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1. Introduction

FrameNet (Fillmore, Johnson, and Petruck 2003) is a linguistic resource storing consider-
able information about lexical and predicate-argument semantics in English. Grounded
in the theory of frame semantics (Fillmore 1982), it suggests—but does not formally
define—a semantic representation that blends representations familiar from word-sense
disambiguation (Ide and Véronis 1998) and semantic role labeling (SRL; Gildea and
Jurafsky 2002). Given the limited size of available resources, accurately producing
richly structured frame-semantic structures with high coverage will require data-driven
techniques beyond simple supervised classification, such as latent variable modeling,
semi-supervised learning, and joint inference.

In this article, we present a computational and statistical model for frame-semantic
parsing, the problem of extracting from text semantic predicate-argument structures
such as those shown in Figure 1. We aim to predict a frame-semantic representation
with two statistical models rather than a collection of local classifiers, unlike earlier ap-
proaches (Baker, Ellsworth, and Erk 2007). We use a probabilistic framework that cleanly
integrates the FrameNet lexicon and limited available training data. The probabilistic
framework we adopt is highly amenable to future extension through new features, more
relaxed independence assumptions, and additional semi-supervised models.

Carefully constructed lexical resources and annotated data sets from FrameNet,
detailed in Section 3, form the basis of the frame structure prediction task. We de-
compose this task into three subproblems: target identification (Section 4), in which
frame-evoking predicates are marked in the sentence; frame identification (Section 5),
in which the evoked frame is selected for each predicate; and argument identification
(Section 6), in which arguments to each frame are identified and labeled with a role from
that frame. Experiments demonstrating favorable performance to the previous state of
the art on SemEval 2007 and FrameNet data sets are described in each section. Some
novel aspects of our approach include a latent-variable model (Section 5.2) and a semi-
supervised extension of the predicate lexicon (Section 5.5) to facilitate disambiguation of
words not in the FrameNet lexicon; a unified model for finding and labeling arguments

Figure 1
An example sentence from the annotations released as part of FrameNet 1.5 with three targets
marked in bold. Note that this annotation is partial because not all potential targets have been
annotated with predicate-argument structures. Each target has its evoked semantic frame
marked above it, enclosed in a distinct shape or border style. For each frame, its semantic roles
are shown enclosed within the same shape or border style, and the spans fulfilling the roles are
connected to the latter using dotted lines. For example, manner evokes the CONDUCT frame, and
has the AGENT and MANNER roles fulfilled by Austria and most un-Viennese, respectively.
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(Section 6) that diverges from prior work in semantic role labeling; and an exact dual
decomposition algorithm (Section 7) that collectively predicts all the arguments of a
frame together, thereby incorporating linguistic constraints in a principled fashion.

Our open-source parser, named SEMAFOR (Semantic Analyzer of Frame Represen-
tations)1 achieves the best published results to date on the SemEval 2007 frame-semantic
structure extraction task (Baker, Ellsworth, and Erk 2007). Herein, we also present
results on newly released data with FrameNet 1.5, the latest edition of the lexicon.
Some of the material presented in this article has appeared in previously published
conference papers: Das et al. (2010) presented the basic model, Das and Smith (2011)
described semi-supervised lexicon expansion, Das and Smith (2012) demonstrated a
sparse variant of lexicon expansion, and Das, Martins, and Smith (2012) presented the
dual decomposition algorithm for constrained joint argument identification. We present
here a synthesis of those results and several additional details:

1. The set of features used in the two statistical models for frame identification and
argument identification.

2. Details of a greedy beam search algorithm for argument identification that avoids
illegal argument overlap.

3. Error analysis pertaining to the dual decomposition argument identification algo-
rithm, in contrast with the beam search algorithm.

4. Results on full frame-semantic parsing using graph-based semi-supervised learn-
ing with sparsity-inducing penalties; this expands the small FrameNet predicate
lexicon, enabling us to handle unknown predicates.

Our primary contributions are the use of efficient structured prediction tech-
niques suited to shallow semantic parsing problems, novel methods in semi-supervised
learning that improve the lexical coverage of our parser, and making frame-semantic
structures a viable computational semantic representation usable in other language
technologies. To set the stage, we next consider related work in the automatic prediction
of predicate-argument semantic structures.

2. Related Work

In this section, we will focus on previous scientific work relevant to the problem of
frame-semantic parsing. First, we will briefly discuss work done on PropBank-style
semantic role labeling, following which we will concentrate on the more relevant prob-
lem of frame-semantic structure extraction. Next, we review previous work that has
used semi-supervised learning for shallow semantic parsing. Finally, we discuss prior
work on joint structure prediction relevant to frame-semantic parsing.

2.1 Semantic Role Labeling

Since Gildea and Jurafsky (2002) pioneered statistical semantic role labeling, there
has been a great deal of computational work using predicate-argument structures
for semantics. The development of PropBank (Kingsbury and Palmer 2002), followed
by CoNLL shared tasks on semantic role labeling (Carreras and Màrquez 2004,
2005) boosted research in this area. Figure 2(a) shows an annotation from PropBank.
PropBank annotations are closely tied to syntax, because the data set consists of the

1 See http://www.ark.cs.cmu.edu/SEMAFOR.
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(a)

(b)
Figure 2
(a) A phrase-structure tree taken from the Penn Treebank and annotated with PropBank
predicate-argument structures. The verbs created and pushed serve as predicates in this
sentence. Dotted arrows connect each predicate to its semantic arguments (bracketed phrases).
(b) A partial depiction of frame-semantic structures for the same sentence. The words in bold
are targets, which instantiate a (lemmatized and part-of-speech–tagged) lexical unit and evoke
a semantic frame. Every frame annotation is shown enclosed in a distint shape or border style,
and its argument labels are shown together on the same vertical tier below the sentence.
See text for explanation of abbreviations.

phrase-structure syntax trees from the Wall Street Journal section of the Penn Treebank
(Marcus, Marcinkiewicz, and Santorini 1993) annotated with predicate-argument
structures for verbs. In Figure 2(a), the syntax tree for the sentence is marked with
various semantic roles. The two main verbs in the sentence, created and pushed, are
the predicates. For the former, the constituent more than 1.2 million jobs serves as the
semantic role ARG1 and the constituent In that time serves as the role ARGM-TMP. Similarly
for the latter verb, roles ARG1, ARG2, ARGM-DIR, and ARGM-TMP are shown in the figure.
PropBank defines core roles ARG0 through ARG5, which receive different interpretations
for different predicates. Additional modifier roles ARGM-* include ARGM-TMP (temporal)
and ARGM-DIR (directional), as shown in Figure 2(a). The PropBank representation
therefore has a small number of roles, and the training data set comprises some
40,000 sentences, thus making the semantic role labeling task an attractive one from the
perspective of machine learning.

There are many instances of influential work on semantic role labeling using
PropBank conventions. Pradhan et al. (2004) present a system that uses support vector
machines (SVMs) to identify the arguments in a syntax tree that can serve as semantic
roles, followed by classification of the identified arguments to role names via a collection
of binary SVMs. Punyakanok et al. (2004) describe a semantic role labeler that uses inte-
ger linear programming for inference and uses several global constraints to find the best
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suited predicate-argument structures. Joint modeling for semantic role labeling with
discriminative log-linear models is presented by Toutanova, Haghighi, and Manning
(2005), where global features looking at all arguments of a particular verb together are
incorporated into a dynamic programming and reranking framework. The Computa-
tional Linguistics special issue on semantic role labeling (Màrquez et al. 2008) includes
other interesting papers on the topic, leveraging the PropBank conventions for labeling
shallow semantic structures. Recently, there have been initiatives to predict syntactic
dependencies as well as PropBank-style predicate-argument structures together using
one joint model (Surdeanu et al. 2008; Hajič et al. 2009).

Here, we focus on the related problem of frame-semantic parsing. Note from the
annotated semantic roles for the two verbs in the sentence of Figure 2(a) that it is
unclear what the core roles ARG1 or ARG2 represent linguistically. To better understand
the roles’ meaning for a given verb, one has to refer to a verb-specific file provided along
with the PropBank corpus. Although collapsing these verb-specific core roles into tags
ARG0-ARG5 leads to a small set of classes to be learned from a reasonable sized corpus,
analysis shows that the roles ARG2–ARG5 serve many different purposes for different
verbs. Yi, Loper, and Palmer (2007) point out that these four roles are highly overloaded
and inconsistent, and they mapped them to VerbNet (Schuler 2005) thematic roles to
get improvements on the SRL task. Recently, Bauer and Rambow (2011) presented
a method to improve the syntactic subcategorization patterns for FrameNet lexical
units using VerbNet. Instead of working with PropBank, we focus on shallow semantic
parsing of sentences in the paradigm of frame semantics (Fillmore 1982), to which we
turn next.

2.2 Frame-Semantic Parsing

The FrameNet lexicon (Fillmore, Johnson, and Petruck 2003) contains rich linguistic
information about lexical items and predicate-argument structures. A semantic frame
present in this lexicon includes a list of lexical units, which are associated words
and phrases that can potentially evoke it in a natural language utterance. Each frame
in the lexicon also enumerates several roles corresponding to facets of the scenario
represented by the frame. In a frame-analyzed sentence, predicates evoking frames
are known as targets, and a word or phrase filling a role is known as an argument.
Figure 2(b) shows frame-semantic annotations for the same sentence as in Figure 2(a).
(In the figure, for example, the CARDINAL NUMBERS frame, “M” denotes the role Multiplier
and “E” denotes the role Entity.) Note that the verbs created and pushed evoke the frames
INTENTIONALLY CREATE and CAUSE CHANGE POSITION ON A SCALE, respectively. The correspond-
ing lexical units2 from the FrameNet lexicon, create.V and push.V, are also shown.
The PropBank analysis in Figure 2(a) also has annotations for these two verbs. While
PropBank labels the roles of these verbs with its limited set of tags, the frame-
semantic parse labels each frame’s arguments with frame-specific roles shown in the
figure, making it immediately clear what those arguments mean. For example, for the
INTENTIONALLY CREATE frame, more than 1.2 million jobs is the Created entity, and In that time is
the Time when the jobs were created. FrameNet also allows non-verbal words and phrases
to evoke semantic frames: in this sentence, million evokes the frame CARDINAL NUMBERS

and doubles as its Number argument, with 1.2 as Multiplier, jobs as the Entity being quantified,
and more than as the Precision of the quantity expression.

2 See Section 5.1 for a detailed description of lexical units.
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Time
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TRANSITIVE_ACTION

Agent

Patient
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Time
OBJECTIVE_INFLUENCE

Dependent_entity

uencing_situation

Place

Time

uencing_entity

CAUSE_TO_MAKE_NOISE

Agent

Sound_maker

Cause

Place

Time

MAKE_NOISE

Noisy_event

Sound

Sound_source

Place

Time

cough.v, gobble.v, 
hiss.v, ring.v, yodel.v, ...

blare.v, honk.v, play.v, 
ring.v, toot.v, ...

—

affect.v, effect.n, 
impact.n, impact.v, ...

event.n, happen.v, 
occur.v, take place.v, ...

Inheritance relation Causative_of relation

Excludes relation

Purpose

Figure 3
Partial illustration of frames, roles, and lexical units related to the CAUSE TO MAKE NOISE frame,
from the FrameNet lexicon. Core roles are filled bars. Non-core roles (such as Place and Time) are
unfilled bars. No particular significance is ascribed to the ordering of a frame’s roles in its
lexicon entry (the selection and ordering of roles above is for illustrative convenience).
CAUSE TO MAKE NOISE defines a total of 14 roles, many of them not shown here.

Whereas PropBank contains verbal predicates and NomBank (Meyers et al. 2004) con-
tains nominal predicates, FrameNet counts these as well as allowing adjectives, adverbs,
and prepositions among its lexical units. Finally, FrameNet frames organize predicates
according to semantic principles, both by allowing related terms to evoke a common
frame (e.g., push.V, raise.V, and growth.N for CAUSE CHANGE POSITION ON A SCALE) and by
defining frames and their roles within a hierarchy (see Figure 3). PropBank does not
explicitly encode relationships among predicates.

Most early work on frame-semantic parsing has made use of the exemplar sentences
in the FrameNet corpus (see Section 3.1), each of which is annotated for a single frame
and its arguments. Gildea and Jurafsky (2002) presented a discriminative model for
arguments given the frame; Thompson, Levy, and Manning (2003) used a generative
model for both the frame and its arguments. Fleischman, Kwon, and Hovy (2003) first
used maximum entropy models to find and label arguments given the frame. Shi and
Mihalcea (2004) developed a rule-based system to predict frames and their arguments
in text, and Erk and Padó (2006) introduced the Shalmaneser tool, which uses naive
Bayes classifiers to do the same. Other FrameNet SRL systems (Giuglea and Moschitti
2006, for instance) have used SVMs. Most of this work was done on an older, smaller
version of FrameNet, containing around 300 frames and fewer than 500 unique semantic
roles. Unlike this body of work, we experimented with the larger SemEval 2007 shared
task data set, and also the newer FrameNet 1.5,3 which lists 877 frames and 1,068 role
types—thus handling many more labels, and resulting in richer frame-semantic parses.

Recent work in frame-semantic parsing—in which sentences may contain multiple
frames which need to be recognized along with their arguments—was undertaken
as the SemEval 2007 task 19 of frame-semantic structure extraction (Baker, Ellsworth,
and Erk 2007). This task leveraged FrameNet 1.3, and also released a small corpus

3 Available at http://framenet.icsi.berkeley.edu as of 19 January 2013.
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containing a little more than 2,000 sentences with full text annotations. The LTH system
of Johansson and Nugues (2007), which we use as our baseline (Section 3.4), had the
best performance in the SemEval 2007 task in terms of full frame-semantic parsing.
Johansson and Nugues broke down the task as identifying targets that could evoke
frames in a sentence, identifying the correct semantic frame for a target, and finally
determining the arguments that fill the semantic roles of a frame. They used a series
of SVMs to classify the frames for a given target, associating unseen lexical items to
frames and identifying and classifying token spans as various semantic roles. Both
the full text annotation corpus as well as the FrameNet exemplar sentences were
used to train their models. Unlike Johansson and Nugues, we use only the full text
annotated sentences as training data, model the whole problem with only two statis-
tical models, and obtain significantly better overall parsing scores. We also model the
argument identification problem using a joint structure prediction model and use semi-
supervised learning to improve predicate coverage. We also present experiments on
recently released FrameNet 1.5 data.

