Kanalzugriffszeit für die Erfolgsmeldungen der potentiell vielen Empfänger verbraucht wird, desto geringer wird die Restzeit, in der dann entsprechend weniger audio-visuelle Nutzdaten übertragbar sind, was sich direkt auf die Dienstqualität auswirkt. Ein in der Literatur weniger ausführlich betrachteter Ansatz ist die gleichzeitige Übertragung von Rückmeldungen mehrerer Teilnehmer auf gleicher Frequenz und bei identischer Bandbreite, sowie unter Nutzung gleichartiger Signale (hier: orthogonale Frequenzmultiplexsignalformung). Das Schema wird in dieser Arbeit daher als zeitliche Aggregation von Rückmeldungen, engl. feedback aggregation, bezeichnet. Dabei wird, unabhängig von der Anzahl der Empfänger, eine konstante Zeitdauer für Rückmeldungen genutzt, womit auch der Datendurchsatz durch zusätzliche Empfänger nicht notwendigerweise sinkt. Diese Eigenschaft ist aus statisch konfigurierten und für einen einzigen Zweck konzipierten Systemen, wie z. B. der terrestrischen Fernsehübertragung, bekannt. In dieser Arbeit werden im Gegensatz dazu jedoch am Beispiel von WLAN Mehrzweck- und Mehrbenutzersysteme betrachtet. Es handelt sich in derartigen Systemen zur digitalen Datenübertragung dabei um einen entscheidenden Vorteil, unabhängig von der Empfängeranzahl zu bleiben, da es sonst unweigerlich zu Einschränkungen in der Güte der angebotenen Dienstleistung der allgegenwärtigen digitalen Vernetzung kommen muss. Vorliegende Arbeit zeigt in diesem Zusammenhang auf, welche Datenraten unter Benutzung von feedback aggregation in der Verteilung an mehrere Empfänger und in verschiedenen Szenarien zu erreichen sind. Hierbei zeigt sich, dass das Schema im Zusammenspiel mit einer Adaption der Datenrate an den Übertragungskanal inhärent einen Datenratengewinn durch Mehrbenutzerempfang zu erzielen vermag, wenn ein überlagerter idealer Paketauslöschungsschutz-Code angenommen wird. Des weiteren wird bei der Übertragung mit zeitlich begrenzter Ausführungsdauer, z. B. dem sogenannten Live-Fernsehen, aufgezeigt, wie sich die erreichbare Datenrate reduziert und welche Restfehlertoleranz an die Übertragung gestellt werden muss. Hierbei wird ebenso aufgezeigt, wie sich durch Verbesserung der Ratenadaption erstere erhöhen und zweitere verringern lässt. An einem auf handelsüblichen Computer-Systemen realisiertem Prototypen zur Live-Fernsehübertragung können die hierin beschriebenen Mechanismen zu großen Teilen gezeigt werden

    Multimedia

    Get PDF
    The nowadays ubiquitous and effortless digital data capture and processing capabilities offered by the majority of devices, lead to an unprecedented penetration of multimedia content in our everyday life. To make the most of this phenomenon, the rapidly increasing volume and usage of digitised content requires constant re-evaluation and adaptation of multimedia methodologies, in order to meet the relentless change of requirements from both the user and system perspectives. Advances in Multimedia provides readers with an overview of the ever-growing field of multimedia by bringing together various research studies and surveys from different subfields that point out such important aspects. Some of the main topics that this book deals with include: multimedia management in peer-to-peer structures & wireless networks, security characteristics in multimedia, semantic gap bridging for multimedia content and novel multimedia applications

    Algorithm design for scheduling and medium access control in heterogeneous mobile networks

