26,828 research outputs found

    Towards Zero-Shot Frame Semantic Parsing for Domain Scaling

    Full text link
    State-of-the-art slot filling models for goal-oriented human/machine conversational language understanding systems rely on deep learning methods. While multi-task training of such models alleviates the need for large in-domain annotated datasets, bootstrapping a semantic parsing model for a new domain using only the semantic frame, such as the back-end API or knowledge graph schema, is still one of the holy grail tasks of language understanding for dialogue systems. This paper proposes a deep learning based approach that can utilize only the slot description in context without the need for any labeled or unlabeled in-domain examples, to quickly bootstrap a new domain. The main idea of this paper is to leverage the encoding of the slot names and descriptions within a multi-task deep learned slot filling model, to implicitly align slots across domains. The proposed approach is promising for solving the domain scaling problem and eliminating the need for any manually annotated data or explicit schema alignment. Furthermore, our experiments on multiple domains show that this approach results in significantly better slot-filling performance when compared to using only in-domain data, especially in the low data regime.Comment: 4 pages + 1 reference

    Frame-semantic parsing

    Get PDF
    Frame semantics is a linguistic theory that has been instantiated for English in the FrameNet lexicon. We solve the problem of frame-semantic parsing using a two-stage statistical model that takes lexical targets (i.e., content words and phrases) in their sentential contexts and predicts frame-semantic structures. Given a target in context, the first stage disambiguates it to a semantic frame. This model uses latent variables and semi-supervised learning to improve frame disambiguation for targets unseen at training time. The second stage finds the target's locally expressed semantic arguments. At inference time, a fast exact dual decomposition algorithm collectively predicts all the arguments of a frame at once in order to respect declaratively stated linguistic constraints, resulting in qualitatively better structures than naïve local predictors. Both components are feature-based and discriminatively trained on a small set of annotated frame-semantic parses. On the SemEval 2007 benchmark data set, the approach, along with a heuristic identifier of frame-evoking targets, outperforms the prior state of the art by significant margins. Additionally, we present experiments on the much larger FrameNet 1.5 data set. We have released our frame-semantic parser as open-source software.United States. Defense Advanced Research Projects Agency (DARPA grant NBCH-1080004)National Science Foundation (U.S.) (NSF grant IIS-0836431)National Science Foundation (U.S.) (NSF grant IIS-0915187)Qatar National Research Fund (NPRP 08-485-1-083

    Semantic Role Labeling for Knowledge Graph Extraction from Text

    Get PDF
    This paper introduces TakeFive, a new semantic role labeling method that transforms a text into a frame-oriented knowledge graph. It performs dependency parsing, identifies the words that evoke lexical frames, locates the roles and fillers for each frame, runs coercion techniques, and formalizes the results as a knowledge graph. This formal representation complies with the frame semantics used in Framester, a factual-linguistic linked data resource. We tested our method on the WSJ section of the Peen Treebank annotated with VerbNet and PropBank labels and on the Brown corpus. The evaluation has been performed according to the CoNLL Shared Task on Joint Parsing of Syntactic and Semantic Dependencies. The obtained precision, recall, and F1 values indicate that TakeFive is competitive with other existing methods such as SEMAFOR, Pikes, PathLSTM, and FRED. We finally discuss how to combine TakeFive and FRED, obtaining higher values of precision, recall, and F1 measure

    Adaptive Temporal Encoding Network for Video Instance-level Human Parsing

    Full text link
    Beyond the existing single-person and multiple-person human parsing tasks in static images, this paper makes the first attempt to investigate a more realistic video instance-level human parsing that simultaneously segments out each person instance and parses each instance into more fine-grained parts (e.g., head, leg, dress). We introduce a novel Adaptive Temporal Encoding Network (ATEN) that alternatively performs temporal encoding among key frames and flow-guided feature propagation from other consecutive frames between two key frames. Specifically, ATEN first incorporates a Parsing-RCNN to produce the instance-level parsing result for each key frame, which integrates both the global human parsing and instance-level human segmentation into a unified model. To balance between accuracy and efficiency, the flow-guided feature propagation is used to directly parse consecutive frames according to their identified temporal consistency with key frames. On the other hand, ATEN leverages the convolution gated recurrent units (convGRU) to exploit temporal changes over a series of key frames, which are further used to facilitate the frame-level instance-level parsing. By alternatively performing direct feature propagation between consistent frames and temporal encoding network among key frames, our ATEN achieves a good balance between frame-level accuracy and time efficiency, which is a common crucial problem in video object segmentation research. To demonstrate the superiority of our ATEN, extensive experiments are conducted on the most popular video segmentation benchmark (DAVIS) and a newly collected Video Instance-level Parsing (VIP) dataset, which is the first video instance-level human parsing dataset comprised of 404 sequences and over 20k frames with instance-level and pixel-wise annotations.Comment: To appear in ACM MM 2018. Code link: https://github.com/HCPLab-SYSU/ATEN. Dataset link: http://sysu-hcp.net/li
    corecore