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ABSTRACT

The aim of this work is the development of computer-assisted techniques for helping

specialists in the pre-operative planning of bone fracture reduction. The treatment of
bone fractures is a complex task. In the case of simple fractures, those in which a bone

is divided into two parts by a single fracture line, an X-ray image is usually sufficient to
properly plan the surgery. Nevertheless, when the fracture is more complex, other scan

techniques like Computed Tomography (CT) are necessary to obtain a 3D visualization
of the osseous structures and to identify the number of bone fragments, their size and

position, their order of placement and the most suitable fixation devices. Computer-
assisted systems may aid in this process by enabling interaction with virtual models

of bones and fragments, assisting in the planning of the surgical intervention, detecting
lack of bone tissue or analysing different configurations of fixation devices. As a result,

intervention time may be reduced and potential misinterpretations circumvented, with
the consequent benefits in the treatment and recovery time of the patient. The computer-

assisted planning of a bone fracture reduction may be divided into three main stages: (1)
identification of bone fragments from medical images, (2) computation of the reduction

and subsequent stabilization of the fracture, and (3) evaluation of the obtained results.
The identification stage may include the generation of 3D models of bone fragments,

with the purpose of obtaining useful models for the two subsequent stages.

The identification of bone fragments from CT scans requires the segmentation of
the bone tissue and the labelling of each bone fragment. The review performed in

this thesis allows extracting the main issues to be considered when identifying both

healthy and fractured bone. The generation of 3D bone models is an artificial step
required to generate valid virtual representations in order to be used in a simulation.

These 3D models can require optimization techniques with the aim of obtaining
adequate representations for the subsequent stages. The main goal of the computer-

assisted fracture reduction stage is to position and align bone fragments in order to
stabilize the whole bone structure. For that purpose, the inclusion of fixation devices

is usually required. Finally, it is necessary to analyse the reduced fracture with the
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goal of validating the obtained result. This analysis can be performed in different

ways: obtaining the geometric accuracy of the fracture reduction, testing the mechanical
stability of the osseous structure, or even evaluating the simulation process by comparing

it with the real intervention.

This thesis deals with the identification of bone fragments from CT scans, the generation
of 3D models of bone fragments and the computation of the fracture reduction, excluding

the use of fixation devices. A novel method to identify bone fragments from CT scans
has been developed in this thesis. Because of the resolution of the medical images, some

bone fragments may appear joined after the segmentation procedure. The developed
method is able to detect erroneously joined fragments and enables their separation with

minimal user interaction. The developed procedure has been evaluated in clinical cases
and compared with currently proposed approaches to segment fractured bone. Moreover,

a new automatic method for calculating the contact zone between fragments has been
developed. This method makes the application of algorithms to reduce bone fractures

easier by calculating, matching and aligning the calculated contact areas between bone
fragments. Furthermore, the method does not require the generation of 3D mesh models

since it only uses the connectivity information of the contours. Regarding the analysis of
the obtained results, some tests have been run to evaluate the geometric accuracy of the

developed algorithms.

Nowadays, the Marching Cubes (MC) is a de facto standard for the generation of
3D models of bone fragments from the segmentation results. This work evaluates

different alternatives to MC, describing their main benefits and drawbacks. Additionally,
a preliminary study for the development of a new mesh generation method based on a

spatial decomposition is presented. The use of a spatial decomposition allows addressing
the problem with a divide-and-conquer approach. Finally, an application to enable a

quality interaction with huge and noisy 3D bone fragment models has been developed.

The application allows defining and relating models of bone fragments and computing
a detailed collision detection between them, making the understanding of the fracture

easier, and enabling the accomplishment of a coarse alignment of the fragments.
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RESUMEN

Esta tesis pretende el desarrollo de técnicas asistidas por ordenador para ayudar a los

especialistas durante la planificación preoperatoria de la reducción de una fractura ósea.
En el caso de fracturas simples, en las cuales el hueso resulta dividido en dos partes

por una única línea de fractura, una imagen de rayos X es suficiente en la mayoría
de los casos para planificar la cirugía de manera correcta. No obstante, si la fractura

es más compleja, se requieren otras técnicas de escaneado que permitan obtener una
visualización 3D de las estructuras óseas, e identificar el número de fragmentos de

hueso, su tamaño y posición, el orden en el que deben ser reducidos, así como los
elementos de fijación más apropiados. Los sistemas asistidos por ordenador pueden

ayudar en este proceso permitiendo interactuar con modelos virtuales de huesos y
fragmentos, asistiendo en la planificación de la intervención quirúrgica, detectando la

falta de tejido óseo, o analizando diferentes configuraciones de dispositivos de fijación.
Como resultado, puede reducirse el tiempo de intervención y pueden evitarse errores

de interpretación, con los consecuentes beneficios en el tratamiento y en el tiempo de
recuperación del paciente. La planificación asistida por ordenador de una reducción de

fractura ósea puede dividirse principalmente en tres grandes etapas: (1) identificación de
fragmentos óseos a partir de imágenes médicas, (2) cálculo de la reducción y posterior

estabilización de la fractura, y (3) evaluación de los resultados obtenidos. La etapa de
identificación puede incluir también la generación de modelos 3D de los fragmentos

óseos con el propósito de obtener modelos útiles para las dos etapas posteriores.

La identificación de fragmentos óseos a partir de imágenes médicas, generadas

mediante Tomografía Computarizada (TC), requiere la segmentación del tejido óseo y el
etiquetado de cada fragmento de hueso. La revisión llevada a cabo en esta tesis permite

extraer los principales aspectos que deben ser considerados durante la identificación de
hueso, tanto sano como fracturado. La generación de modelos óseos 3D es una etapa

artificial requerida para obtener representaciones virtuales que resulten de utilidad en
una simulación. Estos modelos 3D pueden requerir técnicas de optimización con el

fin de obtener representaciones adecuadas para las siguientes etapas del proceso. El
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objetivo principal de la reducción de fracturas óseas asistida por ordenador es posicionar

y alinear fragmentos de hueso, con el fin de estabilizar la totalidad de la estructura
ósea. Con ese propósito, en la mayoría de los casos se requiere la utilización de

elementos de fijación. Finalmente, es necesario analizar la estructura ósea resultante con
el objetivo de validar el resultado obtenido. Este análisis puede llevarse a cabo usando

diferentes enfoques: calculando la precisión geométrica de la reducción, comprobando
la estabilidad mecánica de la estructura ósea, o incluso evaluando el proceso simulado

mediante su comparación con la intervención real.

Esta tesis aborda la identificación de fragmentos óseos a partir de imágenes médicas
generadas por TC, la generación de modelos 3D de fragmentos óseos, y el cálculo

de la reducción de fracturas, sin incluir el uso de elementos de fijación. Se ha
desarrollado un método novedoso para identificar fragmentos óseos a partir de imágenes

médicas generadas mediante TC. Debido a la resolución utilizada por el escáner, tras
el proceso de segmentación pueden aparecer juntos distintos fragmentos óseos. El

método desarrollado es capaz de detectar fragmentos conectados por error, y posibilita su
separación con una intervención mínima por parte del especialista. Este procedimiento

ha sido evaluado en casos clínicos y comparado con los enfoques actualmente utilizados
para segmentar hueso fracturado. Por otra parte, se ha diseñado un nuevo método

para calcular de manera automática las zonas de contacto entre fragmentos óseos.
Este método facilita la aplicación de algoritmos para reducir fracturas óseas mediante

el cálculo, la asociación y el alineamiento de las zonas de contacto calculadas entre
fragmentos. Además, el método no requiere la generación de mallas 3D ya que tan sólo

hace uso de la información de conectividad de los contornos. Con respecto al análisis de
los resultados obtenidos, diversos tests han sido llevados a cabo para evaluar la precisión

geométrica de los resultados obtenidos por los algoritmos desarrollados.

En la actualidad, el algoritmo Marching Cubes (MC) es un estándar de facto para

la generación modelos 3D de fragmentos óseos a partir de los resultados de la
segmentación. Esta tesis evalúa diferentes alternativas a MC, extrayendo sus principales

beneficios y deficiencias. De manera adicional, se presenta un estudio preliminar para
el desarrollo de un nuevo método de generación de mallas de triángulos basado en

una descomposición del espacio. El uso de dicha estructura espacial permite abordar
el problema con un enfoque basado en el paradigma divide y vencerás. Finalmente,
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se ha desarrollado una aplicación que permite llevar a cabo una interacción de calidad

con grandes modelos de fragmentos de hueso que pueden contener ruido. La aplicación
permite definir y relacionar modelos de fragmentos óseos y detectar colisiones entre

ellos de forma detallada, facilitando la comprensión de la fractura y permitiendo llevar a
cabo un alineamiento aproximado de los fragmentos.
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INTRODUCTION

In recent years, the use of computer techniques to assist surgical procedures has
considerably increased. These techniques provide tools to train novel surgeons, improve

information available during surgery, or even allow performing the pre-operative

planning of a medical intervention. One of those surgical procedures is the reduction
of a bone fracture, which can be defined as a medical condition where the continuity of

the bone is broken.

The treatment of a bone fracture is a complex task. In the case of simple fractures, those
in which a bone is divided into two parts by a single fracture line, an X-ray image usually

provides enough information to properly plan the surgery. Nonetheless, the planning
of the reduction of complex fractures commonly requires other scan techniques with

the aim of obtaining 3D models of the osseous structures that enable the identification
of the number of bone fragments, their position, their order of placement, and the

most suitable fixation devices. The use of computer-assisted systems can aid in this
process by identifying bone fragments, by enabling interaction with virtual models

of bone fragments, computing the reduction of the fracture, or analysing different
configurations of fixation devices. The use of computer-assisted techniques in the pre-

operative planning allows specialists to save the time of surgical procedures and reduce
potential misinterpretations, with the consequent benefits in terms of decreasing the

recovery time [95, 93].

1



Chapter 1. Introduction

Figure 1.1: Detailed view of the stages of the computer-assisted pre-operative planning
of bone fracture reduction.

1.1 Computer-assisted pre-operative planning of bone
fracture reduction

Computer-assisted bone fracture reduction can be divided into three main stages: (1)

identification of bone fragments from medical images and generation of a virtual
representation of them, (2) calculation of the reduction and stabilization of the fracture,

(3) and analysis of the obtained results from a geometrical and a mechanical point of

view (Figure 1.1).

The generation of a virtual representation of the bones and fragments is an artificial
step required in order to obtain helpful models to work with in a simulation. Different

data representations may be necessary depending on the goals. These usually are: a
volume for visualization, a point cloud for fast interaction, and a triangle mesh for

geometric operations between models. This stage begins with the extraction of osseous
tissue from medical images using segmentation and labelling techniques. Then, a 3D

reconstruction is usually performed to produce 3D models of the osseous structures.
These models can require the application of optimization techniques in order to get

2
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adequate representations for the subsequent stages.

The main purpose of computer-assisted fracture reduction is to position and align the

bones and fragments in order to stabilize the whole bone structure. This procedure
requires solving a variety of problems that depend on both the type of bone and fracture.

In the case of a simple fracture, the reduction consists of aligning the two bone fragments
in order to recover their original position. If the fracture generates more than two

fragments, a previous procedure is required to solve the puzzle. Moreover, in the majority
of cases it is necessary to stabilize the fracture by using fixation devices such as plates

and screws.

The analysis of the reduced fracture enables the validation of the obtained result. This
analysis can be carried out in different ways: by computing the geometric accuracy of

the reduced fracture; by using Finite Element Analysis (FEA) or similar techniques for
testing the mechanical stability of the fracture; or even by comparing the result of the

simulation process with the actual surgery.

This work is mainly focused on the segmentation and labelling of bone fragments from
CT scans, the generation of 3D models of bone fragments and the computation of

the fracture reduction, excluding the use of fixation devices. Moreover, a geometrical
analysis of the obtained results has also been carried out.

1.2 Aims

Considering the stages described in the previous section, the main aim of this thesis is to

research and develop methods that help specialists to identify fractured bone tissue and
to reduce bone fractures. Since interactive bone fracture reduction is a time-demanding

procedure, the developed methods should aim at reducing user interaction in all stages
of the process. Finally, evaluation methods are proposed in order to test the quality of

the obtained results. The objectives of this work are:

• To research and develop methods that allow the segmentation and labelling of
bone fragments from CT scans.

3
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• To research and develop algorithms that make the automation of the fracture

reduction process easier.

• To research and develop novel methods to produce geometric models representing

bone fragments.

• To analyse and evaluate the results obtained by the proposed methods.

• To research and use spatial decompositions, collision detection and interaction
techniques that might help specialists in the planning of a fracture reduction.

1.3 Organization of this thesis

This dissertation has been organized considering the computer-assisted fracture
reduction process. First, a review of the current proposed approaches is performed.

Then each chapter from 3 to 5 is focused on a different stage of the process. Finally,
conclusions and future research are outlined in Chapter 6. Appendix A presents

interactive tools developed with the purpose of facilitating the understanding of the
fracture and enabling a coarse alignment of bone fragments. The following paragraphs

depict the structure of the document.

Chapter 2 reviews the main proposed works in the literature related to pre-operative
planning of computer-assisted bone fracture reduction. Firstly, currently proposed

approaches to identify fractured bone are analysed and classified. The most recently
proposed methods to segment healthy bone are also reviewed, in order to test whether

techniques commonly used for this type of bone are also suitable for fractured bone.