In other work based on FrameNet, Matsubayashi, Okazaki, and Tsujii (2009) in-
vestigated various uses of FrameNet’s taxonomic relations for learning generalizations
over roles; they trained a log-linear model on the SemEval 2007 data to evaluate features
for the subtask of argument identification. Another line of work has sought to extend
the coverage of FrameNet by exploiting VerbNet and WordNet (Shi and Mihalcea
2005; Giuglea and Moschitti 2006; Pennacchiotti et al. 2008) and by projecting entries
and annotations within and across languages (Boas 2002; Fung and Chen 2004; Pado
and Lapata 2005; Fürstenau and Lapata 2009b). Others have explored the application
of frame-semantic structures to tasks such as information extraction (Moschitti,
Morarescu, and Harabagiu 2003; Surdeanu et al. 2003), textual entailment (Burchardt
and Frank 2006; Burchardt et al. 2009), question answering (Narayanan and Harabagiu
2004; Shen and Lapata 2007), and paraphrase recognition (Padó and Erk 2005).

2.3 Semi-Supervised Methods

Although there has been a significant amount of work in supervised shallow semantic
parsing using both PropBank- and FrameNet-style representations, a few improve-
ments over vanilla supervised methods using unlabeled data are notable. Fürstenau and
Lapata (2009b) present a method of projecting predicate-argument structures from some
seed examples to unlabeled sentences, and use a linear program formulation to find
the best alignment explaining the projection. Next, the projected information as well
as the seeds are used to train statistical model(s) for SRL. The authors ran experiments
using a set of randomly chosen verbs from the exemplar sentences of FrameNet and
found improvements over supervised methods. In an extension to this work, Fürstenau
and Lapata (2009a) present a method for finding examples for unseen verbs using a
graph alignment method; this method represents sentences and their syntactic analysis
as graphs and graph alignment is used to project annotations from seed examples to
unlabeled sentences. This alignment problem is again modeled as a linear program.
Fürstenau and Lapata (2012) present an detailed expansion of the aforementioned
papers. Although this line of work presents a novel direction in the area of SRL, the
published approach does not yet deal with non-verbal predicates and does not evaluate
the presented methods on the full text annotations of the FrameNet releases.

Deschacht and Moens (2009) present a technique of incorporating additional infor-
mation from unlabeled data by using a latent words language model. Latent variables
are used to model the underlying representation of words, and parameters of this model
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are estimated using standard unsupervised methods. Next, the latent information is
used as features for an SRL model. Improvements over supervised SRL techniques
are observed with the augmentation of these extra features. The authors also compare
their method with the aforementioned two methods of Fürstenau and Lapata (2009a,
2009b) and show relative improvements. Experiments are performed on the CoNLL
2008 shared task data set (Surdeanu et al. 2008), which follows the PropBank conven-
tions and only labels verbal and nominal predicates—in contrast to our work, which
includes most lexicosyntactic categories. A similar approach is presented by Weston,
Ratle, and Collobert (2008), who use neural embeddings of words, which are eventu-
ally used for SRL; improvements over state-of-the-art PropBank-style SRL systems are
observed.

Recently, there has been related work in unsupervised semantic role labeling (Lang
and Lapata 2010, 2011; Titov and Klementiev 2012) that attempts to induce semantic
roles automatically from unannotated data. This line of work may be useful in discov-
ering new semantic frames and roles, but here we stick to the concrete representation
provided in FrameNet, without seeking to expand its inventory of semantic types. We
present a new semi-supervised technique to expand the set of lexical items with the
potential semantic frames that they could evoke; we use a graph-based semi-supervised
learning framework to achieve this goal (Section 5.5).

2.4 Joint Inference and Shallow Semantic Parsing

Most high-performance SRL systems that use conventions from PropBank (Kingsbury
and Palmer 2002) and NomBank (Meyers et al. 2004) utilize joint inference for seman-
tic role labeling (Màrquez et al. 2008). To our knowledge, the separate line of work
investigating frame-semantic parsing has not previously dealt with joint inference. A
common trait in prior work, both in PropBank and FrameNet conventions, has been
the use of a two-stage model that identifies arguments first, then labels them, often
using dynamic programming or integer linear programs (ILPs); we treat both problems
together here.4

Recent work in natural language processing (NLP) problems has focused on ILP for-
mulations for complex structure prediction tasks like dependency parsing (Riedel and
Clarke 2006; Martins, Smith, and Xing 2009; Martins et al. 2010), sequence tagging (Roth
and Yih 2004), as well as PropBank SRL (Punyakanok et al. 2004). Whereas early work
in this area focused on declarative formulations tackled with off-the-shelf solvers, Rush
et al. (2010) proposed subgradient-based dual decomposition (also called Lagrangian
relaxation) as a way of exploiting the structure of the problem and existing combina-
torial algorithms. The method allows the combination of models that are individually
tractable, but not jointly tractable, by solving a relaxation of the original problem. Since
then, dual decomposition has been used to build more accurate models for dependency
parsing (Koo et al. 2010), combinatory categorical grammar supertagging and parsing
(Auli and Lopez 2011), and machine translation (Chang and Collins 2011; DeNero and
Macherey 2011; Rush and Collins 2011).

Recently, Martins et al. (2011b) showed that the success of subgradient-based dual
decomposition strongly relies on breaking down the original problem into a “good”

4 In prior work, there are exceptions where identification and classification of arguments have been treated
in one step; for more details, please refer to the systems participating in the CoNLL-2004 shared task on
semantic role labeling (Carreras and Màrquez 2004).
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decomposition, that is, one with few overlapping components. This leaves out many
declarative constrained problems, for which such a good decomposition is not readily
available. For those, Martins et al. proposed the Alternating Directions Dual Decom-
position (AD3) algorithm, which retains the modularity of previous methods, but can
handle thousands of small overlapping components. We adopt that algorithm as it
perfectly suits the problem of argument identification, as we observe in Section 7.5 We
also contribute an exact branch-and-bound technique wrapped around AD3.

Before delving into the details of our modeling framework, we describe in detail the
structure of the FrameNet lexicon and the data sets used to train our models.

3. Resources and Task

We consider frame-semantic parsing resources consisting of a lexicon and annotated
sentences with frame-semantic structures, evaluation strategies, and previous baselines.

3.1 FrameNet Lexicon

The FrameNet lexicon is a taxonomy of manually identified general-purpose semantic
frames for English.6 Listed in the lexicon with each frame are a set of lemmas (with
parts of speech) that can denote the frame or some aspect of it—these are called lexical
units (LUs). In a sentence, word or phrase tokens that evoke a frame are known as
targets. The set of LUs listed for a frame in FrameNet may not be exhaustive; we may
see a target in new data that does not correspond to an LU for the frame it evokes.
Each frame definition also includes a set of frame elements, or roles, corresponding
to different aspects of the concept represented by the frame, such as participants,
props, and attributes. We use the term argument to refer to a sequence of word tokens
annotated as filling a frame role. Figure 1 shows an example sentence from the training
data with annotated targets, LUs, frames, and role-argument pairs. The FrameNet
lexicon also provides information about relations between frames and between roles
(e.g., INHERITANCE). Figure 3 shows a subset of the relations between five frames and
their roles.

Accompanying most frame definitions in the FrameNet lexicon is a set of lexico-
graphic exemplar sentences (primarily from the British National Corpus) annotated
for that frame. Typically chosen to illustrate variation in argument realization pat-
terns for the frame in question, these sentences only contain annotations for a single
frame.

In preliminary experiments, we found that using exemplar sentences directly to
train our models hurt performance as evaluated on SemEval 2007 data, which formed
a benchmark for comparison with previous state of the art. This was a noteworthy
observation, given that the number of exemplar sentences is an order of magnitude
larger than the number of sentences in training data that we consider in our experiments
(Section 3.2). This is presumably because the exemplars are not representative as a
sample, do not have complete annotations, and are not from a domain similar to the

5 AD3 was previously referred to as “DD-ADMM,” in reference to the use of dual decomposition with the
alternating directions method of multipliers.

6 Like the SemEval 2007 participants, we used FrameNet 1.3 and also the newer version of the lexicon,
FrameNet 1.5 (http://framenet.icsi.berkeley.edu).
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Table 1
Salient statistics of the data sets used in our experiments. There is a significant overlap between
the two data sets.

SemEval 2007 Data FrameNet 1.5 Release
count count

Exemplar sentences 139,439 154,607
Frame labels (types) 665 877
Role labels (types) 720 1,068
Sentences in training data 2,198 3,256
Targets in training data 11,195 19,582
Sentences in test data 120 2,420
Targets in test data 1,059 4,458
Unseen targets in test data 210 144

test data. Instead, we make use of these exemplars in the construction of features
(Section 5.2).

3.2 Data

In our experiments on frame-semantic parsing, we use two sets of data:

1. SemEval 2007 data: In benchmark experiments for comparison with previous
state of the art, we use a data set that was released as part of the SemEval 2007
shared task on frame-semantic structure extraction (Baker, Ellsworth, and Erk 2007).
Full text annotations in this data set consisted of a few thousand sentences con-
taining multiple targets, each annotated with a frame and its arguments. The then-
current version of the lexicon (FrameNet 1.3) was used for the shared task as the
inventory of frames, roles, and lexical units (Figure 3 illustrates a small portion
of the lexicon). In addition to the frame hierarchy, FrameNet 1.3 also contained
139,439 exemplar sentences containing one target each. Statistics of the data used
for the SemEval 2007 shared task are given in the first column of Table 1. A total
of 665 frame types and 720 role types appear in the exemplars and the training
portion of the data. We adopted the same training and test split as the SemEval
2007 shared task; however, we removed four documents from the training set7 for
development. Table 2 shows some additional information about the SemEval data
set; the variety of lexicosyntactic categories of targets stands in marked contrast
with the PropBank-style SRL data and task.

2. FrameNet 1.5 release: A more recent version of the FrameNet lexicon was released
in 2010.8 We also test our statistical models (only frame identification and argu-
ment identification) on this data set to get an estimate of how much improvement
additional data can provide. Details of this data set are shown in the second col-
umn of Table 1. Of the 78 documents in this release with full text annotations, we
selected 55 (19,582 targets) for training and held out the remaining 23 (4,458 tar-
gets) for testing. There are fewer target annotations per sentence in the test set than

7 These were: StephanopoulousCrimes, Iran Biological, NorthKorea Introduction, and WMDNews 042106.
8 Released on 15 September 2010, and downloadable from http://framenet.icsi.berkeley.edu as of

13 February 2013. In our experiments, we used a version downloaded on 22 September 2010.

18



Das et al. Frame-Semantic Parsing

Table 2
Breakdown of targets and arguments in the SemEval 2007 training set in terms of part of speech.
The target POS is based on the LU annotation for the frame instance. For arguments, this reflects
the part of speech of the head word (estimated from an automatic dependency parse); the
percentage is out of all overt arguments.

targets arguments
count % count %

Noun 5,155 52 Noun 9,439 55
Verb 2,785 28 Preposition or

complementizerAdjective 1,411 14 2,553 15
Preposition 296 3 Adjective 1,744 10
Adverb 103 1 Verb 1,156 7
Number 63 1 Pronoun 736 4
Conjunction 8 Adverb 373 2
Article 3 Other 1,047 6

9,824 17,048

the training set.9 Das and Smith (2011, supplementary material) give the names
of the test documents for fair replication of our work. We also randomly selected
4,462 targets from the training data for development of the argument identification
model (Section 6.1).

Preprocessing. We preprocessed sentences in our data set with a standard set of anno-
tations: POS tags from MXPOST (Ratnaparkhi 1996) and dependency parses from the
MST parser (McDonald, Crammer, and Pereira 2005); manual syntactic parses are not
available for most of the FrameNet-annotated documents. We used WordNet (Fellbaum
1998) for lemmatization. Our models treat these pieces of information as observations.
We also labeled each verb in the data as having ACTIVE or PASSIVE voice, using code
from the SRL system described by Johansson and Nugues (2008).

3.3 Task and Evaluation Methodology

Automatic annotations of frame-semantic structure can be broken into three parts:
(1) targets, the words or phrases that evoke frames; (2) the frame type, defined in the
lexicon, evoked by each target; and (3) the arguments, or spans of words that serve
to fill roles defined by each evoked frame. These correspond to the three subtasks
in our parser, each described and evaluated in turn: target identification (Section 4),
frame identification (Section 5, not unlike word-sense disambiguation), and argument
identification (Section 6, essentially the same as semantic role labeling).

