6 research outputs found

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    Robotic Assisted Fracture Surgery

    Get PDF

    Advances in identifying osseous fractured areas and virtually reducing bone fractures

    Get PDF
    [ES]Esta tesis pretende el desarrollo de técnicas asistidas por ordenador para ayudar a los especialistas durante la planificación preoperatoria de una reducción de fractura ósea. Como resultado, puede reducirse el tiempo de intervención y pueden evitarse errores de interpretación, con los consecuentes beneficios en el tratamiento y en el tiempo de recuperación del paciente. La planificación asistida por ordenador de una reducción de fractura ósea puede dividirse en tres grandes etapas: identificación de fragmentos óseos a partir de imágenes médicas, cálculo de la reducción y posterior estabilización de la fractura, y evaluación de los resultados obtenidos. La etapa de identificación puede incluir también la generación de modelos 3D de fragmentos óseos. Esta tesis aborda la identificación de fragmentos óseos a partir de imágenes médicas generadas por TC, la generación de modelos 3D de fragmentos, y el cálculo de la reducción de fracturas, sin incluir el uso de elementos de fijación.[EN]The aim of this work is the development of computer-assisted techniques for helping specialists in the pre-operative planning of bone fracture reduction. As a result, intervention time may be reduced and potential misinterpretations circumvented, with the consequent benefits in the treatment and recovery time of the patient. The computer-assisted planning of a bone fracture reduction may be divided into three main stages: identification of bone fragments from medical images, computation of the reduction and subsequent stabilization of the fracture, and evaluation of the obtained results. The identification stage may include the generation of 3D models of bone fragments, with the purpose of obtaining useful models for the two subsequent stages. This thesis deals with the identification of bone fragments from CT scans, the generation of 3D models of bone fragments, and the computation of the fracture reduction excluding the use of fixation devices.Tesis Univ. Jaén. Departamento de Informática. Leída 19 de septiembre de 201

    Fracture reduction using a telemanipulator with haptical feedback

    No full text

    Fracture Reduction using a Telemanipulator with Haptical Feedback

    No full text
    Our presentation outlines the advantages of utilizing a telemanipulator with haptical feedback for fracture reduction, especially regarding reposition accuracy and applied x-ray dose. Purpose Besides the advantages of the usual minimally invasive method of intramedullary nailing of femur fractures, this method has several disadvantages, which are well-known from literature and clinical practice. The correct reposition and retention of the fractured segments is the major problem. We developed a telemanipulator system which supports the repositioning process. By utilizing a robot, we expect a more precise reposition result, a reduction of x-ray exposure and a reduction of the costs and of the patient’s risk for infection by shortening the operation time. Methods In our laboratory setup the surgeon can guide a robot by means of a joystick with haptical feedback. Two CCD-cameras, which take images of the fractured region of the bone from different angles (AP and lateral), simulate the x-ray device of realistic surgeries. With thi
    corecore