Methods to generate 3D models of bone fragments and to optimize them are also
depicted. Then, the most relevant computer-assisted techniques to reduce bone fractures

are also reviewed and classified. Finally, currently used methods to analyse and evaluate
the computer-assisted pre-operative planning of a bone fracture reduction are reviewed.

Chapter 3 describes the main issues to be considered in order to identify bone tissue,

as well as additional problems that arise if the bone is fractured. The identification
of fractured bone includes not only the segmentation of bone tissue, but also the

labelling of bone fragments and the detection of fracture regions. Labelling involves
the identification of bone fragments separately. Moreover, this chapter presents a new
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method to segment and label bone fragments from CT images. The method is based

on 2D Region Growing (RG) and requires minimal user interaction. The proposed
procedure is able to separate wrongly joined fragments during the segmentation process.

The method has been compared with currently used approaches in the literature to
identify healthy and fractured bone, obtaining better results in most aspects. Moreover,

the method has also been tested with different clinical cases, and it performs well in a
large variety of bones and fracture types.

Chapter 4 introduces an automatic method to calculate the contact zone between two

bone fragments. The method does not require previously generating 3D meshes of the
fragments because it only needs point clouds as input. The developed method makes the

application of puzzle-solving methods easier since it does not obtain the entire fracture
zone but the contact area between each pair of fragments. Therefore it is not necessary to

find correspondences between fracture zones and fragments may be aligned two by two.
A matching algorithm is also presented, aiming at automatically reducing bone fractures

using the calculated contact zones. The proposed method has been successfully applied
to the reduction of different bone fractures. Firstly, the method has been applied to

fractures in the ankle area. With the goal of quantitatively measuring the performance of
the proposed method, the contact area and the overlapping between fragments have been

calculated. Secondly, the method has also been applied to cadaver datasets containing
fractures of humerus; hence the results have also been compared to the ground truth.

Chapter 5 presents a study that tests the performance and suitability of well-known mesh

generation algorithms to generate triangle meshes representing bone fragments from
medical images. The experiments performed allow us to find the benefits and drawbacks

of each method when applied to different bone and fracture types. Moreover, the quality
of the obtained results is analysed focusing on the special features of the data obtained

from CT stacks representing bone fractures. Taking into account the results of the study,

the conclusion is that Poisson reconstruction generates the best models for visualization
purposes and the models generated by MC are the best suited to be used in computer-

assisted bone fracture reduction. On the other hand, the initial results of a preliminary
study for the development of a novel method to generate triangle meshes from medical

images using a spatial decomposition are presented. In addition, a new approach to
extract external contour points and to estimate normal vectors is used in a pre-processing
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step. In this preliminary study a spatial decomposition named tetra-tree has been used.

However, any other spatial decomposition could have been used for this study. The novel
method addresses the mesh generation problem using a divide-and-conquer approach in

order to minimize problems arising when sewing consecutive contours. The main aim of
this initial study is to determine if a spatial decomposition may help in the reconstruction

of the mesh, allowing the analysis of the advantages and disadvantages of using it.

Appendix A presents an application that contains tools for performing a detailed
interaction with 3D models of bone fragments obtained from CT stacks. This application

aims at being the basis for integrating the algorithms developed in this work as well as
new tools developed in the future. In order to generate 3D models from CT stacks, MC

is used since experiments carried out in Chapter 5 demonstrated that it is the best option
for computer-assisted procedures. Despite the fact that CT stacks are usually segmented

before generating the 3D models, the developed application contains tools to clean
noise and to manually segment and label models. The application calculates overlapping

triangles, distances and nearest points between bone fragment models in real-time.
For that purpose, a comparative study has been carried out in order to determine the

collision detection strategy that best deals with the features of models obtained from
the information available in CT stacks. Finally, the Leonar3Do system [58] has been

incorporated in order to improve interaction and to provide stereo visualization. The
developed application can be used in the pre-operative planning of a fracture reduction,

since it makes easier the understanding of the fracture and allow carrying out a coarse
alignment of the fragments.

6



C
H

A
P

T
E

R

2
RECENT ADVANCES IN COMPUTER-ASSISTED BONE

FRACTURE REDUCTION

This chapter presents a review of the available computer-assisted techniques to help

specialists in the pre-operative planning of a fracture reduction intervention, including
the analysis of its results. The chapter is structured according to the stages of the

computer-assisted pre-operative planning of a bone fracture reduction (Figure 1.1). The
process can be divided into three main stages: identification of bone fragments and

generation of 3D geometric models representing them (Section 2.1), computation of the
reduction and stabilization of the bone fracture (Section 2.2), and analysis and validation

of the obtained results (Section 2.3). This review enables the identification of the main
techniques proposed in order to solve each stage of the planning and shows the pros and

cons of current approaches.

2.1 Identification and generation of bone fragment models

The generation of bone fragment models begins with the segmentation of bone tissue

from CT scans. Bone fragments involved in the fracture have to be labelled during or
after the segmentation process. Additionally, the fracture area is sometimes calculated

with the aim of better knowing the fracture features. Finally, a 3D model of each bone
fragment is generated from the segmentation results.
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Chapter 2. Recent advances in computer-assisted bone fracture reduction

2.1.1 Identification of bone fragments from medical images

The identification of bone fragments from medical images requires segmenting and

labelling the bone regions involved in the fracture. CT is the most appropriate and
accessible tool for distinguishing bone from other tissues and thus, for performing the

segmentation of bone fragments [21]. Most of the times, CT images are saved in Digital
Imaging and Communication in Medicine (DICOM) format. A DICOM image stores at

each pixel the radio-density obtained during the CT scan . These quantities are measured
in Hounsfield Units (HU), which are calculated from a linear transformation of the

original linear attenuation coefficient in which the radiodensity of distilled water is 0HU,
and the radiodensity of air at standard temperature and pressure is -1000HU. In order to

display these values in an image, intensity values are used. From this point onwards, we
will refer to the values at the pixels of a CT image as intensity values.

2.1.1.1 Healthy bone

In the literature, various studies pretend to segment healthy bone from CT images.

Table 2.2 summarizes the most recent ones.

Despite being simple and easy to implement, threshold-based approaches are able to
segment bone tissue in some situations. In the literature, there are various works that use

thresholding to segment bone tissue from CT. Neubauer et al. [73] propose to use a user-
defined threshold in order to segment ulna, radius and carpus from CT images. Zhang et

al.[110] utilize an adaptive threshold method for segmenting calcaneus and vertebrae.

Other authors propose to use region-based methods in order to segment bone tissue. In

[70], 3D RG is used to segment the inferior maxillary bone from CT images . After
the segmentation, holes are filled by using a morphological operation of closing. Then,

3D ray casting is applied to calculate the internal region of the bone by determining
which points are inside of the outer shell. The segmented voxels are classified as cortical

or trabecular bone using a fuzzy c-means algorithm. With the aim of improving the
result, an adapted median filter allows removing outliers. Zhao et al. [111] also use a

3D RG method to segment bone tissue. Both the seeds and the threshold are calculated
automatically. Since they use a unique threshold, some areas of bone are not segmented

and they propose a method to fill them. This segmentation approach has been tested in
the segmentation of skull and spine bones.
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2.1. Identification and generation of bone fragment models

Edge-based methods pretend to calculate the contour, instead of the region of each

osseous structure. Mastmeyer et al. [65] use a 3D deformable balloon model to segment
the vertebral bodies semi-automatically. A novel active contour model has also been used

to segment bone tissue in the knee region [99]. In [60], Willmore flow is integrated into
the level set method in order to segment the spinal vertebrae.

Statistical methods are frequently used to segment bone tissue. Battiato et al. [5] use

a generative model to classify pixels into cortical bone or another tissue. A learned
model is constructed by modelling probability functions using Gaussian mixture models.

Then the learned model allows assigning a probability to each pixel, and a maximum a-
posteriori probability rule enables a crisp classification. An expectation maximization

algorithm has been utilized to segment phalanx bones [81]. The method requires a
previously generated CT atlas. The statistical texture method has also been proposed to

segment mandible bones from CT images [72]. Janc et al. [44] use a genetic algorithm to
search the better procedure to segment bone tissue and to separate cortical and trabecular

tissue. For that aim, the genetic algorithm requires previous expert information.

Due to the heterogeneity of bone tissue in a CT scan, sometimes it is necessary to
use a mix of processes. Sebastian et al. [87] combine RG, active contours and region

competition to segment carpal bones. Statistical classifiers and graph cuts have been
employed to segment the hip bone [64]. Graph cuts have also been used to segment

vertebrae [3]; in this method, seeds are automatically placed using a matched filter and
vertebrae are identified with a statistical method based on an adaptive threshold. Cortical

and trabecular bone are then separated by using a local adaptive RG method.

2.1.1.2 Fractured bone

The methods applied to the segmentation of healthy bone could not be suitable for
segmenting fractured bone . This is because fractured bone has different features:

fragments are not completely surrounded by cortical tissue, they can have arbitrary shape
and may belong to any bone in a nearby area, and different fragments can appear joined

as one in the image. Therefore, the identification of fracture bone requires carrying out
additional steps: labelling the fragments and splitting up wrongly joined fragments. All

the currently proposed methods to identify fractured bone from CT images are classified
in Table 2.3.

9



Chapter 2. Recent advances in computer-assisted bone fracture reduction

Region-based methods are used in most cases in order to identify bone tissue from

CT images. Some methods achieve accuracy at the expense of requiring a lot of user
intervention [98]. The area where bone tissue is located is detected using a threshold-

based method . Then these approaches usually propose manual and semi-automatic tools
to interactively segment bone fragments. These proposals include separation, merging

and hole-filling tools for generating individually segmented fragments from the previous
result . A global fixed threshold method has been utilized by [96] to detect the trabecular

bone fracture zone. However, due to the variation of the intensity levels between slices,
it is difficult to find a unique threshold that enables the segmentation of bone tissue in all

the slices.

Other authors propose pre-processing the image in order to ease the segmentation of
bone tissue [38, 29]. In these studies, a sheetness measure is used to enhance the cortical

tissue in CT images. Then the resulting image is segmented using 3D RG . Fornaro et
al. [29] apply a 3D connected component labelling algorithm to separate erroneously

joined bone fragments in simple cases . To deal with the separation of erroneously
joined fragments in complex fractures or in which the boundary of the bone is weak, an

interactive graph cuts based segmentation is used . Lee et al. [57] propose a multi-region
segmentation approach. Seeds are automatically placed by searching for pixels that have

an intensity value higher than a threshold in the image. Then a RG algorithm propagates
all the regions in turn. If this multi-region segmentation algorithm fails, the authors

provide a manual region combination method that allows blending of the wrongly-
segmented regions, and a region re-segmentation method that enables the splitting of

wrongly-joined bone fragments . A modification of the classical watershed is proposed
by Shadid and Willis [90]. They use the Probabilistic Watershed Transform (PWT) to

segment bone fragments from CT images, encoding semantic information about the
objects.

Other classical segmentation methods, based on edges or registration, are barely
represented. Registration-based methods require templates of the fractured parts, thus

they are limited to the specific fractures defined by the templates [78]. In addition,
it is difficult to find two identical fractures, especially in the case of comminuted

fractures. For this reason, registration-based methods are limited to simple fractures.
On the other hand, edge-based methods try to obtain a closed contour associated with
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each bone fragment [105]. Nonetheless, bone fragments are partially surrounded by

trabecular tissue due to the fracture. This type of tissue is very heterogeneous; hence
it is complicated to obtain a closed contour that properly represents the bone fragments.

2.1.1.3 Fracture zone calculation

The fracture zone can be defined as the area in which the fracture occurs. The
identification of this area is useful for the pre-operative planning of a bone fracture

surgery. For instance, the simulation of a fracture reduction and the virtual analysis of
the fracture may require a previous calculation of this area. Therefore, some approaches

have been proposed aiming at computing the fracture area after the segmentation of bone
fragments . Table 2.4 summarizes all the analysed works to calculate fracture zones.

Statistical based approaches have been proposed to identify fractured zones. Willis and

Thomas [105] semi-automatically reconstruct highly fragmented bone fractures. Before
performing the fracture reduction, they need to separate intact and fractured zones of

each bone fragment. For that purpose, they propose to use a mixed model consisting of
two Gaussian probability distributions to perform a binary classification. They choose

a threshold that enables the classification of intact-surface intensities and minimize the
type I classification errors. Thus, this threshold allows separating fractured and intact

surfaces. After classifying all points, the fractured surface is the largest continuous
region of fractured surface points. Zhou et al. [114] present an extension of the previous

method that improves fragment alignment in highly fragmented bone fractures. In order

to separate fractured and intact surfaces, they use a two-class Bayesian classifier based
on the intensity values previously mapped on the surface vertices.

Other proposals take advantage of the specific shape of a particular type of bone .

Winkelbach et al. [107] present an approach to semi-automatically perform the reduction
of cylindrical bones. In order to identify vertices of the fractured area, they check the

normal orientation of each vertex and compare them with the bone axis. This method
does not work when fracture lines are almost parallel to the bone axis.