The standard evaluation script from the SemEval 2007 shared task calculates pre-
cision, recall, and F1-measure for frames and arguments; it also provides a score that
gives partial credit for hypothesizing a frame related to the correct one. We present

9 For creating the splits, we first included the documents that had incomplete annotations as mentioned in
the initial FrameNet 1.5 data release in the test set; because we do not evaluate target identification for
this version of data, the small number of targets per sentence does not matter. After these documents
were put into the test set, we randomly selected 55 remaining documents for training, and picked the
rest for additional testing. The final test set contains a total of 23 documents. When these documents
are annotated in their entirety, the test set will become larger and the training set will be unaltered.
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precision, recall, and F1-measure microaveraged across the test documents, report labels-
only matching scores (spans must match exactly), and do not use named entity labels.10

More details can be found in the task description paper from SemEval 2007 (Baker,
Ellsworth, and Erk 2007). For our experiments, statistical significance is measured using
a reimplementation of Dan Bikel’s randomized parsing evaluation comparator, a strat-
ified shuffling test whose original implementation11 is accompanied by the following
description (quoted verbatim, with explanations of our use of the test given in square
brackets):

The null hypothesis is that the two models that produced the observed results are the
same, such that for each test instance [here, a set of predicate-argument structures for a
sentence], the two observed scores are equally likely. This null hypothesis is tested by
randomly shuffling individual sentences’ scores between the two models and then
re-computing the evaluation metrics [precision, recall or F1 score in our case]. If the
difference in a particular metric after a shuffling is equal to or greater than the original
observed difference in that metric, then a counter for that metric is incremented. Ideally,
one would perform all 2n shuffles, where n is the number of test cases (sentences), but
given that this is often prohibitively expensive, the default number of iterations is
10,000 [we use independently sampled 10,000 shuffles]. After all iterations, the
likelihood of incorrectly rejecting the null [hypothesis, i.e., the p-value] is simply
(nc + 1)/(nt + 1), where nc is the number of random differences greater than the
original observed difference, and nt is the total number of iterations.

3.4 Baseline

A strong baseline for frame-semantic parsing is the system presented by Johansson and
Nugues (2007, hereafter J&N’07), the best system in the SemEval 2007 shared task. That
system is based on a collection of SVMs. They used a set of rules for target identification
which we describe in Appendix A. For frame identification, they used an SVM classifier
to disambiguate frames for known frame-evoking words. They used WordNet synsets
to extend the vocabulary of frame-evoking words to cover unknown words, and then
used a collection of separate SVM classifiers—one for each frame—to predict a single
evoked frame for each occurrence of a word in the extended set.

J&N’07 followed Xue and Palmer (2004) in dividing the argument identification
problem into two subtasks: First, they classified candidate spans as to whether they
were arguments or not; then they assigned roles to those that were identified as ar-
guments. Both phases used SVMs. Thus, their formulation of the problem involves
a multitude of independently trained classifiers that share no information—whereas
ours uses two log-linear models, each with a single set of parameters shared across all
contexts, to find a full frame-semantic parse.

We compare our models with J&N’07 using the benchmark data set from SemEval
2007. However, because we are not aware of any other work using the FrameNet 1.5 full
text annotations, we report our results on that data set without comparison to any other
system.

10 For microaveraging, we concatenated all sentences of the test documents and measured precision and
recall over the concatenation. Macroaveraging, on the other hand, would mean calculating these metrics
for each document, then averaging them. Microaveraging treats every frame or argument as a unit,
regardless of the length of the document in which it occurs.

11 See http://www.cis.upenn.edu/�dbikel/software.html#comparator.
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4. Target Identification

Target identification is the problem of deciding which word tokens (or word token
sequences) evoke frames in a given sentence. In other semantic role labeling schemes
(e.g., PropBank), simple part-of-speech criteria typically distinguish targets from non-
targets. But in frame semantics, verbs, nouns, adjectives, and even prepositions can
evoke frames under certain conditions. One complication is that semantically impov-
erished support predicates (such as make in make a request) do not evoke frames in the
context of a frame-evoking, syntactically dependent noun (request). Furthermore, only
temporal, locative, and directional senses of prepositions evoke frames.12

Preliminary experiments using a statistical method for target identification gave
unsatisfactory results; instead, we followed J&N’07 in using a small set of rules to
identify targets. First, we created a master list of all the morphological variants of
targets that appear in the exemplar sentences and a given training set. For a sentence in
new data, we considered as candidate targets only those substrings that appear in this
master list. We also did not attempt to capture discontinuous frame targets: for example,
we treat there would have been as a single span even though the corresponding LU is
there be.V.13

Next, we pruned the candidate target set by applying a series of rules identical
to the ones described by Johansson and Nugues (2007, see Appendix A), with two
exceptions. First, they identified locative, temporal, and directional prepositions using
a dependency parser so as to retain them as valid LUs. In contrast, we pruned all types
of prepositions because we found them to hurt our performance on the development
set due to errors in syntactic parsing. In a second departure from their target extraction
rules, we did not remove the candidate targets that had been tagged as support verbs
for some other target. Note that we used a conservative white list that filters out targets
whose morphological variants were not seen either in the lexicon or the training data.14

Therefore, when this conservative process of automatic target identification is used, our
system loses the capability to predict frames for completely unseen LUs, despite the fact
that our powerful frame identification model (Section 5) can accurately label frames for
new LUs.15

Results. Table 3 shows results on target identification tested on the SemEval 2007 test
set; our system gains 3 F1 points over the baseline. This is statistically significant with
p < 0.01. Our results are also significant in terms of precision (p < 0.05) and recall (p <

0.01). There are 85 distinct LUs for which the baseline fails to identify the correct target
while our system succeeds. A considerable proportion of these units have more than

12 Note that there have been dedicated shared tasks to determine relationships between nominals (Girju
et al. 2007) and word-sense disambiguation of prepositions (Litkowski and Hargraves 2007), but we do
not build specific models for predicates of these categories.

13 There are 629 multiword LUs in the lexicon, and they correspond to 4.8% of the targets in the training
set; among them are screw up.V, shoot the breeze.V, and weapon of mass destruction.N. In the SemEval 2007
training data, there are just 99 discontinuous multiword targets (1% of all targets).

14 This conservative approach violates theoretical linguistic assumptions about frame-evoking targets as
governed by frame semantics. It also goes against the spirit of using linguistic constraints to improve
the separate subtask of argument identification (see Section 7); however, due to varying distributions
of target annotations, high empirical error in identifying locative, temporal, and directional prepositions,
and support verbs, we resorted to this aggressive filtering heuristic to avoid making too many target
identification mistakes.

15 To predict frames and roles for new and unseen LUs, SEMAFOR provides the user with an option to
mark those LUs in the input.
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Table 3
Target identification results for our system and the baseline on the SemEval’07 data set. Scores in
bold denote significant improvements over the baseline (p < 0.05).

TARGET IDENTIFICATION P R F1

Our technique (§4) 89.92 70.79 79.21
Baseline: J&N’07 87.87 67.11 76.10

one token (e.g., chemical and biological weapon.N, ballistic missile.N), which J&N’07 do not
model. The baseline also does not label variants of there be.V (e.g., there are and there has
been), which we correctly label as targets. Some examples of other single token LUs that
the baseline fails to identify are names of months, LUs that belong to the ORIGIN frame
(e.g., iranian.A), and directions (e.g., north.A or north-south.A).16

5. Frame Identification

Given targets, our parser next identifies their frames, using a statistical model.

5.1 Lexical Units

FrameNet specifies a great deal of structural information both within and among
frames. For frame identification we make use of frame-evoking lexical units, the (lem-
matized and POS-tagged) words and phrases listed in the lexicon as referring to specific
frames. For example, listed with the BRAGGING frame are 10 LUs, including boast.N,
boast.V, boastful.A, brag.V, and braggart.N. Of course, due to polysemy and homonymy,
the same LU may be associated with multiple frames; for example, gobble.V is listed
under both the INGESTION and MAKE NOISE frames. We thus term gobble.V an ambiguous
LU. All targets in the exemplar sentences, our training data, and most in our test data,
correspond to known LUs. (See Section 5.4 for statistics of unknown LUs in the test sets.)

To incorporate frame-evoking expressions found in the training data but not the
lexicon—and to avoid the possibility of lemmatization errors—our frame identification
model will incorporate, via a latent variable, features based directly on exemplar and
training targets rather than LUs. Let L be the set of (unlemmatized and automati-
cally POS-tagged) targets found in the exemplar sentences of the lexicon and/or the
sentences in our training set. Let Lf ⊆ L be the subset of these targets annotated as
evoking a particular frame f .17 Let Ll and Ll

f denote the lemmatized versions of L and
Lf , respectively. Then, we write boasted.VBD ∈ LBRAGGING and boast.VBD ∈ Ll

BRAGGINGto
indicate that this inflected verb boasted and its lemma boast have been seen to evoke the
BRAGGING frame. Significantly, however, another target, such as toot your own horn, might
be used elsewhere to evoke this frame. We thus face the additional hurdle of predicting
frames for unknown words.

16 We do not evaluate the target identification module on the FrameNet 1.5 data set; we instead ran
controlled experiments on those data to measure performance of the statistical frame identification and
argument identification subtasks, assuming that the correct targets were given. Moreover, as discussed
in Section 3.2, the target annotations on the FrameNet 1.5 test set were fewer in number in comparison
to the training set, resulting in a mismatch of target distributions between train and test settings.

17 For example, on average, there are 34 targets per frame in the SemEval 2007 data set; the average frame
ambiguity of each target in L is 1.17.
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In producing full text annotations for the SemEval 2007 data set, annotators created
several domain-critical frames that were not already present in version 1.3 of the lexicon.
For our experiments we omit frames attested in neither the training data nor the exem-
plar sentences from the lexicon.18 This leaves a total of 665 frames for the SemEval 2007
data set and a total of 877 frames for the FrameNet 1.5 data set.

5.2 Model

For a given sentence x with frame-evoking targets t, let ti denote the ith target (a word
sequence).19 Let tl

i denote its lemma. We seek a list f = 〈f1, . . . , fm〉 of frames, one per
target. In our model, the set of candidate frames for ti is defined to include every frame
f such that tl

i ∈ Ll
f —or if tl

i �∈ Ll, then every known frame (the latter condition applies
for 4.7% of the annotated targets in the SemEval 2007 development set). In both cases,
we let Fi be the set of candidate frames for the ith target in x. We denote the entire set
of frames in the lexicon as F .

To allow frame identification for targets whose lemmas were seen in neither the
exemplars nor the training data, our model includes an additional variable, �i. This
variable ranges over the seen targets in Lfi , which can be thought of as prototypes
for the expression of the frame. Importantly, frames are predicted, but prototypes are
summed over via the latent variable. The prediction rule requires a probabilistic model
over frames for a target:

fi ← argmax
f∈Fi

∑
�∈Lf

pθ(f, � | ti, x) (1)

We model the probability of a frame f and the prototype unit �, given the target and the
sentence x as:

pθ(f, � | ti, x) =
expθ�g(f, �, ti, x)∑

f ′∈F

∑
�′∈Lf′

expθ�g(f ′, �′, ti, x)
(2)

This is a conditional log-linear model: for f ∈ Fi and � ∈ Lf , where θ are the model
weights, and g is a vector-valued feature function. This discriminative formulation is
very flexible, allowing for a variety of (possibly overlapping) features; for example, a
feature might relate a frame type to a prototype, represent a lexical-semantic relation-
ship between a prototype and a target, or encode part of the syntax of the sentence.

Previous work has exploited WordNet for better coverage during frame identifica-
tion (Burchardt, Erk, and Frank 2005; Johansson and Nugues 2007, e.g., by expanding
the set of targets using synsets), and others have sought to extend the lexicon itself.
We differ in our use of a latent variable to incorporate lexical-semantic features in a
discriminative model, relating known lexical units to unknown words that may evoke
frames. Here we are able to take advantage of the large inventory of partially annotated

18 Automatically predicting new frames is a challenge not yet attempted to our knowledge (including here).
Note that the scoring metric (Section 3.3) gives partial credit for related frames (e.g., a more general frame
from the lexicon).

19 Here each ti is a word sequence 〈wu, . . . , wv〉, 1 ≤ u ≤ v ≤ n, though in principle targets can be
noncontiguous.
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Table 4
Features used for frame identification (Equation (2)). All also incorporate f , the frame being
scored. � = 〈w�,π�〉 consists of the words and POS tags20 of a target seen in an exemplar or
training sentence as evoking f . The features with starred bullets were also used by Johansson
and Nugues (2007).

• the POS of the parent of the head word of ti
•∗ the set of syntactic dependencies of the head word21 of ti
•∗ if the head word of ti is a verb, then the set of dependency labels of its children
• the dependency label on the edge connecting the head of ti and its parent
• the sequence of words in the prototype, w�

• the lemmatized sequence of words in the prototype
• the lemmatized sequence of words in the prototype and their part-of-speech tags π�

• WordNet relation22 ρ holds between � and ti
• WordNet relation22 ρ holds between � and ti, and the prototype is �
• WordNet relation22 ρ holds between � and ti, the POS tag sequence of � is π�, and the POS

tag sequence of ti is πt

exemplar sentences. Note that this model makes an independence assumption: Each
frame is predicted independently of all others in the document. In this way the model
is similar to J&N’07. However, ours is a single conditional model that shares features
and weights across all targets, frames, and prototypes, whereas the approach of J&N’07
consists of many separately trained models. Moreover, our model is unique in that it
uses a latent variable to smooth over frames for unknown or ambiguous LUs.

Frame identification features depend on the preprocessed sentence x, the prototype
� and its WordNet lexical-semantic relationship with the target ti, and of course the
frame f . Our model uses binary features, which are detailed in Table 4.

5.3 Parameter Estimation

Given a training data set (either SemEval 2007 data set or the FrameNet 1.5 full text
annotations), which is of the form 〈〈x(j), t(j), f(j),A(j)〉〉N

j=1, we discriminatively train the
frame identification model by maximizing the training data log-likelihood:23

max
θ

N∑
j=1

mj∑
i=1

log
∑

�∈L
f ( j)
i

pθ( f (j)
i , � | t(j)

i , x(j) ) (3)

In Equation (3), mj denotes the number of frames in a sentence indexed by j. Note
that the training problem is non-convex because of the summed-out prototype latent

20 POS tags are found automatically during preprocessing.
21 If the target is not a subtree in the parse, we consider the words that have parents outside the span,

and apply three heuristic rules to select the head: (1) choose the first word if it is a verb; (2) choose the
last word if the first word is an adjective; (3) if the target contains the word of, and the first word is a
noun, we choose it. If none of these hold, choose the last word with an external parent to be the head.