    Get PDF
    Mención Internacional en el título de doctorThe rapid growth of wireless mobile devices has led to saturation and congestion of wireless channels – a well-known fact. In the recent years, this issue is further exacerbated by the ever-increasing demand for traffic intensed multimedia content applications, which include but are not limited to social media, news and video streaming applications. Therefore the development of highly efficient content distribution technologies is of utmost importance, specifically to cope with the scarcity and the high cost of wireless resources. To this aim, this thesis investigates the challenges and the considerations required to design efficient techniques to improve the performance of wireless networks. Since wireless signals are prone to fluctuations and mobile users are, with high likelihood, have difference channel qualities, we particularly focus on the scenarios with heterogeneous user distribution. Further, this dissertation considers two main techniques to cope with mobile users demand and the limitation of wireless resources. Firstly, we propose an opportunistic multicast scheduling to efficiently distribute or disseminate data to all users with low delay. Secondly, we exploit the Millimeter-Wave (mm-Wave) frequency band that has a high potential of meeting the high bandwidth demand. In particular, we propose a channel access mechanism and a scheduling algorithm that take into account the limitation of the high frequency band (i.e., high path loss). Multicast scheduling has emerged as one of the most promising techniques for multicast applications when multiple users require the same content from the base station. Unlike a unicast scheduler which sequentially serves the individual users, a multicast scheduler efficiently utilizes the wireless resources by simultaneously transmitting to multiple users. Precisely, it multiplies the gain in terms of the system throughput compared to unicast transmissions. In spite of the fact that multicast schedulers are more efficient than unicast schedulers, scheduling for multicast transmission is a challenging task. In particular, base station can only chose one rate to transmit to all users. While determining the rate for users with a similar instantaneous channel quality is straight forward, it is non-trivial when users have different instantaneous channel qualities, i.e., when the channel is heterogeneous. In such a scenario, on one hand, transmitting at a low rate results in low throughput. On the other hand, transmitting at a high rate causes some users to fail to receive the transmitted packet while others successfully receive it but with a rate lower than their maximum rate. The most common and simplest multicasting technique, i.e., broadcasting, transmits to all receivers using the maximum rate that is supported by the worst receiver. In recent years, opportunistic schedulers have been considered for multicasting. Opportunistic multicast schedulers maximize instantaneous throughput and transmit at a higher rate to serve only a subset of the multicast users. While broadcasting suffers from high delay for all users due to low transmission rate, the latter causes a long delay for the users with worse channel quality as they always favor users with better channel quality. To address these problems, we designed an opportunistic multicast scheduling mechanism that aims to achieve high throughput as well as low delay. Precisely, we are solving the finite horizon problem for multicasting. Our goal is that all multicast users receive the same amount of data within the shortest amount of time. Although our proposed opportunistic multicast scheduling mechanism improves the system throughput and reduces delay, a common problem in multicast scheduling is that its throughput performance is limited by the worst user in the system. To overcome this problem, transmit beamforming can be used to adjust antenna gains to the different receivers. This allows improving the SNR of the receiver with the worst channel SNR at the expense of worsening the SNR of the better channel receivers. In the first part of this thesis, two different versions of the finite horizon problem are considered: (i) opportunistic multicast scheduling and (ii) opportunistic multicast beamforming. In recent years, many researchers venture into the potential of communication over mm-Wave band as it potentially solves the existing network capacity problem. Since beamforming is capable to concentrate the transmit energy in the direction of interest, this technique is particularly beneficial to improve signal quality of the highly attenuated mm-Wave signal. Although directional beamforming in mm-Wave offers multi-gigabit-per-second data rates, directional communication severely deteriorates the channel sensing capability of a user. For instance, when a user is not within the transmission coverage or range of the communicating users, it is unable to identify the state of the channel (i.e., busy or free). As a result, this leads to a problem commonly known as the deafness problem. This calls for rethinking of the legacy medium access control and scheduling mechanisms for mm-Wave communication. Further, without omni-directional transmission, disseminating or broadcasting global information also becomes complex. To cope with these issues, we propose two techniques in the second part of this thesis. First, leveraging that recent mobile devices have multiple wireless interface, we present a dual-band solution. This solution exploits the omni-directional capable lower frequency bands (i.e., 2.4 and 5 GHz) to transmit control messages and the mm-Wave band for high speed data transmission. Second, we develop a decentralized scheduling technique which copes with the deafness problem in mm-Wave through a learning mechanism. In a nutshell, this thesis explores solutions which (i) improve the utilization of the network resources through multicasting and (ii) meet the mobile user demand with the abundant channel resources available at high frequency bands.This work has been supported by IMDEA Networks Institute.Programa Oficial de Doctorado en Ingeniería TelemáticaPresidente: Ralf Steinmetz.- Secretario: Carlos Jesús Bernardos Cano.- Vocal: Jordi Domingo Pascua

    On Transmission System Design for Wireless Broadcasting

    Get PDF
    This thesis considers aspects related to the design and standardisation of transmission systems for wireless broadcasting, comprising terrestrial and mobile reception. The purpose is to identify which factors influence the technical decisions and what issues could be better considered in the design process in order to assess different use cases, service scenarios and end-user quality. Further, the necessity of cross-layer optimisation for efficient data transmission is emphasised and means to take this into consideration are suggested. The work is mainly related terrestrial and mobile digital video broadcasting systems but many of the findings can be generalised also to other transmission systems and design processes. The work has led to three main conclusions. First, it is discovered that there are no sufficiently accurate error criteria for measuring the subjective perceived audiovisual quality that could be utilised in transmission system design. Means for designing new error criteria for mobile TV (television) services are suggested and similar work related to other services is recommended. Second, it is suggested that in addition to commercial requirements there should be technical requirements setting the frame work for the design process of a new transmission system. The technical requirements should include the assessed reception conditions, technical quality of service and service functionalities. Reception conditions comprise radio channel models, receiver types and antenna types. Technical quality of service consists of bandwidth, timeliness and reliability. Of these, the thesis focuses on radio channel models and errorcriteria (reliability) as two of the most important design challenges and provides means to optimise transmission parameters based on these. Third, the thesis argues that the most favourable development for wireless broadcasting would be a single system suitable for all scenarios of wireless broadcasting. It is claimed that there are no major technical obstacles to achieve this and that the recently published second generation digital terrestrial television broadcasting system provides a good basis. The challenges and opportunities of a universal wireless broadcasting system are discussed mainly from technical but briefly also from commercial and regulatory aspectSiirretty Doriast
    corecore