Curvature analysis has also been used to identify fractured surfaces. Okada et al. [75]

present a procedure to virtually reduce proximal femoral fractures. Aiming at obtaining
fracture lines in each slice, they use curvature analysis. For that purpose, a 3D curvature
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image is generated. Firstly, 0 or 1 values are assigned to each voxel depending on the

voxel position: 1 is assigned if the voxel is inside and 0 is assigned if the voxel is outside
the fragment region. After that, the surface voxels are defined as 1-value voxels adjacent

to 0-value voxels. The 3D curvature image is generated by setting Kabs to each voxel
belonging to the fracture surface and 0 to the rest of voxels, where Kabs = |k1|+ |k2|. k1

y k2 are the maximum and the minimum curvature respectively, and are obtained from
K and H

K =
hxx hy y −h2

x y

(1+h2
x +h2

y )2
(2.1)

H =
(1+h2

x )hy y + (1+h2
y )hxx −2hx hy hx y

2(1+h2
x +h2

y )3/2
(2.2)

where h(x, y) is a quadratic function fitted to 3D points generated from the surface
voxels. Once the 3D curvature image is generated, an interactive line-tracking software

allows extracting the fracture zone.

Tassani et al. [96] perform a comparison with healthy models with the purpose of
identifying trabecular tissue in fractured zones. To that end, the authors compare the

fractured region of interest in both pre-failure and post-failure slices. These regions are
identified as disconnected trabecular tissue in the slice. If the regions of interest of both

slices overlap less that a predefined threshold, the region is classified as broken. The
threshold is determined by minimizing the Root Mean Square Error (RMSE) between

resulted and manually calculated values

RMSE =
√∑

i (ai (x) − vi )2

n
(2.3)

where ai (x) and vi are the calculated and the visually obtained values respectively and
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n is the number of analysed cases. Finally, they applied a median filter to remove the

generated noise.

Interactive methods have also been proposed to identify fracture surfaces before being
used in virtual craniofacial reconstruction [8, 17, 16]. In these works, fracture contours

are extracted interactively from segmented bone fragments. With that aim, user has
to select points belonging to the fractured area and then a contour tracing algorithm

generates the rest of the points. Once the fracture contours are calculated, the 3D surface
is generated by collating the contours extracted from each slice.

2.1.2 Generation of 3D models of bone fragments

The main aim of this stage is to provide useful models for simulating the fracture
reduction . Depending on the objective of the simulation, these models can be volumes,

points clouds or meshes. Volumes and points clouds can be directly extracted from
segmented CT stacks; hence it is not necessary to detail the procedure used to generate

them. In some cases, the models used are meshes, since simulation methods require
geometric algorithms. In order to extract meshes from CT stacks, MC [63] based

methods are the most widely used because of their simplicity and speed. The size of
the models generated by these methods depends on the resolution of the medical images

and the complexity of the segmented bone structures. With regard to the generation
of fractured bone models, the MC algorithm has been used to generate meshes that

represent acetabular fractures [27], fractured pelvic bones [29, 57] and proximal humerus

fractures [30]. This algorithm has also been used to generate fragment models to
represent highly fragmented bone fractures [105] and to provide models for a virtual

orthopaedic surgery simulator [100]. Finally, Fornaro et al. [28] present an interactive
surgical planning tool for reducing acetabular fractures in which models are generated

by using a variant of the classical MC algorithm: the generalized marching cubes.

Considering the previous revision, the MC algorithm is used in most cases in the
generation of bone fragments models from CT scans. Nevertheless, MC produces

complex and noisy models because of the complexity of the medical images. Bone
fragment models generated with MC contain a large amount of geometry and lacks

topology in most situations. This can be a drawback for enabling proper visualization and
real-time interaction, or even for processing the generated models during a simulation.
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However, the use of optimization techniques may reduce the complexity of the problem,

as will be shown in the following subsection.

2.1.3 Optimization of bone fragment models

The 3D representation of bone fragment models can be post-processed with the purpose

of obtaining desirable properties for the subsequent simulation stage. Smoothing,
simplification or re-meshing are the optimization techniques that are most commonly

applied to improve the features of the models and thus enable interaction and enhance
visualization and manageability. Re-meshing techniques can only be used with mesh-

based models; the other techniques can also be applied to point-based and volume
models. The models obtained from medical images are usually huge and complex;

hence it is very difficult to obtain interactive response time in simulation. Moreover,
a re-meshing procedure can be required to obtain a more homogeneous model in

order to improve visualization. These optimizations may also be carried out during the
generation of the bone fragment models. For example, the contours extracted during the

segmentation process can be simplified to obtain a smoother mesh. In this subsection,
the main goal of these techniques and different aspects to be considered when bone

fragment models are post-processed are briefly described. Table 2.1 shows the benefits
and drawbacks of each type of technique regarding models reconstructed from medical

images.

The application of smoothing techniques to bone fragment models aims at denoising

the area surrounding the bone and to extrapolating missing information between slices,
therefore improving visualization. This step is especially necessary when the distance

between slices is large or the resolution of the image is not good enough since the
reconstructed model can present ripples. The main methods used to smooth 3D models

are reviewed in [42, 24]. Regarding meshes, smoothing functions are able to process
vertex positions and normals, considering their connected neighbour vertices, in order

to obtain better-shaped models. As a result, the curvature and thus the visual aspect of
the model are improved. This type of filters should be used with caution since they can

remove not only noise, but also small features from the models.

With the aim of examining the entire fracture area in detail for diagnosis, a large number
of high resolution images are required and, as a consequence, the models obtained are
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big. The required computational cost can easily overwhelm a processor of a common

desktop PC and hinder interactivity. In contrast to re-meshing, the simplification of
models aims at reducing the size of the models while minimizing the impact on their

morphology and properties. Nonetheless, it is crucial to avoid oversimplification of the
bone models in order to preserve their original features. Simplification techniques allow

a faster processing and thus enable pre-visualization and interaction with bone fragment
models. In contrast, important features can become blurry, especially in the fracture area

and near joints. Several studies have been published in order to compare strategies to
simplify 3D meshes [18, 67], point clouds [76] and volumes [24].

Re-meshing is a procedure intended to improve the quality of a geometric model.

It is a useful technique in the case of models reconstructed from medical images,
especially for visualization purposes. The application of this procedure may also involve

a simplification of the model, but this is not its main goal. After applying a re-meshing,
the quality of the model is enhanced by modifying properties such as sampling density,

regularity, size, orientation, alignment or the shape of the models. A complete review
of re-meshing techniques is presented in [2]. A common issue with medical images is

the noticeable difference between the distance between two adjacent pixels with respect
to the gap between consecutive slices. This is the cause of irregularities in the size and

shape of the geometrical primitives. In this case, re-meshing techniques can be used to
enhance the quality of the models and thus their visualization. Nevertheless, re-meshing

is difficult to apply in the fracture area and near joints because of the heterogeneity of
trabecular tissue.

2.2 Computer-assisted fracture reduction

Computer-assisted bone fracture reduction is the process by which bone fragments are
relocated with the aim of recovering their original position. Moreover, in the majority of

cases it is necessary to stabilize the fracture by using fixation devices such as plates
and screws. This procedure requires resolving a variety of problems that depend on

both the types of bone and fracture. In the case of a simple fracture, the reduction
consists of aligning the two bone fragments in order to recover their original position.

If the fracture generates more than two fragments, a previous procedure is required
to solve the puzzle. For that purpose some approaches propose matching the fracture
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Table 2.1: Benefits and drawbacks of optimization methods applied to bone fragment
models.

Technique Input data Benefits Drawbacks

Smoothing Meshes,
volumes

Denoise bone fragment
models, extrapolate missing
information between slices,
improve visualization

Small features can be
removed from the trabecular
tissue, especially in the
fracture area and near joints

Simplification Meshes,
point
clouds,
volumes

Bone fragment models can
be processed faster, enables
pre-visualization and
interaction with huge bone
fragment models

Important features can be
removed from the trabecular
tissue, especially in the
fracture area and near joints

Re-meshing Meshes Better sampling density of
bone fragment geometry,
improves performance

Difficult to be applied due
to the heterogeneity of
trabecular tissue

zones, and therefore they present algorithms generated in order to calculate these zones.

Subsection 2.2.1 describes the most recent works to compute the reduction of simple
fractures. In Subsection 2.2.2, the proposed approaches to match and register bone

fragments in complex fractures are analysed.

2.2.1 Simple bone fractures

The reduction of a simple bone fracture involves the alignment of the two bone
fragments, so that the bone recovers its original shape. This procedure usually requires

an initial alignment to approximately recover the position and orientation of the bone

fragments, and then a registration process to accurately join them. Nevertheless, some
works avoid performing the initial alignment, since their proposed registration method

is able to fully relocate and reorientate the bone fragments. In spite of the fact that a
simple fracture usually does not require a computer-assisted planning, computer-assisted

fracture reduction is usually performed in order to make tele-operation processes easier.
Table 2.5 summarizes all the reviewed studies on computing the reduction of simple

bone fractures.

Ron et al. [82] present a method to reduce distal and proximal femur fragments by
calculating the periaxial rotation of healthy and fractured femurs from pre-operative CT.
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Before that, a previous manual alignment is required. The method takes into account that

the desirable periaxial rotation value should be symmetrical to that of the healthy bone
and is applicable in closed femoral fractures. Westphal et al. [103] perform the entire

fracture reduction interactively . For that purpose, they present a telemanipulator system
that allows surgeons to guide a robot by using a joystick which provides haptic feedback.

In order to provide visual information, CCD-cameras simulate the X-ray device by
taking images of the fractured bone from different angles. With the goal of testing the

system, they attach receivers to both ends of a plastic bone before fracturing it. These
receivers let them quantify how precise was the reconstruction. Kronman and Joskowicz

[55] present an automatic algorithm for pairwise bone fragment fracture reduction. The
fracture is reduced by identifying the contact surfaces of the bone fragments and aligning

them with the purpose of maximizing the contact area between them. First, a coarse
alignment is carried out using Principal Component Analysis (PCA) . Then, the contact

surfaces are aligned by using Iterative Closest Point (ICP) rigid registration . In order
to compare the results obtained by their method with the ground truth, they developed a

novel approach for fracture simulation of healthy bones using realistic fracture patterns.

Registration algorithms have been used to reduce simple fractures. Bhandarkar et al.
[8] use a hybrid DARCES-ICP algorithm for aligning and registering surfaces in the

reduction of craniofacial fractures. Chowdhury et al. [16] present a modification of
that work. Once fragment models are generated, they propose to use the ICP algorithm

and a Maximum Cardinality Minimum Weight (MCMW) bipartite graph as registration
algorithms. In this case, an initial alignment is not required. In these two works, fracture

contours are extracted interactively from segmented bone fragments. With that aim, the
user has to select some points belonging to the fracture area, and then a contour tracing

algorithm generates the rest of points. Once the fracture contours are calculated, the 3D
surface is generated by collating the contours extracted from each slice.

Several works propose the use of bone templates to perform the fracture reduction in
simple cases. This template may be an intact bone, the symmetrical bone or even a

bone artificially constructed based on statistical knowledge. These works do not require
an initial alignment, since the templates determine the position and orientation of each

bone fragment. Maubleu et al. [66] simulate the reduction of a fractured zygomatic bone.
With the aim of defining the intact template, they use the midsagittal plane to mirror the
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healthy side of the bone. This midsagittal plane is defined by the foramen caecum, the

posterior extremity of the sphenoid crest and the middle point between both clinoid
apophysis. Authors indicate that these three points are defined by the surgeon. In the last

step, after matching the mirrored side with the bone structures surrounding the fracture,
a rigid registration is performed between each zygomatic fragment segmented and its

target position. Gong et al. [33] use an anatomical atlas to register fragments of the distal
radius. In this case, the atlas is constructed from human corpses and patient data. Firstly,

each segmented volume, which is created from back-projections of 2D segmentations,
is properly positioned on the atlas. Then the atlas is deformed to maximize the overlap

area between its 2D projection and the individual fragments in the segmented regions.

2.2.2 Comminuted bone fractures

The reduction of a complex fracture requires finding the correspondence between

different bone fragments. It is important to consider that, unlike other reconstruction
problems, bone fracture surfaces may share matches with more than one fragment;

hence the matching between fragments may not be one-to-one . In order to complete
the fracture reduction, all bone fragments have to be translated to their original position.

Some of these fragments can be discarded if they are too small to be used in the reduction
(according to a surgical criterion). Comminuted fractures are usually produced by high

energy traumas, thus some fragments can be deformed. These deformations notably
increase the difficulty of recovering the original shape of the bone. After the matching

procedure, some approaches propose performing a final registration between fragments

in order to improve the final result.

All the reviewed studies of computer-assisted complex fracture reduction are
summarized in Table 2.6. Some applications have been developed with the aim of

performing a virtual reduction of a comminuted fracture interactively . Cimerman
and Kristan [19] present an application to interactively compose pelvic and acetabular

fractures. Acetabular fractures can also be reduced by using the software presented by Hu
et al. [43]. Wilson et al. [106] developed an application to manipulate bone fragments

reconstructed from CT scans. Due to the complexity of this type of fracture, manual
alignment of the fragments becomes a difficult task. In order to make it easier, some

authors propose the use of haptic devices [28]. The haptic feedback provided by these
devices eases the correct alignment of the bone fragments. However, this remains a
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2.2. Computer-assisted fracture reduction

complicated procedure even for an expert.