22 These are: IDENTICAL-WORD, SYNONYM, ANTONYM (including extended and indirect antonyms),
HYPERNYM, HYPONYM, DERIVED FORM, MORPHOLOGICAL VARIANT (e.g., plural form), VERB
GROUP, ENTAILMENT, ENTAILED-BY, SEE-ALSO, CAUSAL RELATION, and NO RELATION.

23 We found no benefit on either development data set from using an L2 regularizer (zero-mean
Gaussian prior).
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Table 5
Frame identification results on both the SemEval 2007 data set and the FrameNet 1.5 release.
Precision, recall, and F1 were evaluated under exact and partial frame matching; see Section 3.3.
Bold indicates best results on the SemEval 2007 data, which are also statistically significant with
respect to the baseline (p < 0.05).

FRAME IDENTIFICATION (§5.2) exact matching partial matching
P R F1 P R F1

SemEval 2007 Data

gold targets 60.21 60.21 60.21 74.21 74.21 74.21
automatic targets (§4) 69.75 54.91 61.44 77.51 61.03 68.29
J&N’07 targets 65.34 49.91 56.59 74.30 56.74 64.34
Baseline: J&N’07 66.22 50.57 57.34 73.86 56.41 63.97

FrameNet 1.5 Release
gold targets 82.97 82.97 82.97 90.51 90.51 90.51
– unsupported features 80.30 80.30 80.30 88.91 88.91 88.91

& – latent variable 75.54 75.54 75.54 85.92 85.92 85.92

variable � for each frame. To calculate the objective function, we need to cope with a
sum over frames and prototypes for each target (see Equation (2)), often an expensive
operation. We locally optimize the function using a distributed implementation of L-
BFGS.24 This is the most expensive model that we train: With 100 parallelized CPUs
using MapReduce (Dean and Ghemawat 2008), training takes several hours.25 Decoding
takes only a few minutes on one CPU for the test set.

5.4 Supervised Results

SemEval 2007 Data. On the SemEval 2007 data set, we evaluate the performance of
our frame identification model given gold-standard targets and automatically identified
targets (Section 4); see Table 5. Together, our target and frame identification outperform
the baseline by 4 F1 points. To compare the frame identification stage in isolation with
that of J&N’07, we ran our frame identification model with the targets identified by their
system as input. With partial matching, our model achieves a relative improvement of
0.6% F1 over J&N’07, as shown in the third row of Table 5 (though this is not significant).
Note that for exact matching, the F1 score of the automatic targets setting is better than
the gold target setting. This is due to the fact that there are many unseen predicates in
the test set on which the frame identification model performs poorly; however, for the
automatic targets that are mostly seen in the lexicon and training data, the model gets
high precision, resulting in better overall F1 score.

Our frame identification model thus performs on par with the previous state of the
art for this task, and offers several advantages over J&N’s formulation of the problem:
It requires only a single model, learns lexical-semantic features as part of that model
rather than requiring a preprocessing step to expand the vocabulary of frame-evoking
words, and is probabilistic, which can facilitate global reasoning.

24 We do not experiment with the initialization of model parameters during this non-convex optimization
process; all parameters are initialized to 0.0 before running the optimizer. However, in future work,
experiments can be conducted with different random initialization points to seek non-local optima.

25 In later experiments, we used another implementation with 128 parallel cores in a multi-core MPI setup
(Gropp, Lusk, and Skjellum 1994), where training took several hours.
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In the SemEval 2007 data set, for gold-standard targets, 210 out of 1,059 lemmas
were not present in the white list that we used for target identification (see Section 4).
Our model correctly identifies the frames for 4 of these 210 lemmas. For 44 of these
lemmas, the evaluation script assigns a score of 0.5 or more, suggesting that our model
predicts a closely related frame. Finally, for 190 of the 210 lemmas, a positive score is
assigned by the evaluation script. This suggests that the hidden variable model helps
in identifying related (but rarely exact) frames for unseen targets, and explains why
under exact—but not partial—frame matching, the F1 score using automatic targets is
commensurate with the score for oracle targets.26

For automatically identified targets, the F1 score falls because the model fails
to predict frames for unseen lemmas. However, our model outperforms J&N’07 by
4 F1 points. The partial frame matching F1 score of our model represents a significant
improvement over the baseline (p < 0.01). The precision and recall measures are
significant as well (p < 0.05 and p < 0.01, respectively). However, because targets
identified by J&N’07 and frames classified by our frame identification model resulted
in scores on par with the baseline, we note that the significant results follow due to
better target identification. Note from the results that the automatic target identification
model shows an increase in precision, at the expense of recall. This is because the white
list for target identification restricts the model to predict frames only for known LUs.
If we label the subset of test set with already seen LUs (seen only in the training set,
excluding the exemplars) with their corresponding most frequent frame, we achieve
an exact match accuracy between 52.9% and 91.2%, depending on the accuracy of the
unseen LUs (these bounds assume, respectively, that they are all incorrectly labeled or
all correctly labeled).

FrameNet 1.5 Release. The bottom three rows of Table 5 show results on the full text
annotation test set of the FrameNet 1.5 release. Because the number of annotations
nearly doubled, we see large improvements in frame identification accuracy. Note that
we only evaluate with gold targets as input to frame identification. (As mentioned in
Section 3.2, some documents in the test set have not been annotated for all targets, so
evaluating automatic target identification would not be informative.) We found that
50.1% of the targets in the test set were ambiguous (i.e., they associated with more than
one frame either in FrameNet or our training data). On these targets, the exact frame
identification accuracy is 73.10% and the partial accuracy is 85.77%, which indicates that
the frame identification model is robust to target ambiguity. On this data set, the most
frequent frame baseline achieves an exact match accuracy between 74.0% and 88.1%,
depending on the accuracy of the unseen LUs.

We conducted further experiments with ablation of the latent variable in our frame
identification model. Recall that the decoding objective used to choose a frame by
marginalizing over a latent variable �, whose values range over targets known to
associate with the frame f being considered (see Equations (1) and (2)) in training. How
much do the prototypes, captured by the latent variable, contribute to performance?
Instead of treating � as a marginalized latent variable, we can fix its value to the observed
target.

26 J&N’07 did not report frame identification results for oracle targets; thus directly comparing the frame
identification models is difficult.
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An immediate effect of this choice is a blow-up in the number of features; we
must instantiate features (see Table 4) for all 4,194 unique targets observed in training.
Because each of these features needs to be associated with all 877 frames in the partition
function of Equation (2), the result is an 80-fold blowup of the feature space (the latent
variable model had 465,317 features). Such a model is not computationally feasible in
our engineering framework, so we considered a model using only features observed to
fire at some point in the training data (called “supported” features),27 resulting in only
72,058 supported features. In Table 5, we see a significant performance drop (on both
exact and partial matching accuracy) with this latent variable–free model, compared
both with our latent variable model with all features and with only supported features
(of which there are 165,200). This establishes that the latent variable in our frame
identification model helps in terms of accuracy, and lets us use a moderately sized
feature set incorporating helpful unsupported features.

Finally, in our test set, we found that 144 out of the 4,458 annotated targets were un-
seen, and our full frame identification model only labeled 23.1% of the frames correctly
for those unseen targets; in terms of partial match accuracy, the model achieved a score
of 46.6%. This, along with the results on the SemEval 2007 unseen targets, shows that
there is substantial opportunity for improvement when unseen targets are presented to
the system. We address this issue next.

5.5 Semi-Supervised Lexicon Expansion

We next address the poor performance of our frame identification model on targets that
were unseen as LUs in FrameNet or as instances in training data, and briefly describe
a technique for expanding the set of lexical units with potential semantic frames that
they can associate with. These experiments were carried out on the FrameNet 1.5 data
only. We use a semi-supervised learning (SSL) technique that uses a graph constructed
from labeled and unlabeled data. The widely used graph-based SSL framework—see
Bengio, Delalleau, and Le Roux (2006) and Zhu (2008) for introductory material on this
topic—has been shown to perform better than several other semi-supervised algorithms
on benchmark data sets (Chapelle, Schölkopf, and Zien 2006, chapter 21). The method
constructs a graph where a small portion of vertices correspond to labeled instances,
and the rest are unlabeled. Pairs of vertices are connected by weighted edges denoting
the similarity between the pair. Traditionally, Markov random walks (Szummer and
Jaakkola 2001; Baluja et al. 2008) or optimization of a loss function based on smoothness
properties of the graph (e.g., Corduneanu and Jaakkola 2003; Zhu, Ghahramani, and
Lafferty 2003; Subramanya and Bilmes 2008) are performed to propagate labels from
the labeled vertices to the unlabeled ones. In our work, we are interested in multi-class
generalizations of graph-propagation algorithms suitable for NLP applications, where
each graph vertex can assume one or more out of many possible labels (Subramanya and
Bilmes 2008, 2009; Talukdar and Crammer 2009). For us, graph vertices correspond to
natural language types (not tokens) and undirected edges between them are weighted
using a similarity metric. Recently, this set-up has been used to learn soft labels on
natural language types (say, word n-grams or in our case, syntactically disambiguated

27 The use of unsupported features (i.e., those that can fire for an analysis in the partition function but not
observed to fire in the training data) has been observed to give performance improvements in NLP
problems; see, for example, Sha and Pereira (2003) and Martins et al. (2010).
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predicates) from seed data, resulting in large but noisy lexicons, which are used to
constrain structured prediction models. Applications have ranged from domain adap-
tation of sequence models (Subramanya, Petrov, and Pereira 2010) to unsupervised
learning of POS taggers by using bilingual graph-based projections (Das and Petrov
2011).

We describe our approach to graph construction, propagation for lexicon expansion,
and the use of the result to impose constraints on frame identification.

5.5.1 Graph Construction. We construct a graph with lexical units as vertices. Thus, each
vertex corresponds to a lemmatized word or phrase appended with a coarse POS tag.
We use two resources for graph construction. First, we take all the words and phrases
present in a dependency-based thesaurus constructed using syntactic cooccurrence
statistics (Lin 1998), and aggregate words and phrases that share the same lemma and
coarse POS tag. To construct this resource, Lin used a corpus containing 64 million
words that was parsed with a fast dependency parser (Lin 1993, 1994), and syntactic
contexts were used to find similar lexical items for a given word or phrase. Lin sepa-
rately treated nouns, verbs, and adjectives/adverbs, so these form the three parts of the
thesaurus. This resource gave us a list of possible LUs, much larger in size than the LUs
present in FrameNet data.

The second component of graph construction comes from FrameNet itself. We
scanned the exemplar sentences in FrameNet 1.5 and the training section of the full
text annotations and gathered a distribution over frames for each LU appearing in
FrameNet data. For a pair of LUs, we measured the Euclidean distance between their
frame distributions. This distance was next converted to a similarity score and inter-
polated with the similarity score from Lin’s dependency thesaurus. We omit further
details about the interpolation and refer the reader to full details given in Das and Smith
(2011).

For each LU, we create a vertex and link it to the K nearest neighbor LUs under the
interpolated similarity metric. The resulting graph has 64,480 vertices, 9,263 of which
are labeled seeds from FrameNet 1.5 and 55,217 of which are unlabeled. Each vertex has
a possible set of labels corresponding to the 877 frames defined in the lexicon. Figure 4
shows an excerpt from the constructed graph.

Figure 4
Excerpt from our constructed graph over LUs. Green LUs are observed in the FrameNet 1.5 data.
Above/below them are shown the most frequently observed frame that these LUs associate
with. The black LUs are unobserved and graph propagation produces a distribution over most
likely frames that they could evoke as target instances.
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5.5.2 Propagation by Optimization. Once the graph is constructed, the 9,263 seed ver-
tices with supervised frame distributions are used to propagate the semantic frame
information via their nearest neighbors to all vertices. Here we discuss two graph-
based SSL objective functions. Das and Smith (2012) compare several other graph-based
SSL algorithms for this problem; we refer the interested reader to that paper. Let V
denote the set of all vertices in our graph, V̂ ⊂ V be the set of seed vertices, and F
denote the set of all frames. Let N (v) denote the set of neighbors of vertex v ∈ V. Let
q = {q1, q2, . . . , q|V|} be the set of frame distributions, one per vertex. For each seed
vertex v ∈ V̂, we have a supervised frame distribution q̂v. All edges in the graph are
weighted according to the aforementioned interpolated similarity score, denoted wuv
for the edge adjacent to vertices u and v. We find q by solving:

NGF-�2 : arg min
q, s.t. q≥0,

∀v∈V,‖qv‖1=1

∑

v∈V̂

‖q̂v − qv‖2
2 + μ

∑
v∈V,u∈N (v)

wuv‖qv − qu‖2
2 + ν

∑
v∈V

‖qv − 1
|F|‖2

2

(4)

We call the objective in Equation (4) NGF-�2 because it uses normalized probability dis-
tributions at each vertex and is a Gaussian field; it also utilizes a uniform �2 penalty—the
third term in the objective function. This is a multiclass generalization of the quadratic
cost criterion (Bengio, Delalleau, and Le Roux 2006), also used by Subramanya, Petrov,
and Pereira (2010) and Das and Petrov (2011). Our second graph objective function is as
follows:

UJSF-�1,2 : arg min
q, s.t. q≥0

∑

v∈V̂

DJS(q̂v‖qv) + μ
∑

v∈V,u∈N (v)

wuvDJS(qv‖qu) + ν
∑
v∈V

‖qv‖2
1 (5)

We call it UJSF-�1,2 because it uses unnormalized probability measures at each vertex
and is a Jensen-Shannon field, utilizing pairwise Jensen-Shannon divergences (Lin 1991;
Burbea and Rao 2006) and a sparse �1,2 penalty (Kowalski and Torrésani 2009) as the
third term. Das and Smith (2012) proposed the objective function in Equation (5). It seeks
at each graph vertex a sparse measure, as we expect in a lexicon (i.e., few frames have
nonzero probability for a given target). These two graph objectives can be optimized
by iterative updates, whose details we omit in this article; more information about the
motivation behind using the �1,2 penalty in the UJSF-�1,2 objective, the optimization
procedure, and an empirical comparison of these and other objectives on another NLP
task can be found in Das and Smith (2012).