In order to overcome the problems of the methods described above, other studies

match the bone fragments manually or semi-automatically and then perform a final
alignment. Some of these approaches propose matching fracture areas . Willis et al. [105]

propose that the user interactively selects fracture surface patches in pairs that coarsely
correspond. Zhou et al. [113] intend that the user manually specifies the matching surface

regions between fragments. To that end, they provide an interactive system that allows
the user to manipulate bone fragments; hence the user has to specify fragment surface

matches and initiate pairwise and global alignments. The interactive method introduced
in [105] is improved by Zhou et al. [114]. The algorithm provides a user-directed search

in order to match the fragments. To separate fractured and intact surfaces, they use a
two-class Bayesian classifier based on the intensity values previously mapped on the

surface vertices. Winkelbach et al. [108] take advantage of the specific features of long
bones. Using a voting system, they calculate the bone shaft axis and the circumference

of the long bone fragments and separate the fracture surface. Then an initial solution
is computed considering all these calculations. The correct position of the fragments

of a broken cylinder structure is also estimated by Winkelbach et al. [107]. They use a
two-step Hough-like voting mechanism to measure the orientation and position of the

cylinder axes for each fragment. These methods cannot be applied to the reduction of
other types of fracture, since they take advantage of the special features of long bones.

Other proposed studies focus on the reconstruction of complex craniofacial bone

fractures. Chowdhury et al. [15] identify fracture surfaces using a Maximum Weight
Graph Matching (MWGM) algorithm. In this graph, the nodes are the fracture surfaces

and the edge weights are treated as elements of a score matrix. A given pair of fracture
surfaces will have a high score if they are determined to be spatially proximal and

to exhibit complementary fracture surface characteristics. A variation of this work is

presented in [17]. In order to match the fracture fragments, the authors formulate a matrix
score based on the appearance of mandibular fragments in the CT image sequence. As

in the approach proposed in [15], a pair of fracture surfaces has a high matching score
if they are determined to be proximal and they exhibit complementary fracture surface

characteristics. Chowdhury et al. then propose to use the MWGM algorithm to identify
the fracture surface pairs in polynomial time. To calculate the correspondence for a given

19



Chapter 2. Recent advances in computer-assisted bone fracture reduction

pair of fracture surfaces, they use the MCMW bipartite graph matching algorithm.

Finally, the reduction of complex fractures can also be computed by using a healthy bone

as a template . In these studies, the contralateral bone [75, 30], an artificially constructed
bone [97] or a statistical bone [68, 1] are used to perform the initial alignment. These

approaches are restricted to the bones defined by the templates and, in most cases,
require prior work to generate the artificial bone. Moreover, recent studies show that

the contralateral side should be use with caution as a template or even as a ground truth
because differences in shape between symmetrical bones can exist [59]. Okada et al. [75]

study and evaluate several methods for positioning bone fragments of proximal femur
fractures. The proposed methods are based on the registration of the bone fragments

using the contralateral bone shape, fracture lines or both simultaneously. Fürnstahl et al.
[30] present an approach developed to compute the reduction of humerus fractures. For

that purpose, they use the contralateral bone to perform a coarse initial alignment of the
bone fragments by using ICP.

Thomas et al. [97] generated identical tibiae from blocks of high-density polyurethane

foam and fractured them into 10-15 pieces by using an instrumented drop tower. These
tibiae were scanned before and after being fractured in order to use them as a template

and to test the accuracy of the reconstruction. After that, the fracture was composed by
matching each native surface to the intact template using an iterative registration function

built into the Geomagic Studio Software. Kato [52] proposes performing the fracture
reduction by aligning the fragments to a template. For that purpose, they formulate the

problem as an affine puzzle. Moghari and Abolmaesumi [68] generated an atlas by using
PCA in a bone population generated from CT scans. Afterwards, a local registration

process is performed for each bone fragment. Albrecht and Thomas [1] also propose
using a statistical shape as intact template when the contralateral bone or the bone before

being fractured is not available. In these situations, they use the ICP algorithm to perform

a rigid alignment of the fragments, and then they adapt the statistical shape model to the
bone fragments. Due to the fact that the adaptation is only possible if the fragment is

already aligned, and the rigid alignment depends on the model adaptation, the authors
propose solving these two steps simultaneously in an iterative scheme.

After the matching procedure, most of the proposed studies perform a final alignment
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in order to improve the final result . In many cases, the final alignment is performed

by registering fracture zones to each other. These fracture zones can be surfaces
[107, 105, 68, 114], lines [75, 30] or points [15, 17], depending on the models used to

represent bone fragments and the techniques applied to calculate the fracture zones. In
other cases, the final alignment is performed by registering each fragment to the template

[97, 1]. The latter strategy is more robust for missing and deformed fragments, but the
results obtained rely on the template used. In order to perform the registration, an ICP-

based algorithm is utilized in most cases [107, 15, 105, 75, 114, 17, 97, 30, 1]. As
an alternative, Moghari and Abolmaesumi [68] use an unscented Kalman filter-based

registration .

2.2.3 Stabilization

After a fracture reduction, the next step can be to place fixation devices in order to

stabilize the fracture. This procedure requires the user to decide which fixation devices
will be used, select their location, and adapt them to the shape of the bone. Currently,

certain authors propose to perform this procedure interactively like Cimerman and
Kristan [19]. In that study, plates and screws are manually chosen by the surgeon. The

contouring of the plate is performed automatically and the screws can be interactively
inserted into the plate or across the fracture. In order to ease this process, the

representation of the bones can be made more transparent. Hu et al. [43] propose using
a commercial 3D modelling tool to generate plates and screws and place them across an

acetabular fracture.

Other studies propose a semi-automatic procedure to determine the type of fixation

needed and its position. Fornaro et al. [28] present a surgical interactive tool that
enables the adaptation of appropriate osteo-synthesis implants onto reduced virtual

pelvis fractures. In order to achieve this, the user first draws a sketch of the desired
plate placement directly onto the bone surface using a haptic device. The system then

automatically contours the tetrahedral model of a reconstruction plate of a user-selected
type onto the virtual bone surface according to the sketch. Thereafter, the user can place

screws of different lengths either through the plate holes at angles restricted by the type
of implant or freely into the pelvic bone. Then, a report is generated including relevant

measurements and type and size of osteo-synthesis implants, as well as bending and
torsion angles of fixation plate segments in all three planes. Finally, the surgeon uses
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this information to manually contour osteo-synthesis implants pre-operatively according

to the report. Results show a generally very good match between planning and final
execution. However, some plates could not be placed exactly as planned because soft

tissue interfered with the placement of the screws and hence the plate had to be tilted
slightly.

Musuvathy et al. [71] propose a new method of customizing fixation plates to repair bone

fractures. In order to avoid the manual adaptation of polygonal plate models to the bones
of patients, they propose a semi-automatic adaptation of parametric Computer-Aided

Design (CAD) models using Non-Uniform Rational B-Splines (NURBS) to generate
customized plates. Thus, the plates conform to the desired region of the bone surface

of patients. This enables an efficient and accurate approach that is also computationally
suitable for interactive planning applications. Moreover, the patient-specific customized

plates can then be produced directly from the adapted CAD models with a standard
Computer Numerical Control (CNC) machine before surgery. This may dramatically

reduce the time spent in the intervention, increase precision of the procedure and, as a
result, improve the outcome for the patients.

A modelling and visualization system for simulating the pre-operative pre-bending of

a steel plate is presented by Liu et al. [62]. The system allows obtaining the geometric
parameters of the target fixation plate. The authors use an accurate NURBS Surface

fitting method to construct the virtual plate. Chen and Huang [14] present an interactive
tool to plan the stabilization of humeral shaft fractures using a semi-automatic fragment

reconstruction approach. Fracture fragments are reduced anatomically by selecting three
characteristic points through a manual operation. Finally, the appropriate plates are

chosen from the internal fixation devices database of the system.

Intra-Medullary Nail (IMN) is a fixation device which is placed in the medullary cavity

of the bone. In IMN surgical operations, one of the main tasks for surgeons is to know the
positions and orientations of Distal Locking Holes (DLHs). This procedure is necessary

for the insertion of distal transverse interlocking screws. The distal holes on an IMN,
which are inside the intramedullary canal of the bone, can only be seen in a lateral X-ray

view. For the standard surgical procedure, the localization of the distal hole axes is a
trial-and-error process which results in a great use of surgical time and a large dose of
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X-ray exposure. Zhu et al. [115] present an algorithm designed to obtain the 3D position

and orientation of the distal hole axis. The algorithm first derives the nail axis through
two X-ray images. Then the distal hole axis is calculated by projecting back the hole

boundary onto the X-ray image from a lateral view to the 3D space. A least squares
method is used to determine the centres of the front and the back hole iteratively. Zheng

et al. [112] present an approach for solving this problem based on two calibrated and
registered fluoroscopic images. The problem is formulated as a two-stage model-based

optimal fitting process. The first stage, nail detection, automatically estimates the axis
of the distal part of the IMN by iteratively fitting a cylindrical model to the images.

The second stage, pose recovery, resolves the translations and the rotations of the DLHs
around the estimated axis by iteratively fitting the geometrical models of the DLHs to the

images. An iterative best matched projection point algorithm is combined with random
sample strategies to effectively and robustly solve the fitting problem in both stages.

2.3 Analysis and validation of a computer-assisted reduced
fracture

Once a bone fracture has been stabilized, it is useful to check how good the stabilization
is. In order to check this goodness, an analysis of the reduced fracture can be performed.

This analysis can be accomplished using different procedures. One of these may be to
compare the result of the fracture reduction with a healthy bone, the bone of another

patient or the symmetrical bone of the patient . On the other hand, the specialist may
evaluate the quality of the computer-assisted pre-operative planning by comparing its

results with the real intervention carried out afterwards.

2.3.1 Geometric accuracy analysis

In order to measure the geometric accuracy of the performed fracture reduction, most
of the proposed methods compare the results obtained with the ground truth . Ron et al.

[82] determine the usefulness of their method for reducing femur fractures based on the
periaxial rotation. To that end, they compare the periaxial rotation value of the broken

femur to the value of its mirror image. For that purpose, they use both real and cadaver
data. If the reduction is successful, periaxial rotation values should be equal. Moghari

and Abolmaesumi [68] also use bones from corpses, which are artificially fractured, to
evaluate their femur fracture reduction method based on an atlas. Fürnstahl et al. [30] use
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cadaver bones and real clinical cases to measure the accuracy of their proposed method

for reducing humerus fractures. Authors compute intersection and gap errors , surface
smoothness, and rotation and translation errors.

A synthetic material with a mechanical behaviour very similar to cortical bone, with

similar appearance in X-ray and prone to breaking into fragments in similar number
and form is used by Zhou et al. [114, 113] to evaluate their method for reducing

highly comminuted bone fractures by calculating the alignment error. Blocks of high-
density polyetherurethane foam are also used to test the platform for solving comminuted

articular fractures presented by Thomas et al. [97]. To test the reduction of cylindrical
bone fractures, Winkelbach et al. [107] compare the obtained results with virtual

manual repositions of the reconstructed bone fragment surfaces using synthetic bones
by computing rotational and translational errors .

With the aim of validating the composition of zygomatic fractures, Maubleu et al.

[66] remove virtually the bone from healthy patients virtually and then they apply
their proposed fracture reduction method and compute distance errors. Gong et al. [33]

generate random synthetic fractures in order to test their proposed method. For that
purpose, they evaluate the error by calculating distance errors. Virtual fractures have

also been randomly generated in order to test the method proposed in [1]. Other studies
use not only virtual fractures but also real fractures to measure the quality of a fracture

reduction method [75]. In this last work, the authors measure the femur reduction from
the rotation error of a fragment and the distance between the points that correspond with

the fracture area of two fragments.

In cases in which the alignment of the fragment is performed by registering the points
belonging to the fracture surface, the error in approximating the points can be used as a

measure of the quality of the reduction . Bhandarkar et al. [8] use the Mean Squared Error

(MSE) to measure the goodness of the reduction carried out using ICP, DARCES and a
hybrid approach. This measure is also used by Chowdhury et al. [16, 17] to determine

the accuracy of a craniofacial reduction. Table 2.7 summarizes all the studies reviewed
that analyse the geometric accuracy of virtually reduced fractures.
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2.3. Analysis and validation of a computer-assisted reduced fracture

2.3.2 Planning evaluation

As mentioned in Chapter 1, the simulation of a fracture reduction is sometimes used
for planning a later surgery . In these cases, the expert can evaluate the quality of the

simulated process by comparing it with the actual intervention performed a posteriori.

In the literature, there are studies that evaluate the simulated process by testing the
suitability of its utilization in planning a real fracture reduction. Cimerman and Kristan

[19] have tested their interactive application by planning the reduction of pelvis fractures
and checking whether the planned procedure is followed during the actual intervention.

Moreover, the number and length of screws inserted during the operation are also
analysed. Fornaro et al. [28] evaluate the usefulness of an interactive tool for planning

acetabular fracture reduction. To that end, the tool was used to plan 7 real cases and
the proposed plan was compared with the surgery performed later. In addition, the

positions of the screws and plates were also compared. Acetabular fractures were also
planned using the procedure described in [43]. The proposed procedure allows the user

to interactively identify and relocate bone fragments. To evaluate the process, the authors
used the proposed tools to plan 7 clinical cases in which surgery was subsequently

performed. In the evaluation step, they checked whether the plan was followed during
the actual intervention. In addition, the number of screws and the length of the plates

used during the real intervention were compared with respect to those planned.

Tomazevic et al. [98] present a set of interactive tools for identifying articular fractures

that can be useful for intervention planning. These tools are evaluated in the planning
of real interventions by describing their utilization. Suero et al. [94] evaluate the use of

their software for the reduction of tibial plateau fractures. For that purpose, they check
in the planning phase the time required and whether the 3D reduction is successful.

Lee et al. [57] present a planning system for reducing pelvis fractures and positioning
fixation devices. Besides the tests performed with synthetic bones, the system is applied

to plan a real surgery. During the evaluation, the features found by applying the method
in specific cases are extracted, considering the time required to complete each step, the

results obtained and the level of interaction required by the surgeon. Chen and Huang
[14] evaluate their framework for interactively planning humeral shaft fractures in order

to determine whether computer-assisted pre-operative planning improves the clinical
outcomes of humeral shaft fractures. They used the Intra-class Correlation Coefficient
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(ICC) to test for reliability.

2.4 Conclusions and future research

Due to the huge complexity of some fractures, computer-assisted techniques have been

required to ease and provide technological support to the pre-operative planning of the
fracture reduction process, reducing in this way the surgery risk and diminishing the

recovery time of the patient. In this chapter, the techniques and approaches proposed
in the literature to help medical specialists in this process have been reviewed, from

the entry of a patient (generation of bones and fragments models) to the analysis of
the final composition. The methods have been summarized and classified, and their

main advantages and shortcomings have been highlighted and discussed. The review
has revealed that none of the stages of the computer-assisted fracture reduction process

is completely resolved, neither the identification and generation of fragments, nor the
fracture reduction itself. As a consequence, this field of research is still open and faces

important challenges in a mid-term period.

The identification of bone fragments requires manual user interaction and sometimes
expert knowledge. Ideally, all the bone fragments would be segmented automatically

and simple fractures would be identified without user intervention. For this purpose,
new methods to automatically separate wrongly-joined fragments are needed. The use

of more precise medical images, such as CT, could avoid fragments appearing together

in most cases. However, these images are not always available and have an important
radiative impact on the patient. After the identification process, the next step consists of

placing all the bone fragments in their correct position to obtain the original shape of
the bone. In the future, new methods need to be developed to relocate all the fragments

properly in all types of bones and fractures without using any template. The virtual
stabilization of a fracture is almost an unexplored research field. New systems that

suggest the fixation devices to be used and their position would be very helpful in the
pre-operative planning of complex fractures. Finally, the development of better image

acquisition techniques is mandatory in order to test the suitability of the results obtained
by the computer-assisted fracture reduction process. All these advances should allow the

automation of the process as it is already happening in other medical disciplines, as well
as the development of more advanced commercial simulators. Ideally, this automation
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could lead to the development of computer-guided surgery systems using robots.
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3
SEGMENTATION AND LABELING OF FRACTURED BONE

FROM CT SCANS

The identification of fractured bone from CT images consists of segmenting and
labelling all the bone fragments represented in the images. Labelling involves the

identification of bone fragments separately (Figure 3.1). This procedure is very important
in medical visualization and simulation. In visualization, it allows removing noise

and undesirable parts from the image; hence it lets the specialist focus better on the
area of interest. In simulation, the use of models reconstructed from CT scans of

patients allows customizing the simulation. Manual fractured bone identification is a
very time demanding task and, in most of the times, requires expert knowledge. Thus, its

automation would be very profitable. Moreover, close fragments can be joined after the
segmentation because of their proximity and the resolution of the CT image. Interactive

techniques obtain good results, but they also require a lot of time. Therefore, it is
important to develop methods to automate the procedure as much as possible and also

get accurate results. In this chapter, a new method to segment and label bone fragments
from CT images is presented. On the other hand, the main issues to be considered when

identifying both healthy and fractured bone are described. The presented method is based
on 2D RG and requires minimal user interaction. In addition, the method is able to

separate wrongly joined fragments during the segmentation process.
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Chapter 3. Segmentation and labeling of fractured bone from CT scans

Figure 3.1: Volumetric visualization of a set of bone fragments generated from a CT
stack using the presented approach (left). Since all the fragments are labelled, they can
be displayed as individual fragments (right).

3.1 Issues for bone detection

3.1.1 Healthy bone

The segmentation of bone tissue from CT images is a complex process . It is difficult

to find a solution that works in all cases. There are two very distinct zones in a bone:

cortical and trabecular tissue. Cortical tissue is very dense and can be found in the outer
part of the bone. Trabecular tissue is mainly in the inner part of the bone, it is more

heterogeneous and has less intensity in a CT image. Furthermore, the intensity value for
the same tissue differs between slices. This happens with both cortical and trabecular

tissues. For instance, intensity values on the diaphysis and the epiphysis are different in
a long bone (Figure 3.2). Near the joints, the cortical zone is very thin. This zone even

disappears in the area closest to the join. Therefore, the transition of the intensity values
near the joints generally appears to be fuzzy and some areas within the bone may have

similar intensity than the soft tissue surrounding the bone. This may cause incomplete
segmentation or overgrowing [57].
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3.1. Issues for bone detection

Figure 3.2: Two CT images belonging to the same patient dataset. The intensity values
of the cortical zone are different in the diaphysis (left) and the epiphysis (right). The
cortical area is much thinner in the epiphysis (right).

3.1.2 Fractured bone

Fractured bone tissue is more difficult to identify because it has some additional features

to be considered. Due to the fact that bone fragments may have arbitrary shape and can
belong to any bone in a nearby area, it is necessary to label all the fragments during or

after the segmentation process. In some cases, this labelling requires expert knowledge.
In addition, a priori knowledge cannot be easily used because it is uncommon to find

two identical fractures and therefore it is difficult to predict the shape of the bone
fragments, especially in comminuted fractures. On the other hand, bone fragments

are not completely surrounded by cortical tissue, since they have areas on the edges

without cortical tissue due to the fracture. Finally, proximity between fragments and
the resolution of the CT image may cause that different fragments appear as one in the

image. For this reason, smoothing filters should be used with caution. This type of filters
can deform the shape of bone fragments and fracture zones, or even remove small bone

fragments. In some cases, it is necessary to detect the fracture zone of each fragment
after its segmentation. The fracture zone is the area of the bone where the fracture

occurs and is composed of trabecular tissue (Figure 3.3). In situations in which bone
fragments appear connected, it is difficult to accurately identify the fractured zone of

each fragment. Therefore, post-processing can be necessary to delimit fracture zones in
these situations .
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Chapter 3. Segmentation and labeling of fractured bone from CT scans

Figure 3.3: CT slices that represent some different simple bone fractures. Fracture lines
are marked by hand in red.

Greenstick Transverse Oblique Spiral Avulsed Segmental Comminuted

Figure 3.4: Fractured bones classified by their fracture lines.

The method applied in fractured bone identification depends on the fracture type. Based
on the fracture line, a fracture can be classified as (Figure 3.4): greenstick, transverse,

oblique, spiral, avulsed, segmental and comminuted [21]. In a greenstick fracture (Figure
3.5, a) there are no fragments because the bone is not completely broken. Thus, labelling

is not necessary. Since the fracture barely changes the shape of the bone, segmentation
methods that are based on previous knowledge are available. Nevertheless, the edges of

the fracture zone, composed of trabecular tissue, may require special processing. The
detection of the fracture zone is specially complicated since the bone is not completely

broken and trabecular tissue is very heterogeneous. Therefore, the fracture zone can be
fuzzy in the CT image.
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3.1. Issues for bone detection

Transverse, oblique and spiral fractures (Figure 3.5, b, c, and d) can be similarly

treated during the segmentation. Despite having different fracture lines, these types of
fracture generate two fragments with similar features. Labelling is necessary, but expert

knowledge is not required. Segmentation methods that can be applied depend on the
presence of absence of displacement. If there is no displacement (Figure 3.5, c, d, e,

and f), they can be processed as a greenstick fracture, but considering that there are
two fragments. These two fragments can be completely joined; hence an additional

processing to separate them may be required. In order to detect fracture zones, the same
issues applicable to greenstick fractures should be considered. In the case of having

displacement (Figure 3.5, b), the probability that both fragments are jointly segmented
decreases, and methods based on prior knowledge are almost discarded. In return, the

fracture zone is easier to identify. Avulsed fractures normally occur near a joint, thus
the fracture zone is composed almost exclusively by trabecular tissue and the boundaries

of the fragments are weak. This makes the identification of the fracture zone difficult
because practically the entire fragment is surrounded by trabecular tissue. Segmental

fractures are simple fractures that generate three bone fragments. Therefore, they can
be treated as transverse or oblique fractures, but considering that there are two distinct

fracture regions.

Comminuted fractures (Figure 3.6) add some additional constraints; hence this is the
type of fracture that is more complicated to be segmented. Comminuted fractures usually

generate small fragments, and the bone may be deformed due to the fracture. This
is because comminuted fractures are usually associated with crush injuries. In most

cases, some fragments overlap in the CT image and require additional processing to be
separated. Labelling is necessary, and expert knowledge is strongly required to identify

fragments. The detection of fracture zones is difficult in this case. Due to the complexity
of the fracture, several fracture zones are generated. Since the relationship between

fragments in this type of fractures is many-to-many, it can be necessary not only to

identify fracture zones, but also delimit which part of the fracture zone corresponds to
each fragment. As mentioned before, some fragments can overlap due to the fracture and

therefore post-processing and expert knowledge can be required to accurately identify
fracture zones.
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Chapter 3. Segmentation and labeling of fractured bone from CT scans

Figure 3.5: CT images that represent different simple fractures. (a) contains, among
others, a greenstick fracture, since the bone is not completely broken. The remaining
images contain simple fractures with (b) and without (c, d, e, f) bone displacement.
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3.1. Issues for bone detection

Figure 3.6: CT images representing highly comminuted bone fractures.

41



Chapter 3. Segmentation and labeling of fractured bone from CT scans

3.2 Fractured bone identification

As mentioned in Section 3.1.2, the identification of fractured bone requires not only

segmenting bone tissue, but also labelling bone fragments. Moreover, erroneously joined
fragments could need to be separated after the segmentation process. Therefore, expert

knowledge is sometimes required. The implementation of an automatic procedure is
not always possible. Nevertheless, user interaction must be reduced as much as possible

because it enables time saving. With the aim of identifying bone fragments, an RG based
method that only requires minimal user interaction has been developed.

For simplicity, the case of segmenting a single bone fragment will be considered.

The procedure described in this section should be repeated to segment multiple bone
fragments. The presented approach only requires that the user identifies bone fragments

in the first slice where each one appears. For that purpose, the user has to place a seed

inside each region of the target bone fragment. These seeds allow not only executing
the segmentation method, but also labelling the bone fragments. After that, 2D RG is

executed for each seed, and then all the seeds are propagated through the image stack.
In order to discard noise data, regions with fewer pixels than a threshold, usually near

20, must be removed. This threshold value varies depending on the resolution of the
image. Therefore, when a seed generates a region with a size that is smaller than the

defined threshold, it is ignored. With the goal of smoothing the image and thus improving
the segmentation result, a curvature flow filter is applied to each slice before each 2D

segmentation process.

In contrast to other approaches based on 3D, the presented method easily allows
detecting region overgrowing cases (Figure 3.7). Since the presented approach generates

a 2D region for each slice, overgrowing can be detected and solved in the first slice that
occurs. To achieve this, the proposed algorithm deals with some special cases that will

be described in the following subsections.

3.2.1 Seed propagation

The segmentation algorithm starts at the slice in which seeds have been placed. The first

step of the algorithm is to segment the slice using the first seed placed. For that purpose,
2D RG is used. After that, the obtained result is subtracted to the original image in order
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3.2. Fractured bone identification

Figure 3.7: Single bone fragment segmentation results. Left, bone fragments segmented
individually using the proposed method and later separated for viewing purposes. Right,
classical 3D RG is not able to separately segment them.

to avoid that the subsequent obtained regions overlap and thus to discard seeds that do

not segment anything (Figure 3.8). In addition, this subtraction procedure also prevents
some over-segmentation cases. The entire process is repeated for each seed placed by the

user. Upon completion of the segmentation with all the placed seeds, the results obtained

with each seed are joined in a single image.

Once the first slice is segmented, all the seeds are propagated and the previously
explained 2D segmentation algorithm is repeated for each slice. This approach eases

the detection of wrongly joined fragments, since each seed is spread independently. To
propagate a seed from a slice i to the next i + 1, first the seed is inherited from the

previous slice. If this seed fails, all its neighbour pixels are considered as seed candidates.
A seed fails when it is not able to segment a region that can be considered bone. If all its

neighbours also fail, the seed is removed. The algorithm stops when all the seeds have
been removed. The procedure is fully explained in Algorithm 1.
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Chapter 3. Segmentation and labeling of fractured bone from CT scans

inherited

seed 2

slice i-1 slice i slice i

seed 2

inherit

seed 
seed 1

Figure 3.8: Left, two seeds segment two different regions that belong to the same bone
in the slice i −1. Centre, the inherited seed 1 is able to segment the entire region in the
slice i . Right, the region segmented by the inherited seed 1 is subtracted to the original
image, hence there is no region to segment and the inherited seed 2 is discarded.