5.5.3 Constraints for Frame Identification. Once a graph-based SSL objective function is
minimized, we arrive at the optimal set of frame distributions q∗, which we use to
constrain our frame identification inference rule, expressed in Equation (1). In that
rule, ti is the ith target in a sentence x, and fi is the corresponding evoked frame. We
now add a constraint to that rule. Recall from Section 5.2 that for targets with known
lemmatized forms, Fi was defined to be the set of frames that associate with lemma tl

i
in the supervised data. For unknown lemmas, Fi was defined to be all the frames in the
lexicon. If the LU corresponding to ti is present in the graph, let it be the vertex vi. For
such targets ti covered by the graph, we redefine Fi as:

Fi = {f : f ∈ M-best frames under q∗vi
} (6)
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Table 6
Exact and partial frame identification accuracy on the FrameNet 1.5 data set with the size of
lexicon (in terms of non-zero frame components in the truncated frame distributions) used for
frame identification, given gold targets. The supervised model is compared with alternatives in
Table 5. Bold indicates best results. UJSF-�1,2 produces statistically significant results (p < 0.001)
for all metrics with respect to the supervised baseline for both the unseen LUs as well as the
whole test set. Although the NGF-�2 and UJSF-�1,2 models are statistically indistinguishable,
it is noteworthy that the UJSF-�1,2 objective produces a much smaller lexicon.

UNKNOWN TARGETS ALL TARGETS Graph
exact partial exact partial Lexicon

frame matching frame matching frame matching frame matching Size

Supervised 23.08 46.62 82.97 90.51 –
Self-training 18.88 42.67 82.27 90.02 –

NGF-�2 39.86 62.35 83.51 91.02 128,960
UJSF-�1,2 42.67 65.29 83.60 91.12 45,544

For targets ti in test data whose LUs are not present in the graph (and hence in
supervised data), Fi is the set of all frames. Note that in this semi-supervised extension
of our frame identification inference procedure, we introduced several hyperparam-
eters, namely, μ, ν, K (the number of nearest neighbors for each vertex included in
the graph) and M (the number of highest scoring frames per vertex according to the
induced frame distribution). We choose these hyperparameters using cross-validation
by tuning the frame identification accuracy on unseen targets. (Different values of the
first three hyperparameters were chosen for the different graph objectives and we omit
their values here for brevity; M turned out to be 2 for all models.)

Table 6 shows frame identification accuracy, both using exact match as well as
partial match. Performance is shown on the portion of the test set containing unknown
LUs, as well as the whole test set. The final column presents lexicon size in terms
of the set of truncated frame distributions (filtered according to the top M frames in
qv for a vertex v) for all the LUs in a graph. For comparison with a semi-supervised
baseline, we consider a self-trained system. For this system, we used the supervised
frame identification system to label 70,000 sentences from the English Gigaword corpus
with frame-semantic parses. For finding targets in a raw sentence, we used a relaxed
target identification scheme, where we marked as potential frame-evoking units all
targets seen in the lexicon and all other words which were not prepositions, particles,
proper nouns, foreign words, or WH-words. We appended these automatic annotations
to the training data, resulting in 711,401 frame annotations, more than 36 times the
annotated data. These data were next used to train a frame identification model.28 This
set-up is very similar to that of Bejan (2009) who used self-training to improve frame
identification. In our setting, however, self-training hurts relative to the fully supervised
approach (Table 6).

Note that for the unknown part of the test set the graph-based objectives outperform
both the supervised model as well as the self-training baseline by a margin of ∼20%

28 We ran self-training with smaller amounts of data, but found no significant difference with the results
achieved with 711,401 frame annotations. As we observe in Table 6, in our case, self-training performs
worse than the supervised model, and we do not hope to improve with even more data.
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absolute. The best model is UJSF-�1,2, and its performance is significantly better than
the supervised model (p < 0.01). It also produces a smaller lexicon (using the sparsity-
inducing penalty) than NGF-�2, requiring less memory during frame identification
inference. The small footprint can be attributed to the removal of LUs for which all
frame components were zero (qi = 0). The improvements of the graph-based objectives
over the supervised and the self-trained models are modest for the whole test set,
but the best model still has statistically significant improvements over the supervised
model (p < 0.01).

6. Argument Identification

Given a sentence x = 〈x1, . . . , xn〉, the set of targets t = 〈t1, . . . , tm〉, and a list of evoked
frames f = 〈f1, . . . , fm〉 corresponding to each target, argument identification is the task
of choosing which of each fi’s roles are filled, and by which parts of x. This task is most
similar to the problem of semantic role labeling, but uses a richer set of frame-specific
labels than PropBank annotations.

6.1 Model

Let Rfi = {r1, . . . , r|Rfi
|} denote frame fi’s roles (named frame element types) observed

in an exemplar sentence and/or our training set. A subset of each frame’s roles are
marked as core roles; these roles are conceptually and/or syntactically necessary for
any given use of the frame, though they need not be overt in every sentence involving
the frame. These are roughly analogous to the core arguments ARG0–ARG5 in PropBank.
Non-core roles—analogous to the various ARGM-* in PropBank—loosely correspond to
syntactic adjuncts, and carry broadly applicable information such as the time, place,
or purpose of an event. The lexicon imposes some additional structure on roles, in-
cluding relations to other roles in the same or related frames, and semantic types with
respect to a small ontology (marking, for instance, that the entity filling the protag-
onist role must be sentient for frames of cognition). Figure 3 illustrates some of the
structural elements comprising the frame lexicon by considering the CAUSE TO MAKE NOISE

frame.
We identify a set S of spans that are candidates for filling any role r ∈ Rfi . In

principle, S could contain any subsequence of x, but in this work we only consider
the set of contiguous spans that (a) contain a single word or (b) comprise a valid subtree
of a word and all its descendants in the dependency parse produced by the MST parser.
This covers approximately 80% of arguments in the development data for both data
sets.

The empty span, denoted ∅, is also included in S , since some roles are not explicitly
filled; in the SemEval 2007 development data, the average number of roles an evoked
frame defines is 6.7, but the average number of overt arguments is only 1.7.29 In

29 In the annotated data, each core role is filled with one of three types of null instantiations indicating how
the role is conveyed implicitly. For instance, the imperative construction implicitly designates a role as
filled by the addressee, and the corresponding filler is thus CNI (constructional null instantiation). In this
work we do not distinguish different types of null instantiation. The interested reader may refer to Chen
et al. (2010), who handle the different types of null instantions during argument identification.
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training, if a labeled argument is not a subtree of the dependency parse, we add its
span to S .30

Let Ai denote the mapping of roles in Rfi to spans in S . Our model makes a
prediction for each Ai(rk) (for all roles rk ∈ Rfi ) using:

Ai(rk) ← argmax
s∈S

pψ(s | rk, fi, ti, x) (7)

We use a conditional log-linear model over spans for each role of each evoked frame:

pψ(Ai(rk) = s | fi, ti, x) =
expψ�h(s, rk, fi, ti, x)∑

s′∈S
expψ�h(s′, rk, fi, ti, x)

(8)

Note that our model chooses the span for each role separately from the other roles
and ignores all frames except the frame the role belongs to. Our model departs
from the traditional SRL literature by modeling the argument identification problem
in a single stage, rather than first classifying token spans as arguments and then
labeling them. A constraint implicit in our formulation restricts each role to have at
most one overt argument, which is consistent with 96.5% of the role instances in the
SemEval 2007 training data and 96.4% of the role instances in the FrameNet 1.5 full text
annotations.

Out of the overt argument spans in the training data, 12% are duplicates, having
been used by some previous frame in the sentence (supposing some arbitrary ordering
of frames). Our role-filling model, unlike a sentence-global argument detection-and-
classification approach,31 permits this sort of argument sharing among frames. Word
tokens belong to an average of 1.6 argument spans, including the quarter of words that
do not belong to any argument.

Appending together the local inference decisions from Equation (7) gives us the best
mapping Ât for target t. Features for our log-linear model (Equation (8)) depend on the
preprocessed sentence x; the target t; a role r of frame f ; and a candidate argument span
s ∈ S .32 For features using the head word of the target t or a candidate argument span
s, we use the heuristic described in footnote 21 for selecting the head of non-subtree
spans.

Table 7 lists the feature templates used in our model. Every feature template has
a version that does not take into account the role being filled (so as to incorporate
overall biases). The �� symbol indicates that the feature template also has a variant that
is conjoined with r, the name of the role being filled; and � indicates that the feature

30 Here is an example in the FrameNet 1.5 training data where this occurs. In the sentence: As capital of
Europe’s most explosive economy, Dublin seems to be changing before your very eyes, the word economy
evokes the ECONOMY frame with the phrase most explosive fulfilling the Descriptor role. However,
in the dependency parse for the sentence the phrase is not a subtree because both words in the frame
attach to the word economy. Future work may consider better heuristics to select potential arguments
from the dependency parses to recover more gold arguments than what the current work achieves.

31 J&N’07, like us, identify arguments for each target.
32 In this section we use t, f , and r without subscripts because the features only consider a single role of a

single target’s frame.
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Table 7
Features used for argument identification. Section 6.1 describes the meanings of the different
circles attached to each feature.

Features with both null and non-null variants: These features come in two flavors:
if the argument is null, then one version fires; if it is overt (non-null), then another
version fires.� some word in t has lemma λ � some word in t has POS π�� some word in t has lemma λ, and the
sentence uses PASSIVE voice

�� some word in t has lemma λ, and the
sentence uses ACTIVE voice�� the head of t has subcategorization

sequence τ = 〈τ1, τ2, . . . 〉
�� some syntactic dependent of the head of t

has dependency type τ� the head of t has c syntactic dependents � bias feature (always fires)

Span content features: apply to overt argument candidates.� POS tag π occurs for some word in s � the head word of s has POS π� the first word of s has POS π � |s|, the number of words in the span� the last word of s has POS π � the first word of s has lemma λ� the head word of s has syntactic
dependency type τ

� the first word of s: ws1
, and its POS tag πs1

,
if πs1

is a closed-class POS� ws2
and its closed-class POS tag πs2

,
provided that |s| ≥ 2

� the syntactic dependency type τs1
of the

first word with respect to its head� the head word of s has lemma λ � τs2
, provided that |s| ≥ 2� the last word of s: ws|s| has lemma λ � τs|s| , provided that |s| ≥ 3

� ws|s| , and its closed-class POS tag πs|s| ,
provided that |s| ≥ 3

�� lemma λ is realized in some word in s�� lemma λ is realized in some word in s, the
voice denoted in the span, s’s position
with respect to t (BEFORE, AFTER, or
OVERLAPPING)

�� lemma λ is realized in some word in s,
the voice denoted in the span (ACTIVE
or PASSIVE)

Syntactic features: apply to overt argument candidates.� dependency path: sequence of labeled,
directed edges from the head word of s to
the head word of t

� length of the dependency path

Span context POS features: for overt candidates, up to 6 of these features will be active.� a word with POS π occurs up to 3 words
before the first word of s

� a word with POS π occurs up to 3 words
after the last word of s

Ordering features: apply to overt argument candidates.� the position of s with respect to the span
of t: BEFORE, AFTER, or OVERLAPPING (i.e.
there is at least one word shared by s and t)

� target-argument crossing: there is at least
one word shared by s and t, at least one
word in s that is not in t, and at least one
word in t that is not in s� linear word distance between the nearest

word of s and the nearest word of t,
provided s and t do not overlap

� linear word distance between the middle
word of s and the middle word of t,
provided s and t do not overlap

template additionally has a variant that is conjoined with both r and f , the name of the
frame.33 The role-name-only variants provide for smoothing over frames for common
types of roles such as Time and Place; see Matsubayashi, Okazaki, and Tsujii (2009) for
a detailed analysis of the effects of using role features at varying levels of granularity.
Certain features in our model rely on closed-class POS tags, which are defined to be
all Penn Treebank tags except for CD and tags that start with V, N, J, or R. Finally, the

33 That is, the � symbol subsumes ��, which in turn subsumes �.
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features that encode a count or a number are binned into groups: (−∞,−20], [−19,−10],
[−9,−5], −4, −3, −2, −1, 0, 1, 2, 3, 4, [5, 9], [10, 19], [20,∞).

6.2 Parameter Estimation

We train the argument identification model by:

max
ψ

N∑
j=1

mj∑
i=1

|R
f (j)
i
|

∑
k=1

log pψ(A(j)
i (rk) | f (j)

i , t(j)
i , x(j) ) − C ‖ψ‖2

2 (9)

Here, N is the number of data points (sentences) in the training set, and m is the number
of frame annotations per sentence. This objective function is concave. For experiments
with the SemEval 2007 data, we trained the model using stochastic gradient ascent
(Bottou 2004) with no Gaussian regularization (C = 0).34 Early stopping was done by
tuning on the development set, and the best results were obtained with a batch size of 2
and 23 passes through the data.

On the FrameNet 1.5 release, we trained this model using L-BFGS (Liu and Nocedal
1989) and ran it for 1,000 iterations. C was tuned on the development data, and we
obtained best results for C = 1.0. We did not use stochastic gradient descent for this
data set as the number of training instances increased and parallelization of L-BFGS
on a multicore setup implementing MPI (Gropp, Lusk, and Skjellum 1994) gave faster
training speeds.

6.3 Decoding with Beam Search

Naive prediction of roles using Equation (7) may result in overlap among arguments
filling different roles of a frame, because the argument identification model fills each role
independently of the others. We want to enforce the constraint that two roles of a single
frame cannot be filled by overlapping spans.35 Toutanova, Haghighi, and Manning
(2005) presented a dynamic programming algorithm to prevent overlapping arguments
for SRL; however, their approach used an orthogonal view to the argument identi-
fication stage, wherein they labeled phrase-structure tree constituents with semantic
roles. That formulation admitted a dynamic programming approach; our formulation
of finding the best argument span for each role does not.

To eliminate illegal overlap, we adopt the beam search technique detailed in
Algorithm 1. The algorithm produces a set of k-best hypotheses for a frame instance’s
full set of role-span pairs, but uses an approximation in order to avoid scoring an
exponential number of hypotheses. After determining which roles are most likely not
explicitly filled, it considers each of the other roles in turn: In each iteration, hypotheses
incorporating a subset of roles are extended with high-scoring spans for the next role,
always maintaining k alternatives. We set k=10,000 as the beam width.36

34 This was the setting used by Das et al. (2010) and we kept it unchanged.
35 On rare occasions a frame annotation may include a secondary frame element layer, allowing arguments to

be shared among multiple roles in the frame; see Ruppenhofer et al. (2006) for details. The evaluation for
this task only considers the primary layer, which is guaranteed to have disjoint arguments.

36 We show the effect of varying beam widths in Table 9, where we present performance of an exact
algorithm for argument identification.
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Algorithm 1 Joint decoding of frame fi’s arguments via beam search. topk(S , pψ, rj)
extracts the k most probable spans from S , under pψ, for role rj. extend(D0:(j−1),S ′)
extends each span vector in D0:(j−1) with the most probable non-overlapping span from
S ′, resulting in k best extensions overall.
Require: k > 0, Rfi , S , the distribution pψ from Equation 8 for each role rj ∈ Rfi
Ensure: Âi, a high-scoring mapping of roles of fi to spans with no token overlap among

the spans
1: Calculate Ai according to Equation 7
2: ∀r ∈ Rfi such that Ai(r) = ∅, let Âi(r) ← ∅
3: R+

fi
← {r : r ∈ Rfi ,Ai(r) �= ∅}

4: n ← |R+
fi
|

5: Arbitrarily order R+
fi

as {r1, r2, . . . rn}
6: Let D0:j = 〈D0:j

1 , . . . , D0:j
k 〉 refer to the k-best list of vectors of compatible filler spans

for roles r1 through rj

7: Initialize D0:0 to be empty
8: for j = 1 to n do
9: D0:j ← extend(D0:(j−1), topk(S , pψ, rj))

10: end for
11: ∀j ∈ {1, . . . , n}, Âi(rj) ← D0:n

1 [j]
12: return Âi

6.4 Results

Performance of the argument identification model is presented in Table 8 for both data
sets in consideration. We analyze them here.

SemEval 2007 Data: For the SemEval data set, the table shows how performance
varies given different types of input: correct targets and correct frames, correct targets
but automatically identified frames, and ultimately, no oracle input (the full frame
parsing scenario). Rows 1–2 isolate the argument identification task from the frame
identification task. Given gold targets and frames, our argument identification model
(without beam search) gets an F1 score of 68.09%; when beam search is applied, this
increases to 68.46%, with a noticeable increase in precision. Note that an estimated 19%
of correct arguments are excluded because they are neither single words nor complete
subtrees (see Section 6.1) of the automatic dependency parses.37

Qualitatively, the problem of candidate span recall seems to be largely due to
syntactic parse errors.38 Although our performance is limited by errors when using
the syntactic parse to determine candidate spans, it could still improve; this suggests

37 We found that using all constituents from the 10-best syntactic parses would improve oracle recall of
spans in the development set by just a couple of percentage points, at the computational cost of a larger
pool of candidate arguments per role.

38 Note that, because of our labels-only evaluation scheme (Section 3.3), arguments missing a word or
containing an extra word receive no credit. In fact, of the frame roles correctly predicted as having an
overt span, the correct span was predicted 66% of the time, while 10% of the time the predicted starting
and ending boundaries of the span were off by a total of one or two words.
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that the model has trouble discriminating between good and bad arguments, and that
additional feature engineering or jointly decoding arguments of a sentence’s frames
may be beneficial.

Rows 3–4 show the effect of automatic supervised frame identification on overall
frame parsing performance. There is a 22% absolute decrease in F1 (18% when partial
credit is given for related frames), suggesting that improved frame identification
or joint prediction of frames and arguments is likely to have a sizeable impact on
overall performance. Rows 4–6 compare our full model (target, frame, and argument
identification) with the baseline, showing significant improvement of more than 4.4
F1 points for both exact and partial frame matching. As with frame identification, we
compared the argument identification stage with that of J&N’07 in isolation, using the
automatically identified targets and frames from the latter as input to our model. As
shown in row 5, with partial frame matching, this gave us an F1 score of 48.1% on the
test set—significantly better (p < 0.05) than 45.6%, the full parsing result from J&N’07
(row 6 in Table 8). This indicates that our argument identification model—which uses a
single discriminative model with a large number of features for role filling (rather than
argument labeling)—is more accurate than the previous state of the art.

FrameNet 1.5 Release: Rows 7–12 show results on the newer data set, which is part
of the FrameNet 1.5 release. As in the frame identification results of Table 5, we do not
show results using predicted targets, as we only test the performance of the statistical
models. First, we observe that for results with gold frames, the F1 score is 79.08%
with naive decoding, which is significantly higher than the SemEval counterpart. This
indicates that increased training data greatly improves performance on the task. We also
observe that beam search improves precision by nearly 2%, while getting rid of overlap-
ping arguments. When both model frames and model arguments are used, we get an
F1 score of 68.45%, which is encouraging in comparison to the best results we achieved
on the SemEval 2007 data set. Semi-supervised lexicon expansion for frame identifi-
cation further improves parsing performance. We observe the best results when the
UJSF-�1,2 graph objective is used for frame identification, significantly outperforming
the fully supervised model on parsing (p < 0.001) for all evaluation metrics. The im-
provements with SSL can be explained by noting that frame identification performance
goes up when the graph objectives are used, which carries over to argument iden-
tification. Figure 5 shows an example where the graph-based model UJSF-�1,2 corrects
an error made by the fully supervised model for the unseen LU discrepancy.N, both for
frame identification and full frame-semantic parsing.

7. Collective Argument Identification with Constraints

The argument identification strategy described in the previous section does not capture
some facets of semantic knowledge represented declaratively in FrameNet. In this
section, we present an approach that exploits such knowledge in a principled, unified,
and intuitive way. In prior NLP research using FrameNet, these interactions have been
largely ignored, though they have the potential to improve the quality and consistency
of semantic analysis. The beam search technique (Algorithm 1) handles one kind of
constraint: avoiding argument overlaps. It is, however, approximate and cannot handle
other forms of constraints.

Here, we present an algorithm that exactly identifies the best full collection of argu-
ments of a target given its semantic frame. Although we work within the conventions of

37



Computational Linguistics Volume 40, Number 1

Figure 5
(a) Output of the supervised frame-semantic parsing model, with beam search for argument
identification, given the target discrepancies. The output is incorrect. (b) Output using the
constrained frame identification model that takes into account the graph-based frame
distributions over unknown predicates. In this particular example, the UJSF-�1,2 graph
objective is used. This output matches the gold annotation. The LU discrepancy.N is unseen
in supervised FrameNet data.

FrameNet, our approach is generalizable to other SRL frameworks. We model argument
identification as constrained optimization, where the constraints come from expert
knowledge encoded in FrameNet. Following prior work on PropBank-style SRL that
dealt with similar constrained problems (Punyakanok et al. 2004; Punyakanok, Roth,
and Yih 2008, inter alia), we incorporate this declarative knowledge in an integer linear
program.

Because general-purpose ILP solvers are proprietary and do not fully exploit the
structure of the problem, we turn to a class of optimization techniques called dual
decomposition (Komodakis, Paragios, and Tziritas 2007; Rush et al. 2010; Martins et al.
2011a). We derive a modular, extensible, parallelizable approach in which semantic con-
straints map not just to declarative components in the algorithm, but also to procedural
ones, in the form of “workers.” Although dual decomposition algorithms only solve
a relaxation of the original problem, we make our approach exact by wrapping the
algorithm in a branch-and-bound search procedure. 39

We experimentally find that our algorithm achieves accuracy comparable to the
results presented in Table 8, while respecting all imposed linguistic constraints. In
comparison with beam search, which violates many of these constraints, the presented
exact decoder is slower, but it decodes nine times faster than CPLEX, a state-of-the-art,
proprietary, general-purpose exact ILP solver.40

39 Open-source code in C++ implementing the AD3 algorithm can be found at
http://www.ark.cs.cmu.edu/AD3.

40 See http://www-01.ibm.com/software/integration/optimization/cplex-optimizer.
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7.1 Joint Inference

Here, we take a declarative approach to modeling argument identification using an ILP
and relate our formulation to prior work in shallow semantic parsing. We show how
knowledge specified in a linguistic resource (FrameNet in our case) can be used to
derive the constraints in our ILP. Finally, we draw connections of our specification to
graphical models, a popular formalism in artificial intelligence and machine learning,
and describe how the constraints can be treated as factors in a factor graph.

7.1.1 Declarative Specification. Let us simplify notation by considering a given target t and
not considering its index in a sentence x; let the semantic frame it evokes be f . To solely
evaluate argument identification, we assume that the semantic frame f is given, which is
traditionally the case in controlled experiments used to evaluate SRL systems (Màrquez
et al. 2008). Let the set of roles associated with the frame f be Rf . In sentence x, the set
of candidate spans of words that might fill each role is enumerated, usually following
an overgenerating heuristic, which is described in Section 6.1; as before, we call this set
of spans S . As before, this set also includes the null span ∅; connecting it to a role r ∈ Rf
denotes that the role is not overt. Our approach assumes a scoring function that gives
a strength of association between roles and candidate spans. For each role r ∈ Rf and
span s ∈ S , this score is parameterized as:

c(r, s) = ψ�h(s, r, f, t, x), (10)

where ψ are model weights and h is a feature function that looks at the target t,
the evoked frame f , sentence x, and its syntactic analysis, along with r and s. This
scoring function is identical in form to the numerator’s exponent in the log-linear model
described in Equation (8). The SRL literature provides many feature functions of this
form and many ways to use machine learning to acquire ψ. Our presented method does
not make any assumptions about the score except that it has the form in Equation (10).

We define a vector z of binary variables zr,s ∈ {0, 1} for every role and span pair. We
have that: z ∈ {0, 1}d, where d = |Rf | × |S|. zr,s = 1 means that role r is filled by span s.
Given the binary z vector, it is straightforward to recover the collection of arguments
by checking which components zr,s have an assignment of 1; we use this strategy to
find arguments, as described in Section 7.3 (strategies 4 and 6). The joint argument
identification task can be represented as a constrained optimization problem:

maximize
∑
r∈Rf

∑
s∈S

c(r, s) × zr,s

with respect to z ∈ {0, 1}d

such that Az ≤ b (11)

In the last line, A is a k × d matrix and b is a vector of length k. Thus, Az ≤ b is a set of
k inequalities representing constraints that are imposed on the mapping between roles
and spans; these are motivated on linguistic grounds and are described next. 41

41 Note that equality constraints a · z = b can be transformed into double-side inequalities a · z ≤ b and
−a · z ≤ −b.
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Uniqueness. Each role r is filled by at most one span in S . This constraint can be
expressed by:

∀r ∈ Rf ,
∑
s∈S

zr,s = 1 (12)

There are O(|Rf |) such constraints. Note that because S contains the null span ∅, non-
overt roles are also captured using the above constraints. Such a constraint is used
extensively in prior literature (Punyakanok, Roth, and Yih 2008, Section 3.4.1).

Overlap. SRL systems commonly constrain roles to be filled by non-overlapping spans.
For example, Toutanova, Haghighi, and Manning (2005) used dynamic programming
over a phrase structure tree to prevent overlaps between arguments, and Punyakanok,
Roth, and Yih (2008) used constraints in an ILP to respect this requirement. Inspired by
the latter, we require that each input sentence position of x be covered by at most one
argument of t. We define:

G(i) = {s | s ∈ S , s covers position i in x} (13)

We can define our overlap constraints in terms of G as follows, for every sentence
position i:

∀i ∈ {1, . . . , |x|},
∑
r∈Rf

∑
s∈G(i)

zr,s ≤ 1 (14)

This gives us O(|x|) constraints. It is worth noting that this constraint aims to achieve the
same effect as beam search, as described in Section 6.3, which tries to avoid argument
overlap greedily.

Pairwise “Exclusions.” For many target classes, there are pairs of roles forbidden to
appear together in the analysis of a single target token. Consider the following two
sentences:

(1) A blackberry
Entity 1

resembles a loganberry
Entity 2

.

(2) Most berries
Entities

resemble each other.

Consider the uninflected target resemble in both sentences, evoking the same
meaning. In Example (1), two roles—which we call Entity 1 and Entity 2—describe two
entities that are similar to each other. In the second sentence, a phrase fulfills a third
role, called Entities, that collectively denotes some objects that are similar. It is clear that
the roles Entity 1 and Entities cannot be overt for the same target at once, because the latter
already captures the function of the former; a similar argument holds for the Entity 2 and
Entities roles. We call this phenomenon the “excludes” relationship. Let us define a set of
pairs from Rf that have this relationship:

Exclf = {(ri, rj) | ri and rj exclude each other}
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Using the given set, we define the constraint:

∀(ri, rj) ∈ Exclf , zri,∅ + zrj,∅ ≥ 1 (15)

If both roles are overt in a parse, this constraint will be violated, contravening the
“excludes” relationship specified between the pair of roles. If neither or only one of
the roles is overt, the constraint is satisfied. The total number of such constraints is
O(|Exclf |), which is the number of pairwise “excludes” relationships of a given frame.

Pairwise “Requirements.” The sentence in Example (1) illustrates another kind of con-
straint. The target resemble cannot have only one of Entity 1 and Entity 2 as roles in text.
For example,

(3) * A blackberry
Entity 1

resembles.