Algorithm 1 General seed spreading.
for all slices do

for all seeds do
count ← 2DRegionGrowing(seed)
if count < MIN_BONE_SIZE then

for all neighbourSeeds do
count ← 2DRegionGrowing(neighbourSeed)
if count ≥ MIN_BONE_SIZE then

seed ← neighbourSeed
subtractSegmentedRegion()
break

end if
end for

else
subtractSegmentedRegion()

end if
if count < MIN_BONE_SIZE then

deleteSeed(seed)
end if

end for
end for

44



3.2. Fractured bone identification

seed

slice i+1slice i

Figure 3.9: Special case 1. Two consecutive slices that show a considerable decrease in
the size of the bone, hence the inherited seed cannot segment anything in the slice i +1.

3.2.2 Special cases

The previously explained seed spreading algorithm obtains good results with simple

bone fragments. Nevertheless, the algorithm needs to consider some special cases to be
able to segment more complex bone fragments. When a seed is spread from a slice to

the next, two special cases need to be treated independently:

• The size of the target bone fragment region decreases significantly between two
consecutive slices (Figure 3.9).

• The target bone fragment is divided into two or more regions between two

consecutive slices (Figure 3.10).

If the size of a bone fragment decreases significantly between two consecutive slices, it
is possible that neither the inherited seed nor its neighbours can generate a region (Figure

3.9). Especially if the inherited seed is located near the edge of the bone fragment.
In this case, an alternative seed has to be selected by using other criteria. In order to

detect this special case, the decrease of segmented pixels with respect to the previous
slice is computed. If the decrease is significant, the case is treated independently as

detailed below. The percentage of decrease considered as significant is established by
experience. This percentage is set low enough to exclude false negatives, since the
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slice i slice i+1slice i+1

Figure 3.10: Special case 2. Two consecutive slices in which the bone is separated into
two parts. Left, the seed is able to segment the entire region in the slice i . Centre, the
region is subdivided in the slice i +1 and the seed can only segment one of the regions.
Right, an additional seed allows to segment the other region.

proposed algorithm works well with false positive cases, although it takes a little longer.

If this type of special case is detected, an alternative seed should be located. For that
purpose, all the segmented pixels in the previous slice associated with the current seed

are considered. To avoid testing all pixels and thus to optimize the method, a set of
pixels is randomly selected and these pixels are considered as seed candidates. If one of

the seed candidates works, it replaces the inherited seed. Otherwise, the inherited seed
is discarded and its propagation ends.

The second special case occurs when a target bone fragment is divided into two or more

regions when moving from one slice to another (Figure 3.10). In this case, the inherited
seed can only segment one of them. With the aim of detecting this special case, the

increment of segmented pixels between two consecutive slices is calculated. If there is

a significant increment, it may be necessary to use an additional seed. The significant
increase is determined by experience to avoid false negatives. As in the previous special

case, false positives are accepted since they do not modify the result of the algorithm. To
resolve this special case, first the image is segmented using the inherited seed. Then the

obtained region is subtracted to the original image to avoid being re-segmented. In order
to find an additional seed, all the segmented pixels in the previous slice associated with

the inherited seed are considered again. As in the previous special case, a random sample
of pixels is selected to avoid testing all pixels. After that, the resulting image from the

subtraction is segmented using the randomly selected pixels as seeds. If an alternative
seed is found, it is spread separately using a divide and conquer approach. This procedure
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is repeated until the increase ceases to be significant or none of the randomly selected

pixels in the previous slice can be used as seed. Algorithm 2 shows the proposed method
including the two special cases.

An additional special case appears when two different regions are joined when moving

from a slice to the next. However, this case has not been specially treated because our
method works correctly without modifications. This is because the region obtained with

each seed is subtracted to the image to be segmented; hence in this case the second seed
would have no region to segment and would be discarded.

3.2.3 Threshold definition

The intensity threshold for the RG algorithm is calculated automatically from the
image data. On the one hand, intensity values differ between slices; hence global fixed

thresholds do not obtain good results. Therefore, the average intensity of each slice
must be considered when setting the threshold. On the other hand, the local variation

in intensity depends on the area of the slice. Thus, the intensity threshold also depends
on the value of neighbouring pixels of the seed.

In order to compute the intensity threshold for each slice, a linear regression model has

been used. The threshold for a slice x is calculated as

T (x) = M(x)a +L(x)b +c

where M(x) is the average intensity of the slice and L(x) is the average intensity of the
neighbouring pixels of the current seed. To construct the regression model, a sample

of images has been randomly selected from the same stacks as those used to generate
the results. Therefore, these images were segmented using the proposed method with a

manually defined threshold in order to train the model. If additional stacks are used, the
model should be trained again.

3.2.4 Fragment separation

In some cases, the proximity between fragments and the resolution of the CT images
can cause that some fragments are erroneously segmented, as if they were only one. In

this case, it is necessary to separate them during the segmentation procedure . To do
that, an isolated connected region growing based method is used . This method requires
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Algorithm 2 Seed spreading process including the two special cases.
for all slices do

for all seeds do
count ← 2DRegionGrowing(seed)
if count < MIN_BONE_SIZE then

for all neighbourSeeds do
count ← 2DRegionGrowing(neighbourSeed)
if count >= MIN_BONE_SIZE then

seed ← neighbourSeed
subtractSegmentedRegion()
break

end if
end for

else
subtractSegmentedRegion()

end if
if count < MIN_BONE_SIZE then

newSeed ← SearchSeedInThePreviousSlice()
if newSeed then

count ← 2DRegionGrowing(newSeed)
end if
if count < MIN_BONE_SIZE or not newSeed then

deleteSeed(seed)
else

subtractSegmentedRegion()
seed ← newSeed

end if
end if
if count >= MIN_BONE_SIZE then

increment ← (count - preCount) / preCount
while increment < MIN_INCREMENT do

subtractAlreadySegmentedRegion()
newSeed ← SearchSeedInThePreviousSlice()
if newSeed then

localCount ← 2DRegionGrowing(newSeed)
if localCount ≥ MIN_BONE_SIZE then

addSeed(newSeed)
count ← count + localCount

end if
increment ← (count - preCount)/preCount

end if
end while

end if
end for

end for
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seed seed

added

seed

Figure 3.11: Left, two bone fragments are wrongly joined as a result of applying 2D RG.
Result of the segmentation using the isolated region growing based method.

minimal user interaction, because the user only has to add an additional seed inside the

fractured area (Figure 3.11). The other input of the algorithm is the seed inherited from
the previous slice. Once both seeds are determined, the region grows to be connected to

the inherited seed and not be connected to the seed added afterwards. For that purpose,
the filter uses a binary search to find an intensity threshold that separates both seeds. As

it is a semi-automatic procedure, it can be repeated until getting the desired result.

Not always there exists a threshold value that enables the separation of wrongly joined
fragments. For example, when two fragments are actually connected by their cortical

areas. For these situations, an alternative method has been developed. This method works
in all cases at the cost of losing some information about fracture zones. To that end,

the region segmented in the previous slice using the current seed is recovered, and its

external contour is calculated (Figure 3.12, a). Then, pixels in the current image that are
inside that contour and have a value above the intensity threshold form the provisionally

segmented region (Figure 3.12, b). Due to this procedure, some pixels in the boundary
of the fragment could not be segmented because they are outside the contour. In order to

recover these pixels, re-segmentation is performed using 2D RG for each bone fragment,
but before that, the result of the previous provisional segmentation is subtracted from the

original image (Figure 3.12, c). This avoids over-segmentation and allows recovering
lost pixels in the boundary of the fragment. The only drawback of this method is that

it does not accurately determine the fracture line, but this line is difficult to be defined
even manually.
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slice i-1 slice i slice i slice i

a b c d

Figure 3.12: From left to right: contours extracted from the previous slice; provisional
segmentation result obtained by calculating the inclusion in the contours; top fragment
segmented using 2D RG after subtracting the other segmented fragment to the original
slice; same procedure repeated with the bottom fragment.

3.3 Results

3.3.1 Comparison with other methods

The developed approach has been compared with some methods commonly used
to segment both healthy and fractured bone from CT images. These methods

are thresholding [89][110], 3D RG [51][25] and graph cuts [10][64]. The Insight
Segmentation and Registration Toolkit (ITK) [109] has been used in order to apply

thresholding and 3D RG to the test cases. The graph cuts segmentation has been carried
out by using the system presented in [20]. In the case of the methods that require defining

an intensity threshold (thresholding, 3D RG and our approach), it has been calculated

using the method proposed in this paper. Thus, all the compared methods used the same
intensity threshold.

First, all methods have been used to perform the segmentation of healthy bone. To test the

robustness of the method, slices with different cortical and trabecular tissue distribution
have been considered. That is, slices in which the cortical zone is much more intense

that the trabecular area, and slices in which the cortex is thin and irregular (Figure
3.13). Although we focus on the results obtained by the tested methods in certain slices,

methods were applied to the entire stack, because the final goal is to segment complete
fragments.
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Figure 3.13: Original slices containing healthy bone used as input for tested methods.
Left, a slice representing a femur diaphysis. Right, a slice representing a femur epiphysis.

As can be seen in Figure 3.14, all the compared methods obtained acceptable results in
the segmentation of healthy bone . Thresholding was able to segment more trabecular

tissue than the rest of the approaches and it did not require user interaction. However, this
method generated a lot of noise that should be removed after the segmentation process.

In addition, as it is not a region based method, it was not capable to segment a single
region. This also caused that artefacts were also segmented, because they usually have

an intensity value similar to cortical tissue. 3D RG obtained good results in healthy
bone segmentation. As it is a region based method, it was able to segment only the

regions defined by the placed seeds and it did not produce noise or artefacts. This
method required that the user placed a seed in a slice in which the bone appeared.

The method that required more user interaction was graph cuts . In order to segment
a particular bone, it was necessary to make some scribbles to define the background

and the foreground. This allowed segmenting an individual bone. However, graph cuts

generated noise around the bone that should be removed after the segmentation process.
The proposed approach obtained good results in the segmentation of healthy bone. It

only required that the user placed a seed in the first slice where the bone appeared. As
3D RG and graph cuts, our method was able to only segment the target bone (Figure

3.14).

In a second stage, all the compared methods have been tested to segment fractured bone.
To do that, different types of fracture cases have been used. These cases include fractures

in which the fragments are completely separated and cases in which they are not (Figure
3.15).
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Thresholding 3D region growing Graph cuts Our method

Figure 3.14: Results obtained by the tested methods when segmenting healthy bone.
In the top row, a slice in which there is more cortical tissue is used as input. In the
bottom row, the slice used as input has more trabecular tissue and therefore it is more
heterogeneous.

Figure 3.15: Original slices containing fractured bone used as input for testing methods.
Left, a slice representing a fracture of talus. Right, a slice representing a fracture of
fibula.
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Thresholding 3D region growing Graph cuts Our method

Figure 3.16: Results obtained by the tested methods when trying to segment a single
bone fragment in two different situations: the target fragment is almost separated (top);
the target fragment is connected to other fragments (bottom). Although our method could
obtain separately all the fragments, only the successful segmentation of a single fragment
is shown.

The tested approaches obtained different results when trying to segment fractured bone
(Figure 3.16). Thresholding technique was not suitable to segment bone fragments. As

in the case of healthy bone, this method generated a lot of noise and it was not able to
discard artefacts. Moreover, it was not capable to split up neither close nor separated

bone fragments. 3D RG did not correctly deal with bone fragments in most cases. If

two bone fragments are connected by one segmented pixel in one of the slices, the
method will cause overgrowing and will segment both fragments. Graph cuts was able

to segment and separate close bone fragments, but it required a lot of user interaction
in each slice to be separated. In addition, it required that the image was processed

after the segmentation in order to remove noise data. Our approach allowed segmenting
and separating bone fragments. For that purpose, it was only necessary to place an

additional seed if bone fragments were joined. Summarizing, only graph cuts and the
proposed approach segmented bone fragments successfully. Nevertheless, our approach

required less user interaction and did not generate noise data, thus post-processing was
not necessary.
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3.3.2 Application to real pathologies

Additional tests were performed with image stacks containing different fracture types
concluding that the proposed method obtained satisfactory results in all tested cases.

Specifically, our method has been tested with 4 different bone or fracture types: simple
fractures of large and separated bones, simple fractures of small and close bones, long

bone fractures and comminuted fractures. In the following paragraphs, an example of
each type of fracture to which the method has been applied is explained in more detail.

In all cases, the dimensions of the slices are 512x512. The size of the slice and the
separation between slices are different for each stack.

To identify and label bone fragments, one or two seeds were placed in the first slice

in which each fragment appeared. Then the proposed algorithm was executed. The
result of segmenting each slice was displayed in order to verify it and check whether it

was necessary to separate joined bone fragments. In that case, a new seed was placed
in the fractured zone and the isolated region growing algorithm was executed. This

process could be repeated until the desired results were obtained. If this procedure did
not perform well, the intersection based method was utilized. In order to visualize the

segmentation results, a volume visualization was provided. To show the different labelled
fragments, the volume was converted to a point cloud and a different colour was assigned

to the points of each fragment. The average time needed to identify a bone fragment
was about 5 minutes. No extensive tests were performed to measure time since it was

not the goal of this study. Our aim is to reduce user interaction in the segmentation of

fractured bones because manual interaction usually takes a long time. On the other hand,
the obtained results have shown that the threshold calculation approach works correctly

in approximately 95% of the cases.