Enforcing the overtness of two roles sharing this “requires” relationship is straight-
forward. We define the following set for a frame f :

Reqf = {(ri, rj) | ri and rj require each other}

This leads to constraints of the form

∀(ri, rj) ∈ Reqf , zri,∅ − zrj,∅ = 0 (16)

If one role is overt (or absent), the other must be as well. A related constraint has
been used previously in the SRL literature, enforcing joint overtness relationships be-
tween core arguments and referential arguments (Punyakanok, Roth, and Yih 2008,
Section 3.4.1), which are formally similar to our example.42

7.1.2 Integer Linear Program and Relaxation. Plugging the constraints in Equations 12,
14, 15, and 16 into the last line of Equation (11), we have the argument identification
problem expressed as an ILP, since the indicator variables z are binary. Here, apart from
the ILP formulation, we will consider the following relaxation of Equation (11), which
replaces the binary constraint z ∈ {0, 1}d by a unit interval constraint z ∈ [0, 1]d, yielding
a linear program:

maximize
∑
r∈Rf

∑
s∈S

c(r, s) × zr,s

with respect to z ∈ [0, 1]d

such that Az ≤ b. (17)

42 We noticed that, in the annotated data, in some cases, the “requires” constraint is violated by the
FrameNet annotators. This happens mostly when one of the required roles is absent in the sentence
containing the target, but is rather instantiated in an earlier sentence (Gerber and Chai 2010). We apply
the hard constraint in Equation (16), though extending our algorithm to seek arguments outside the
sentence is straightforward. For preliminary work extending SEMAFOR this way, see Chen et al. (2010).
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There are several LP and ILP solvers available, and a great deal of effort has been
spent by the optimization community to devise efficient generic solvers. An example
is CPLEX, a state-of-the-art solver for mixed integer programming that we use as a
baseline to solve the ILP in Equation (11) as well as its LP relaxation in Equation (17).
Like many of the best implementations, CPLEX is proprietary.

7.1.3 Linguistic Constraints from FrameNet. Although enforcing the four different sets of
constraints is intuitive from a general linguistic perspective, we ground their use in
definitive linguistic information present in the FrameNet lexicon. From the annotated
data in the FrameNet 1.5 release, we gathered that only 3.6% of the time is a role
instantiated multiple times by different spans in a sentence. This justifies the uniqueness
constraint enforced by Equation (12). Use of such a constraint is also consistent with
prior work in frame-semantic parsing (Johansson and Nugues 2007). Similarly, we
found that in the annotations, no arguments overlapped with each other for a given
target. Hence, the overlap constraints in Equation (14) are also justified.

Our third and fourth sets of constraints, presented in Equations (15) and (16), come
from FrameNet, too. Examples (1) and (2) are instances where the target resemble
evokes the SIMILARITY frame, which is defined in FrameNet as:

Two or more distinct entities, which may be concrete or abstract objects or types, are
characterized as being similar to each other. Depending on figure/ground relations, the
entities may be expressed in two distinct frame elements and constituents, Entity 1 and
Entity 2, or jointly as a single frame element and constituent, Entities.

For this frame, the lexicon lists several roles other than the three we have already
observed, such as Dimension (the dimension along which the entities are similar), Differ-
entiating fact (a fact that reveals how the concerned entities are similar or different), and
so forth. Along with the roles, FrameNet also declares the “excludes” and “requires”
relationships noted in our discussion in Section 7.1.1. The case of the SIMILARITY frame
is not unique; in Figure 1, the frame COLLABORATION, evoked by the target partners, also
has two roles Partner 1 and Partner 2 that share the “requires” relationship. In fact, out
of 877 frames in FrameNet 1.5, 204 frames have at least a pair of roles for which the
“excludes” relationship holds, and 54 list at least a pair of roles that share the “requires”
relationship.

7.1.4 Constraints as Factors in a Graphical Model. The LP in Equation (17) can be repre-
sented as a maximum a posteriori inference problem in an undirected graphical model.
In the factor graph, each component (zr,s) of the vector z corresponds to a binary
variable, and each instantiation of a constraint in Equations (12), (14), (15), and (16)
corresponds to a factor. Smith and Eisner (2008) and Martins et al. (2010) used such
a representation to impose constraints in a dependency parsing problem; the latter
discussed the equivalence of linear programs and factor graphs for representing dis-
crete optimization problems. All of our constraints take standard factor forms we can
describe using the terminology of Smith and Eisner and Martins et al. The uniqueness
constraint in Equation (12) corresponds to an XOR factor, while the overlap constraint
in Equation (14) corresponds to an ATMOSTONE factor. The constraints in Equation (15)
enforcing the “excludes” relationship can be represented with an OR factor. Finally,
each “requires” constraints in Equation (16) is equivalent to an XORWITHOUTPUT
factor.
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In the following section, we describe how we arrive at solutions for the LP in
Equation (17) using dual decomposition, and how we adapt it to efficiently recover the
exact solution of the ILP (Equation (11)), without the need of an off-the-shelf ILP solver.

7.2 “Augmented” Dual Decomposition

Dual decomposition methods address complex optimization problems in the dual, by
dividing them into simple worker problems (subproblems), which are repeatedly solved
until a consensus is reached. The simplest technique relies on the subgradient algorithm
(Komodakis, Paragios, and Tziritas 2007; Rush et al. 2010); as an alternative, Martins
et al. (2011a, 2011b) proposed an augmented Lagrangian technique, which is more
suitable when there are many small components —commonly the case in declarative
constrained problems, like the one at hand. Here, we present a brief overview of the
latter, which is called AD3.

Let us start by establishing some notation. Let m ∈ {1, . . . , M} index a factor, and
denote by i(m) the vector of indices of variables linked to that factor. (Recall that each
factor represents the instantiation of a constraint.) We introduce a new set of variables,
u ∈ R

d, called the “witness” vector. We split the vector z into M overlapping pieces
z1, . . . , zM, where each zm ∈ [0, 1]|i(m)|, and add M constraints zm = ui(m) to impose that
all the pieces must agree with the witness (and therefore with each other). Each of the M
constraints described in Section 7.1 can be encoded with its own matrix Am and vector
bm (which jointly define A and b in Equation (17)). For convenience, we denote by c ∈ R

d

the score vector, whose components are c(r, s), for each r ∈ Rf and s ∈ S (Equation (10)),
and define the following scores for the mth subproblem:

cm(r, s) = δ(r, s)−1c(r, s), ∀(r, s) ∈ i(m)

where δ(r, s) is the number of constraints that involve role r and span s. Note that
according to this definition, c · z =

∑M
m=1 cm · zm. We can rewrite the LP in Equation (17)

in the following equivalent form:

maximize
M∑

m=1

cm · zm

with respect to u ∈ R
d, zm ∈ [0, 1]i(m), ∀m

such that Amzm ≤ bm, ∀m

zm = ui(m), ∀m (18)

We introduce Lagrange multipliers λm for the equality constraints in the last line.
The AD3 algorithm is depicted as Algorithm 2. Like dual decomposition approaches,
it repeatedly performs a broadcast operation (the zm-updates, which can be done in
parallel, one constraint per “worker”) and a gather operation (the u- and λ-updates).
Each u-operation can be seen as an averaged voting which takes into consideration each
worker’s results.

Like in the subgradient method, the λ-updates can be regarded as price adjust-
ments, which will affect the next round of zm-updates. The only difference with respect
to the subgradient method (Rush et al. 2010) is that each subproblem involved in a
zm-update also has a quadratic penalty that penalizes deviations from the previous
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Algorithm 2 AD3 for Argument Identification

Require: role-span matching scores c := 〈c(r, s)〉r,s, structural constraints 〈Am, bm〉M
m=1,

penalty ρ > 0
1: initialize t ← 1
2: initialize u1 uniformly (i.e., u(r, s) = 0.5, ∀r, s)
3: initialize each λ1

m = 0, ∀m ∈ {1, . . . , M}
4: repeat
5: for each m = 1, . . . , M do
6: make a zm-update by finding the best scoring analysis for the mth constraint,

with penalties for deviating from the consensus u:

z(t+1)
m ← argmax

Amzt
m≤bm

(cm + λt
m) · zm − ρ

2‖zm − ut
i(m)‖2 (19)

7: end for
8: make a u-update by updating the consensus solution, averaging z1, . . . , zm:

u(t+1)(r, s) ← 1
δ(r, s)

∑
m:(r,s)∈i(m)

z(t+1)
m (r, s)

9: make a λ-update:

λ
(t+1)
m ← λt

m − ρ(z(t+1)
m − u(t+1)

i(m) ), ∀m

10: t ← t + 1
11: until convergence
Ensure: relaxed primal solution u∗ and dual solution λ∗. If u∗ is integer, it will encode

an assignment of spans to roles. Otherwise, it will provide an upper bound of the
true optimum.

average voting; it is this term that accelerates consensus and therefore convergence.
Martins et al. (2011b) also provide stopping criteria for the iterative updates using
primal and dual residuals that measure convergence; we refer the reader to that paper
for details.

A key attraction of this algorithm is that all the components of the declarative
specification remain intact in the procedural form. Each worker corresponds exactly
to one constraint in the ILP, which corresponds to one linguistic constraint. There is no
need to work out when, during the procedure, each constraint might have an effect, as
in beam search.

7.2.1 Solving the Subproblems. In a different application, Martins et al. (2011b, Section 4)
showed how to solve each zm-subproblem associated with the XOR, XORWITHOUTPUT
and OR factors in runtime O(|i(m)| log |i(m)|). The only subproblem that remains is that
of the ATMOSTONE factor; a solution with the same runtime is given in Appendix B.

7.2.2 Exact Decoding. It is worth recalling that AD3, like other dual decomposition
algorithms, solves a relaxation of the actual problem. Although we have observed that
the relaxation is often tight (cf. Section 7.3), this is not always the case. Specifically, a
fractional solution may be obtained, which is not interpretable as an argument, and
therefore it is desirable to have a strategy to recover the exact solution. Two observations
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are noteworthy. First, the optimal value of the relaxed problem (Equation (17)) provides
an upper bound to the original problem (Equation (11)). This is because Equation (11)
has the additional integer constraint on the variables. In particular, any feasible dual
point provides an upper bound to the original problem’s optimal value. Second, dur-
ing execution of the AD3 algorithm, we always keep track of a sequence of feasible
dual points. Therefore, each iteration constructs tighter and tighter upper bounds.
With this machinery, we have all that is necessary for implementing a branch-and-
bound search that finds the exact solution of the ILP. The procedure works recursively
as follows:

1. Initialize L = −∞ (our best value so far).
2. Run Algorithm 2. If the solution u∗ is integer, return u∗ and set L to the objec-

tive value. If along the execution we obtain an upper bound less than L, then
Algorithm 2 can be safely stopped and return “infeasible”—this is the bound part.
Otherwise (if u∗ is fractional) go to step 3.

3. Find the “most fractional” component of u∗ (call it u∗
j ) and branch: constrain uj = 0

and go to step 2, eventually obtaining an integer solution u∗
0 or infeasibility; and

then constrain uj = 1 and do the same, obtaining u∗
1 . Return the u∗ ∈ {u∗

0 , u∗
1} that

yields the largest objective value.

Although this procedure may have worst-case exponential runtime, we found it empir-
ically to rapidly obtain the exact solution in all test cases.

7.3 Results with Collective Argument Identification

We present experiments only on argument identification in this section, as our goal is
to exhibit the importance of incorporating the various linguistic constraints during our
inference procedure. We present results on the full text annotations of FrameNet 1.5, and
do not experiment on the SemEval 2007 benchmark, as we have already established our
constraint-agnostic models as state-of-the-art. The model weights ψ used in the scoring
function c were learned as in Section 6.1 (i.e., by training a logistic regression model to
maximize conditional log-likelihood). The AD3 parameter ρ was initialized to 0.1, and
we followed Martins et al. (2011b) in dynamically adjusting it to keep a balance between
the primal and dual residuals.

We compare the following algorithms to demonstrate the efficacy of our collective
argument identification approach:43

1. Naive: This strategy selects the best span for each role r according to the score
function c(r, s), independently of all other roles—the decoding rule formalized in
Equation (7) of Section 6.1. It ignores all constraints except “uniqueness.”

2. Beam: This strategy employs greedy beam search to eliminate overlaps between
predicted arguments, as described in Algorithm 1. Note that it does not try to
respect the “excludes” and “requires” constraints between pairs of roles. The
default size of the beam in Section 1 was a safe 10,000; this resulted in extremely
slow decoding times. For time comparison, we tried beam sizes of 100 and 2 (the
latter being the smallest size that achieves the same F1 score on the FrameNet 1.5
dev set).

43 The first two strategies correspond to rows 7 and 9, respectively, of Table 8.
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Table 9
Comparison of decoding strategies in Section 7.3 on the data set released with the FrameNet 1.5
Release, given gold frames. We evaluate in terms of precision, recall, and F1 score on our test
set containing 4,458 targets. We also compute the number of constraint violations each model
makes: the three values are the numbers of overlapping arguments and violations of the
“requires” and “excludes” constraints of Section 7.1. Finally, decoding time (without feature
computation steps) on the whole test set is shown in the last column averaged over five runs.

ARGUMENT IDENTIFICATION
Method P R F1 Violations Time (s)

naive 82.00 76.36 79.08 441 45 15 1.26 ± 0.01

beam = 2 83.68 76.22 79.78 0 49 0 2.74 ± 0.10
beam = 100 83.83 76.28 79.88 0 50 1 29.00 ± 0.25
beam = 10, 000 83.83 76.28 79.88 0 50 1 440.67 ± 5.53

CPLEX, LP 83.80 76.16 79.80 0 1 0 32.67 ± 1.29
CPLEX, exact 83.78 76.17 79.79 0 0 0 43.12 ± 1.26

AD3, LP 83.77 76.17 79.79 2 2 0 4.17 ± 0.01
AD3, exact 83.78 76.17 79.79 0 0 0 4.78 ± 0.04

3. CPLEX, LP: This uses CPLEX to solve the relaxed LP in Equation (17). To han-
dle fractional z, for each role r, we choose the best span s∗ such that s∗ =
argmaxs∈Sr

zr,s, breaking ties arbitrarily.
4. CPLEX, exact: This tackles the actual ILP (Equation (11)) with CPLEX.
5. AD3, LP: The relaxed problem is solved using AD3. We choose a span for each role

as in strategy 3.
6. AD3, exact: This couples AD3 with branch-and-bound search to get the exact

integer solution.

Table 9 shows performance of these decoding strategies on the test set. We report
precision, recall, and F1 scores. As with experiments in previous sections, we use the
evaluation script from SemEval 2007 shared task. Because these scores do not penalize
constraint violations, we also report the number of overlap, “excludes,” and “requires”
constraints that were violated in the test set. Finally, we tabulate each setting’s decoding
time in seconds on the whole test set averaged over five runs.44 The naive model
is very fast but suffers degradation in precision and violates one constraint roughly
per nine targets. The decoding strategy of Section 6.1 used a default beam size of
10,000, which is extremely slow; a faster version of beam size 100 results in the same
precision and recall values, but is 15 times faster on our test set. Beam size 2 results
in slightly worse precision and recall values, but is even faster. All of these, however,
result in many constraint violations. Strategies involving CPLEX and AD3 perform
similarly to each other and to beam search on precision and recall, but eliminate most
or all of the constraint violations. With respect to precision and recall, exact AD3 and
beam search with a width of 10,000 were found to be statistically indistinguishable
(p > 0.01). The decoding strategy with beam size 2 is 11–16 times faster than the

44 Experiments were conducted on a 64-bit machine with two 2.6-GHz dual-core CPUs (i.e., four processors
in all) and a total of 8 GB of RAM. The workers in AD3 were not parallelized, whereas CPLEX
automatically parallelized execution.
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.

(a) Gold annotation.

.

(b) Beam search output.

Figure 6
An example from the test set where (a) exhibits the gold annotation for a target that evokes
the COLLABORATION frame, with the Partners role filled by the span international. (b) shows
the prediction made by the beam search decoding scheme (beam = 10,000), where it marks
international with the Partner 1 role, violating the “requires” constraint; FrameNet notes that this
role should be present with the Partner 2 role. AD3 is conservative and predicts no role—it is
penalized by the evaluation script, but does not produce output that violates
linguistic constraints.

CPLEX strategies, but is only twice as fast as AD3, and results in significantly more
constraint violations. The exact algorithms are slower than the LP versions, but com-
pared with CPLEX, AD3 is significantly faster and has a narrower gap between its
exact and LP versions. We found that relaxation was tight 99.8% of the time on the test
examples.

The example in Figure 1 is taken from our test set, and shows an instance where two
roles, Partner 1 and Partner 2, share the “requires” relationship; for this example, the beam
search decoder misses the Partner 2 role, which is a violation, while our AD3 decoder
identifies both arguments correctly. Note that beam search makes plenty of linguistic
violations. We found that beam search, when violating many “requires” constraints,
often finds one role in the pair, which increases its recall. AD3 is sometimes more
conservative in such cases, predicting neither role. Figure 6 shows such an example
where beam search finds one role (Partner 1) while AD3 is more conservative and predicts
no roles. Figure 7 shows another example contrasting the output of beam search and
AD3 where the former predicts two roles sharing an “excludes” relationship; AD3 does
not violate this constraint and tries to predict a more consistent argument set. Overall,
we found it interesting that imposing the constraints did not have much effect on
standard measures of accuracy.

Table 9 only shows results with gold frames. We ran the exact version of AD3 with
automatic frames as well. When the semi-supervised graph objective UJSF-�1,2 is used
for frame identification, the performance with AD3 is only a bit worse in comparison
with beam search (row 11 in Table 8) when frame and argument identification are
evaluated together. We get a precision of 72.92, a recall of 65.22 and an F1 score of 68.86
(partial frame matching). Again, all linguistic constraints are respected, unlike beam
search.
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8. Conclusion

We have presented an approach to rich frame-semantic parsing, based on a combination
of knowledge from FrameNet, two probabilistic models trained on full text annota-
tions released along with the FrameNet lexicon, and expedient heuristics. The frame
identification model uses latent variables in order to generalize to predicates unseen
in either the FrameNet lexicon or training data, and our results show that, quite often,
this model chooses a frame closely related to the gold-standard annotation. We also
presented an extension of this model that uses graph-based semi-supervised learning
to better generalize to new predicates; this achieves significant improvements over the
fully supervised approach. Our argument identification model, trained using maximum
conditional log-likelihood, unifies the traditionally separate steps of detecting and

(a) Gold annotation.

(b) Beam search output.

(c) AD3 output.

Figure 7
An example from the test set where (a) exhibits the gold annotation for a target that evokes
the DISCUSSION frame, with the Interlocutor 1 role filled by the span neighbors. (b) shows
the prediction made by the beam search decoding scheme (beam = 10,000), where it marks
The next morning his households and neighbors with the Interlocutors role, which violates
the “excludes” constraint with respect to the Interlocutor 2 role. In (c), AD3 marks the wrong
span as the Interlocutor 1 role, but it does not violate the constraint. Both beam and
AD3 inference miss the Topic role.
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labeling arguments. Our system achieves improvements over the previous state of the
art on the SemEval 2007 benchmark data set at each stage of processing and collectively.
We also report stronger results on the more recent, larger FrameNet 1.5 release.

We applied the AD3 algorithm to collective prediction of a target’s arguments,
incorporating declarative linguistic knowledge as constraints. It outperforms the naive
local decoding scheme that is oblivious to the constraints. Furthermore, it is significantly
faster than a decoder employing a state-of-the-art proprietary solver; it is only twice as
slow as beam search (our chosen decoding method for comparison with the state of
the art), which is inexact and does not respect all linguistic constraints. This method is
easily amenable to the inclusion of additional constraints.

From our results, we observed that in comparison to the SemEval 2007 data
set, frame-semantic parsing performance significantly increases when we use the
FrameNet 1.5 release; this suggests that the increase in the number of full text anno-
tations and the size of the FrameNet lexicon is beneficial. We believe that with more
annotations in the future (say, in the range of the number of PropBank annotations), our
frame-semantic parser can reach even better accuracy, making it more useful for NLP
applications that require semantic analysis.

There are several open problems to be addressed. Firstly, we could further im-
prove the coverage of the frame-semantic parser by improving our semi-supervised
learning approach; two possibilities are custom metric learning approaches (Dhillon,
Talukdar, and Crammer 2010) that suit the frame identification problem in graph-based
SSL, and sparse word representations (Turian, Ratinov, and Bengio 2010) as features
in frame identification. The argument identification model might also benefit from
semi-supervised learning. Further feature engineering and improved preprocessing,
including tokenization into lexical units, improved syntactic parsing, and the use of
external knowledge bases, is expected to improve the system’s accuracy. Finally, the
FrameNet lexicon does not contain exhaustive semantic knowledge. Automatic frame
and role induction is an exciting direction of future research that could further enhance
our methods of automatic frame-semantic parsing. The parser described in this article
is available for download at http://www.ark.cs.cmu.edu/SEMAFOR.

Appendix

A. Target Identification Heuristics from J&N’07

We describe here the filtering rules that Johansson and Nugues (2007) used for identify-
ing frame evoking targets in their SemEval 2007 shared task paper. They built a filtering
component based on heuristics that removed words that appear in certain contexts, and
kept the remaining ones.45 These are:

� have was retained only if had an object,
� be was retained only if it was preceded by there,
� will was removed in its modal sense,
� of course and in particular were removed,

45 Although not explicitly mentioned in the paper, we believe that these rules were applied on a white list of
potential targets seen in FrameNet and the SemEval 2007 training data.
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� the prepositions above, against, at, below, beside, by, in, on, over, and under
were removed unless their head was marked as locative,

� after and before were removed unless their head was marked as temporal,
� into, to, and through were removed unless their head was marked as

direction,
� as, for, so, and with were always removed,
� because the only sense of the word of was the frame PARTITIVE, it was

removed unless it was preceded by only, member, one, most, many, some, few,
part, majority, minority, proportion, half, third, quarter, all, or none, or it was
followed by all, group, them, or us,

� all targets marked as support verbs for some other target were removed.

Note that J&N’07 used a syntactic parser that provided dependency labels correspond-
ing to locative, temporal, and directional arguments, which our syntactic parser of
choice (the MST parser) does not provide.

B. Solving ATMOSTONEATMOSTONEATMOSTONE subproblems in AD3

The ATMOSTONE subproblem can be transformed into that of projecting a point
(a1, . . . , ak) onto the set

Sm =
{

zm ∈ [0, 1]|i(m)| |
∑|i(m)|

j=1 zm,j ≤ 1
}

This projection can be computed as follows:

1. Clip each aj into the interval [0, 1] (i.e., set a′j = min{max{aj, 0}, 1}). If the result

satisfies
∑k

j=1 a′j ≤ 1, then return (a′1, . . . , a′k).
2. Otherwise project (a1, . . . , ak) onto the probability simplex:

{
zm ∈ [0, 1]|i(m)| |

∑|i(m)|
j=1 zm,j = 1

}

This is precisely the XOR subproblem and can be solved in time O(|i(m)|
log |i(m)|).

The proof of this procedure’s correctness follows from the proof in Appendix B of
Martins et al. (2011b).
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Schröder, and Petra Wagner, editors,
Sprachtechnologie, mobile Kommunikation
und linguistische Resourcen, volume 8 of
Computer Studies in Language and Speech.
Peter Lang, Frankfurt am Main,
pages 408–421.

Burchardt, Aljoscha and Anette Frank. 2006.
Approaching textual entailment with LFG
and FrameNet frames. In Proceedings of the
Second PASCAL RTE Challenge Workshop,
pages 92–97, Venice.

Burchardt, Aljoscha, Marco Pennacchiotti,
Stefan Thater, and Manfred Pinkal. 2009.
Assessing the impact of frame semantics
on textual entailment. Natural Language
Engineering, 15(4):527–550.

Carreras, Xavier and Lluı́s Màrquez. 2004.
Introduction to the CoNLL-2004 shared
task: Semantic role labeling. In Proceedings
of the Eighth Conference on Computational
Natural Language Learning, pages 89–97,
Boston, MA.

Carreras, Xavier and Lluı́s Màrquez. 2005.
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Introduction to the special issue on word
sense disambiguation: The state of the art.
Computational Linguistics, 24(1):2–40.

Johansson, Richard and Pierre Nugues.
2007. LTH: Semantic structure extraction
using nonprojective dependency trees.
In Proceedings of the 4th International
Workshop on Semantic Evaluations,
pages 227–230, Prague.

Johansson, Richard and Pierre Nugues. 2008.
Dependency-based semantic role labeling
of PropBank. In Proceedings of the 2008
Conference on Empirical Methods in Natural
Language Processing, pages 69–78,
Honolulu, HI.

Kingsbury, Paul and Martha Palmer. 2002.
From TreeBank to PropBank. In Proceedings
of the 3rd International Conference on
Language Resources and Evaluation,
pages 1,989–1,993, Las Palmas.

Komodakis, Nikos, Nikos Paragios, and
Georgios Tziritas. 2007. MRF optimization
via dual decomposition: Message-passing
revisited. In Eleventh International
Conference on Computer Vision, pages 1–8,
Rio de Janeiro.

Koo, Terry, Alexander M. Rush, Michael
Collins, Tommi Jaakkola, and David
Sontag. 2010. Dual decomposition for
parsing with non-projective head
automata. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing, pages 1,288–1,298,
Cambridge, MA.

Kowalski, Matthieu and Bruno Torrésani.
2009. Sparsity and persistence: Mixed
norms provide simple signal models with
dependent coefficients. Signal, Image and
Video Processing, 3:251–264.

Lang, Joel and Mirella Lapata. 2010.
Unsupervised induction of semantic roles.
In Proceedings of the Human Language

Technologies Conference of the North
American Chapter of the Association for
Computational Linguistics, pages 939–947,
Los Angeles, CA.

Lang, Joel and Mirella Lapata. 2011.
Unsupervised semantic role induction
with graph partitioning. In Proceedings
of the 2011 Conference on Empirical
Methods in Natural Language Processing,
pages 1320–1331, Edinburgh.

Lin, Dekang. 1993. Principle-based parsing
without overgeneration. In Proceedings of
the 31st Annual Meeting of the Association for
Computational Linguistics, pages 112–120,
Columbus, OH.

Lin, Dekang. 1994. Principar–an efficient,
broad-coverage, principle-based parser.
In Proceedings of the 15th Conference on
Computational Linguistics, pages 482–488,
Kyoto.

Lin, Dekang. 1998. Automatic retrieval and
clustering of similar words. In Proceedings
of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th
International Conference on Computational
Linguistics, pages 768–774, Montreal.

Lin, Jianhua. 1991. Divergence measures
based on the Shannon entropy. IEEE
Transactions on Information Theory,
37(1):145–151.

Litkowski, Kenneth C. and Orin Hargraves.
2007. SemEval-2007 task 06: Word-sense
disambiguation of prepositions. In
Proceedings of the Fourth International
Workshop on Semantic Evaluations
(SemEval-2007), pages 24–29, Prague.

Liu, Dong C. and Jorge Nocedal. 1989. On
the limited memory BFGS method for
large scale optimization. Mathematical
Programming, 45(3):503–528.

Marcus, Mitchell P., Mary Ann
Marcinkiewicz, and Beatrice Santorini.
1993. Building a large annotated corpus of
English: the Penn treebank. Computational
Linguistics, 19(2):313–330, June.
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