Table 3.1 summarizes the parameters of all the CT image stacks used as input for
experiments. The first image stack represents a simple patella fracture (Figure 3.17 a)

and contains 157 slices. The dimensions of each slice are 156x156mm and the separation
between slices is 0.625mm. Apart from the patella and its fragments, femur, tibia and

fibula have also been segmented. Therefore, this is a simple fracture in which the bones
are separated. In total, six different bone fragments were segmented and labelled. It

was not necessary to separate wrongly joined bone fragments during the segmentation
process. The second CT stack contains a broken thumb phalanx (Figure 3.17 b) and is
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Table 3.1: Parameters of the CT stacks used as input for experiments.

# slices Size of Resolution Spacing between

each slice (mm) of slices (px) slices (mm)

Patella 157 156x156 512x512 0.625

Thumb phalanx 193 162x162 512x512 0.625

Fibula 173 159x159 512x512 0.625

Radius 134 96x96 512x512 1.25

formed by 193 slices with dimensions 162x162mm and with 0.625mm spacing. In this
case, the fracture generated two small fragments. This is a simple fracture in which

the bones are close together. In total, 5 different bone regions were segmented and
labelled. As in the previous test, it was not necessary to separate fragments during the

segmentation process. The third example shows the segmentation of a fractured fibula
(Figure 3.17 c) from 173 CT slices; hence its represents a long bone fracture. The

dimensions of each slice are 159x159mm and the separation between slices is 0.625mm.
According to its fracture line, the fracture type is spiral and the two generated fragments

are nearly touching. Therefore, it was necessary to separate wrongly joined fragments
in 4 slices. Isolated region growing based method was applied in 2 cases; hence two

additional seeds were required. The other two slices were separated using the intersection
based method. The proposed method was able to segment the two fragments individually

without post-processing. The last image stack represents a comminuted fracture of radius
(Figure 3.17 d) and contains 134 slices. The separation between slices is 1.25mm and

the dimensions of each slice are 96x96mm. The fracture was near the joint, thus it made
more difficult its segmentation. It was necessary to separate wrongly joined fragments

in 7 slices. Isolated region growing was applied in 6 cases and the intersection based
method in only one case. As in the previous test, post-processing was not necessary.

3.4 Conclusions

In this chapter, a new method to individually segment and label bone fragments from CT

images has been described. Moreover, the main issues to be considered when identifying
both healthy and fractured bone tissues have been described. The special cases that arise
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Figure 3.17: Point clouds generated from the result of applying the presented method to
segment and label bone fragments from different CT stacks.
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in the identification of each type of fracture have also been highlighted. This analysis has

shown that the identification of fractured bone may require performing additional steps:
labelling bone fragments and splitting wrongly joined fragments. The presented method

allows identifying single bone fragments because it is able to separate wrongly joined
fragments during the segmentation process. For that purpose, minimal user interaction is

required. The method has been compared with currently used methods to identify healthy
and fractured bone obtaining better results in most aspects. In addition, the method has

also been tested with different clinical cases and it performs well in a variety of bones and
fracture types. The work carried out in this chapter fulfils the objectives contemplated in

this thesis about developing new methods for segmenting and labelling bone fragments
from CT scans, as well as analysing and evaluating the obtained results. In the future,

the method will be applied to identify bone fragments in more fracture cases, in order to
identify all the bones and fracture types with which it produces good results. As will be

shown in Chapter 4, the results of fractured bone identification can be used as input for
computer-assisted fracture reduction.
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4
IDENTIFICATION OF FRACTURE ZONES AND ITS

APPLICATION TO AUTOMATIC BONE FRACTURE REDUCTION

The reduction of complex bone fractures requires solving a 3D puzzle in order to place

each fragment into its proper position. Since the relationship of contact between bone
fragments is usually MxN in comminuted fractures, additional processing is necessary

to determine which part of the fracture zone is shared with each fragment. Depending
on the complexity of the fracture, the surgery could last several hours. The previous

identification of the bone fragments, their matching, and their correct positioning could
help specialists to plan the surgery and thus to reduce the intervention time [95].

The main contribution of this chapter is an automatic algorithm to calculate the contact

zone between two fragments. The calculation of the contact zone between every pair
of fragments is useful for the pre-operative planning of a bone fracture reduction. On

the one hand, the fracture reduction may be computed by matching and registering
contact zones. On the other hand, contact zones provide additional information to

better understand the fracture. The contact zone may be defined as the area of the
fracture zone that is shared between two fragments. Contrary to what happens with

complete fracture zones, the calculated contact zones ease the use of puzzle-solving
methods to compute the fracture reduction, because the correspondence between fracture

zones is also implicitly calculated. The process of calculating contact zones can be
summarized as follows. Firstly, bone tissue is segmented from a CT stack, and each

bone fragment is identified. In order to segment and label bone fragments from CT
images, the method described in Chapter 3 is used. The results of the segmentation are

processed to extract a point cloud for each fragment. Since the developed algorithm
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Figure 4.1: Results obtained by applying the proposed method to two of the cadaver
cases provided by [30].

only requires the topological information of the contours, it is not necessary to generate
3D meshes representing bone fragments. Then the contact zone between fragments is

calculated using the method presented in this chapter. The calculated contact zones can
be matched and registered in order to reduce the fracture. For that purpose, a method

to calculate the reduction of complex bone fractures using the obtained contact zones
is also presented. The proposed procedure obtains good results in the case of moderate

fracture displacement (Figure 4.1). If the fragments are too displaced from their original
position, a previous coarse alignment of the fragments may be required. With that goal,

the contralateral bone can be used as described in the literature [75, 30]. Otherwise,
interactive methods can be utilized especially when the contralateral bone is not available

[28, 43]. The proposed method has been successfully applied in the reduction of different
bone fractures.

4.1 Calculation of the contact zone between fragments

With the aim of easing the application of puzzle-solving methods to reduce the fracture,

the presented method does not calculate all the fracture zones of a fragment. Instead, it
calculates the contact zone between each pair of fragments; hence the correspondences

between fragments are implicitly calculated. The developed algorithm has two main
steps. Firstly, a discretized sweep is carried out in order to obtain a set of candidate
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Figure 4.2: Point clouds representing bone fragments identified by the method presented
in Chapter 3.

points for belonging to the fracture area. Since not all the candidate points belong to the
fracture zone, the set of points is then filtered to get the actual contact zone. For filtering,

parameters that have similar values at all points belonging to the fracture zone must be
used. In this work, distance to the opposite fragment and curvature have been considered

and tested as parameters.

For simplicity, let us consider the calculation of the contact zone between two fragments.
Given two bone fragments A and B , the method presented in section 4.1.1 calculates the

area of A that should be joined with the area of B to reduce the fracture and vice versa,
namely the contact zones C ZA and C ZB between the two fragments. Then Section 4.2

shows how to use the calculated contact zones in order to compute the reduction of
complex fractures. The input of the algorithm is a pair of point clouds representing each

bone fragment (Figure 4.2). These point clouds are calculated from the CT image stack

resulting of the identification of bone fragments explained in Chapter 3. Each point
represents a voxel whose intensity value is greater than 0. The intensity value of the

corresponding voxel in the CT image stack is stored for each point.

4.1.1 Calculating the set of candidate points

The set of candidate points contains most of the points belonging to the contact zone but
not all the candidate points belong to the contact zone. Our method carries out a sweep

61



Chapter 4. Identification of fracture zones and its application to automatic bone fracture
reduction

with the purpose of calculating the candidate points of each fragment. The segment that

joins the centroids of both fragments defines the direction of the sweep. Since a point
cloud is used to represent each bone fragment, the space must be discretized before

performing the sweep. Candidate points are those that are reached first by the sweep
in each of the spatial divisions. The algorithm is explained in detail in the following

paragraphs.

The proposed algorithm performs a sweep to calculate a number of points candidate for
belonging to the contact zone between the two fragments. Therefore, the first step of

the algorithm consists of the identification of the sweep direction. For that purpose, the
centroid of each point cloud must be calculated. Both centroids will be named C A and

CB respectively. The segment that joins the two centroids defines the direction of the
sweep (Figure 4.3, left).

In order to perform the sweep, the volume of each point cloud is discretized using an

Oriented Bounding Box (OBB) for each point cloud. For simplicity, only the process to
calculate C ZA is explained. Once the contact zone C ZA is obtained, the process needs

to be entirely repeated changing the sweep direction in order to obtain C ZB . The only
restriction of the OBBs is that one of their associated direction vectors is determined

by the segment that joins the centroids of both point clouds. Thus the orientation of the
OBB of fragment A will be defined by the basis (⃗x, y⃗ , z⃗), where x⃗ is the normalized

result of C A −CB and x⃗, y⃗ and z⃗ form an orthonormal basis. (Figure 4.3, left). After
being calculated, each OBB is homogeneously subdivided to build a grid, so that each

voxel of the grid stores all the points that are located inside it. The size of the grid voxels
is defined by the distance between slices in the original stack. This assures that a small

number of points (no more than two or three) are classified in each voxel of the grid.
Afterwards, a discretized sweep is performed using the grid. The direction of the sweep

is from CB to C A . In each step of the sweep, the content of each grid voxel is studied. If

the voxel contains at least a point, all the points classified in that voxel are considered as
contact zone candidates and the remaining voxels in that column are not checked. This

process is described in Figure 4.3, right. After finishing the sweep, a set of candidate
points is obtained. Due to the size of subdivision chosen for the grid, the contact zone

obtained practically represents a surface. This will allow the application of a registration
algorithm to join the fragments.
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Figure 4.3: Left, OBBs and centroids associated with two fragments. Sweep direction
used to calculate the fracture zone of fragment A. The sweep direction for calculating the
fracture zone of fragment B is just the opposite. Right, 2D representation of the sweeping
procedure. Checked cells that contain no points are displayed in grey. Checked cells that
contain candidate points to belong to the contact area are displayed in orange. White
cells are not checked.
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Figure 4.4: Left, set of candidate points of fragments A and B before applying any filter.
Centre, fracture zone after the application of the distance-based filter. Right, fracture
zones after performing the registration with the aim of joining the two bone fragments.

4.1.2 Filtering the candidate points

The set of candidate points needs to be filtered in order to obtain the actual contact

zone of each fragment (Figure 4.4). The revision performed in subsection 2.1.1.3
showed that curvature-based methods are well-known and frequently used to identify the

fracture zone of bone fragments. The small number of clinical cases of fractures at our
disposal and their variety make impossible the utilization of statistics-based methods.

Consequently, two different parameters are considered for filtering contact zones: the
distance from each point to the opposite fragment and the estimated curvature at each

point.

The first parameter is based on the distance from each point to the other fragment . This

value is calculated as the minimal distance between the point and the candidate points of
the opposite fragment. Since the contact zone must be close to the fragment to be joined,

points whose distance to the other fragment is higher than a pre-defined threshold must
be discarded. This threshold depends on each individual case and it is established by

experience.

The second parameter is the estimated curvature at each point (Figure 4.5). Unlike the
distance-based parameter, the estimation of the curvature requires the normal vector at
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Figure 4.5: Estimated maximum principal curvature of two different point clouds
representing bone fragments. High curvature values are shown in blue and low curvature
values are shown in red.

each candidate point. After identifying bone fragments with the method described in

Chapter 3, external contours are extracted from the segmented regions and the normal at
each contour point is estimated. These normals are estimated in 2D for each point using

topological information from contours . For each three consecutive points Pi−1, Pi and
Pi+1 in a contour, the normal associated to Pi is estimated as the sum of the normals of

the two segments formed by Pi−1−Pi and Pi −Pi+1. The third component of each normal
is defined by the plane of the slice. Despite of this estimation, the performed tests showed

that normals are accurate enough to estimate the surface curvature. Figure 4.6 shows the
estimated normals of two different fragments. After the calculation of the normal at

each point, the principal curvatures can be estimated. To that end, the implementation
available in the Point Cloud Library (PCL) [83] is used. This implementation uses PCA
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Figure 4.6: Estimated normals of two different point clouds representing bone
fragments.

in order to estimate the principal curvatures at each point of the bone fragments. It is

expected that contact zone points have a high curvature because the area is very irregular
due to the fracture and it is mostly composed by trabecular tissue.

The application of these filters allows discarding points resulting from the sweep

algorithm that do not belong to the contact zone. The algorithm proposed for calculating
the contact zone between two fragments is depicted in Figure 4.7. The utilization of one

parameter or the other for filtering could depend on the bone and the fracture type. In
Section 4.4.1, both filters will be evaluated in the reduction of different bone fractures.
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Figure 4.7: Flowchart for the automatic calculation of the contact zone between two
fragments.

4.2 Matching and aligning multiple bone fragments

The reduction of a bone fracture requires placing all the bone fragments at their original
positions. In simple fractures, only two fragments are generated; hence the problem

is reduced to align their fracture zones. The contact zones calculated by the method
proposed in this chapter enable the application of the ICP algorithm [7] for registering

the points belonging to the contact zones. The transformation matrix obtained by
executing the ICP algorithm is applied to one of the fragments and as a result the fracture

is reduced (Figure 4.4, right).

Fractures with more than two fragments need an additional matching procedure to
establish the correspondence between fragments. Since the method described in Section
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Figure 4.8: Flowchart for reducing complex bone fractures using the proposed algorithm
to calculate contact zones.

4.1 calculates the contact zone between each pair of fragments, bone fragments can
be incrementally matched in pairs. In order to establish the order in which each bone

fragment pair is joined in the fracture reduction process, a matching score is calculated
for each pair of fragments. Thereby, the pair of fragments with the highest score has

priority. As the goal is to ensure that the best joining is carried out in each cycle of the

loop, the fitness measure obtained by the ICP algorithm is used as score .

Therefore, the first step consists of the identification of the contact area and the
calculation of the fitness measure between each pair of fragments. Then the two

fragments that obtain the best score are joined. To that end, the transformation matrix
obtained by the ICP algorithm is used as in the case of simple fractures. After that,

the contact zones between the resulting fragment and each one of the fragments that
remain to be repositioned are calculated. The entire process is then repeated until all the

fragments have been matched and joined and thus the bone fracture has been reduced.
This algorithm is schematized in Figure 4.8 and fully described in Algorithm 3.
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Algorithm 3 Fracture reduction with more than two fragments.
while numberOfFragments > 1 do

for each boneFragmentA in boneFragments do
for each boneFragmentB in boneFragments do

CZA,CZB ← contactZone(boneFragmentA, boneFragmentB)
score ← matchingScore(CZA, CZB)
if score < minScore then

firstFragment ← boneFragmentA
secondFragment ← boneFragmentB
firstCZ ← CZA
secondCZ ← CZB

end if
end for

end for
registerContactZones(firstCZ, secondCZ)
newBoneFragment ← joinBoneFragments(firstFragment, secondFragment)

end while

4.3 Dealing with the lack of trabecular tissue

In some cases, cortical tissue cannot be segmented from CT images. Sometimes the
absence of trabecular tissue is due to anatomical properties of the bone. Other times the

features or the configuration of the CT scanner preclude obtaining this type of tissue. In
those cases, the method explained in Section 4.1 fails in the calculation of the contact

zone when trabecular tissue is missing (Figure 4.9). In order to overcome this problem,
the method has been adapted to deal with only cortical tissue. The required changes are

detailed in the following subsections.

4.3.1 Calculating the contact zone

The absence of trabecular tissue makes the segmentation algorithm to practically obtain a

surface for each bone fragment. In these situations, the segment defined by the centroid
of two adjacent fragments could not establish an acceptable direction to perform the

sweep (Figure 4.9, left). This occurs specially in locations close to joints, where the
curvature of the bone surface tends to be high. With the purpose of obtaining a more

accurate direction to perform the sweep, the presented algorithm only consider the
points of each fragment that are close to the other. Thus the points of the fragments are

filtered before calculating the centroids in order to obtain representative points. Given
two fragments A and B , the representative points of fragment A are defined as RP A =
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CA

CB

CA

CB

Figure 4.9: Left, centroids and sweep direction calculated using the general method
explained in Section 4.1. Right, centroids and sweep direction calculated considering
only representative points - These points are displayed lighter.

∪k
i=1 Ai | d(Ai ,b) < λ, k being the number of points in fragment A, d the Euclidean

distance, b any point in B and λ a predefined threshold. The representative points of
fragment B are similarly calculated. Therefore, only the representative points are used

to calculate both centroids C A and CB . After that, the procedure explained in Section 4.1
for calculating contact zones is followed but only considering the representative points

of both fragments (Figure 4.9, right).

4.3.2 Matching and alignment

Due to the fact that bone fragments are only composed of cortical tissue, the calculated

fracture zones are almost lines. As the registration method loses accuracy when
registering two lines in 3D, it needs to be adapted to improve accuracy. Once the

contact zones between fragments have been calculated and the matching algorithm
has determined which two fragments must be aligned , additional auxiliary points are

extracted from the rest of fragments to ameliorate the registration. For that purpose,
auxiliary points are obtained by using the method described in Section 4.3.1 for
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calculating candidate points between the fragment to be joined and all its adjacent

fragments. Auxiliary points are composed of all these new candidate points whose
distance to the fragment to be joined is smaller than a previously defined threshold. These

auxiliary points are used as additional fracture zone points to improve the registration.
The procedure is summarized in Algorithm 4.

Algorithm 4 Matching and registration of cortical fragments.
while numberOfFragments > 1 do

for each boneFragmentA in boneFragments do
for each boneFragmentB in boneFragments do

CZA,CZB ← contactZone(boneFragmentA, boneFragmentB)
score ← matchingScore(CZA, CZB)
if score < minScore then

firstFragment ← boneFragmentA
secondFragment ← boneFragmentB
firstCZ ← CZA
secondCZ ← CZB

end if
end for

end for
for each boneFragment in boneFragments do

CZA,CZB ← contactZone(secondFragment, boneFragment)
score ← matchingScore(CZA, CZB)
if score < THRESHOLD then

firstCZ ← joinContactZone(firstCZ, CZB)
secondCZ ← joinContactZone(secondCZ, CZA)

end if
end for
registerContactZones(firstCZ, secondCZ)
newBoneFragment ← joinBoneFragments(firstFragment, secondFragment)

end while

In the case of long bone fractures, the shaft of the bone can be used as a basis for reducing
the fracture so that the remaining fragments are incrementally joined to the shaft [75, 30].

Therefore, the shaft can be considered as the first fragment and the rest of fragments can
be incrementally registered to it. As a consequence, the algorithm is simplified and thus

its performance is increased. Algorithm 5 shows the adaptation of the proposed matching
method.
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Algorithm 5 Matching and registration of cortical fragments using the shaft as base.
reducedFracture ← shaft;
while numberOfFragments > 1 do

for each boneFragment in boneFragments do
CZA,CZB ← contactZone(reducedFracture, boneFragment)
score ← matchingScore(CZA, CZB)
if score < minScore then

nextFragment ← boneFragment
reducedFractureCZ ← CZA
nextCZ ← CZB

end if
end for
for each boneFragment in boneFragments do

CZA,CZB ← contactZone(nextFragment, boneFragment)
score ← matchingScore(CZA, CZB)
if score < THRESHOLD then

reducedFractureCZ ← joinContactZone(firstCZ, CZB)
nextCZ ← joinContactZone(secondCZ, CZA)

end if
end for
registerContactZones(reducedFractureCZ, nextCZ)
reducedFracture ← joinBoneFragments(reducedFracture, nextFragment)

end while

4.4 Results

The performance of the developed method has been initially evaluated with clinical
cases. For that purpose, the contact and overlapping between fragments have been

measured. Moreover, the results have been tested on cadaver cases .

4.4.1 Clinical cases

The algorithms described in Sections 4.1 and 4.2 have been successfully applied in
the reduction of different bone fractures in the ankle area. Firstly, distance-based

and curvature-based filters have been tested with the aim of determining which filter
produces better results in the calculation of the contact zone for the available datasets.

Subsequently, the performance of the proposed fracture reduction method has been
measured. To that aim, the overlapping between fragments has been calculated and

the runtime of the different parts of the method has been measured. In all cases, bone
fragments have been successfully identified using the method described in Chapter 3.
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A B C

Figure 4.10: Front and top view of the different fracture cases used for experiments. (A)
Complex fracture of fibula and tibia, (B) simple fracture of talus and (C) calcaneus. All
the bone fragments were identified using the method described in Chapter 3.

The datasets contain three different fractures in the ankle area (Figure 4.10). The method

described in Chapter 3 was able to segment and label bone fragments in all tested cases.
The first CT stack contains a complex distal fracture of tibia and fibula (Figure 4.10,

A), and it is formed by 173 slices with dimensions 159x159mm and with 0.625mm
spacing. The fracture generated five bone fragments. The second case is an irregular

extra-articular fracture of talus that generated two fragments (Figure 4.10, B). The
CT stack contains 156 slices. The dimensions of each slice are 150x150mm and the

separation between slices is 0.625mm. The third CT stack represents an extra-articular
fracture of calcaneus (Figure 4.10, C) and contains 205 slices. The fracture produced

two fragments. The separation between slices is 0.625mm and the dimensions of each
slice are 173x173mm. The resolution of the images of the three stacks is 512x512. Table

4.1 summarizes the parameters of all the CT stacks used as input for experiments.

4.4.1.1 Testing different parameter configurations

The two proposed filters were tested for obtaining the contact zone between different
bone fragments. The first test uses the curvature filter and the second test uses the

distance-based filter . From this point, they will also be called curvature-based and
distance-based method respectively. Curvature and distance thresholds were manually
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Table 4.1: Parameters of the CT stacks used as input for experiments.

# slices Size of Resolution Spacing between

each slice (mm) of slices (px) slices (mm)

Fibula and tibia 173 159x159 512x512 0.625

Talus 156 150x150 512x512 0.625

Calcaneus 205 173x173 512x512 0.625

Distance-based filter Curvature-based filter

Figure 4.11: Results obtained for the fracture of fibula using the distance-based filter
(left) and the curvature-based filter (right), including the calculated fracture zones.

established for each particular case in order to obtain the best result and thus to avoid

compromising the comparison between both methods. In both cases, an additional radius
outlier removal filter was applied in order to remove isolated points.

For the first fracture, the curvature-based method did not perform well because some

points in the joint area have similar curvature values than the points in the fracture zone.
By using the distance-based method, the contact zones were correctly calculated (Figure

4.12, A). Figure 4.11 (left) shows that the calculated contact zones enabled a proper
reduction of the fracture of fibula using the distance-based method, but not using the

curvature-based method 4.11 (right). The fracture of tibia required applying the matching
algorithm in order to establish the two bone fragments to be joined in the first place.
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Figure 4.12: Fracture zones obtained by applying the distance-based filter (top) and
the curvature-based filter (bottom). (A) Complex fracture of fibula and tibia, (B) simple
fracture of talus and (C) calcaneus.

After joining the first pair of fragments, the contact zone of the resulting fragment was
calculated with respect to the remaining fragments. Finally the fracture was completely

reduced by registering these two new contact zones.

Due to the irregular shape of the bone in the talus fracture, the curvature filter performed
even worse than in the previous case. Many points in the outer part of the bone have an

estimated curvature similar to the points in the fracture zone; hence the curvature-based
filter obtained a scattered point cloud. Nevertheless, the distance-based filter was able to

automatically compute contact zones (Figure 4.12, B). Then the fracture was reduced by

registering them.

The irregular shape of the bone in the calcaneus fracture caused that the curvature
method also obtained a scattered point cloud. However, the distance-based filter was able

to deal with the calculation of the contact zone automatically (Figure 4.12, C). Then the
registration algorithm completed the fracture reduction.

Figure 4.13 shows the result of applying the distance-based method to reduce the three

tested cases. The tests show that contact zones calculated by the distance-based method
enable the application of the proposed matching method to reduce different fractures in
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CBA

Figure 4.13: Fractures reduced by applying the distance-based method. (A) Complex
fracture of fibula and tibia, (B) simple fracture of talus and (C) calcaneus.

the ankle area. On the other hand, the curvature does not seems to be a good parameter

to filter fracture points of bone fragments belonging to irregular bones or near joints.
In order to obtain acceptable results, the curvature-based method would need user

interaction to discard points outside the fracture zone.

4.4.1.2 Performance of the proposed method

The results of the proposed method using the distance-based filter have been
quantitatively measured. The quality of curvature-based filter has not been measured,

since it obtained bad results in the qualitative tests. The ideal would be to compare

the obtained results to the ground truth, but this is not available for our clinical cases.
Alternatively, the overlapping between fragments has been considered , since it is a

test parameter commonly used in the literature [75, 30]. After performing the fracture
reduction process, bone fragments should be in touch. Figure 4.13 shows that there was

no visible gap between fragments after the fracture reduction process. Nonetheless, tests
have been performed to quantitatively measure that bone fragments were in touch but

did not overlap. Since bone fragments were represented by point clouds, they were
discretized before calculating the overlapping between fragments. For that purpose, first

the Axis-Aligned Bounding Box (AABB) of the resulting point cloud was computed.
Then the AABB was subdivided in voxels of the same size as the original voxels of the
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Table 4.2: Efficacy of the distance-based fracture reduction process. The overlapping
error is defined as the ratio between overlapping and touching voxels.

#Touching #Overlapping Overlapping/Touching

voxels voxels ratio (Overlapping error)

Fibula 218 8 0.0367

Tibia 1683 148 0.0879

Talus 210 12 0.0571

Calcaneus 105 4 0.0381

CT image stack. With the goal of enabling subsequent overlap calculations, each voxel
referenced points that were located inside and each point stored the bone fragment to

which it belonged.

In order to compute the overlapping, all the AABB voxels were processed. Touching
voxels were defined as those containing points belonging to two different fragments.

Then all the touching voxels were candidates to be overlapping voxels. The calculation of
overlapping voxels between two fragments required studying the 26 neighbours of each

touching voxel. If there is overlapping, touching voxels are surrounded by other touching
voxels. For this calculation, empty voxels were not considered. Therefore, touching

voxels were also overlapping voxels if the number of their touching neighbour voxels
was greater than 2/3 of the number of their non-empty neighbour voxels. In the case of

the complex fracture of tibia, the process was repeated for each pair of fragments and

the obtained overlapping voxels were accumulated. The overlapping error was defined
as the ratio between overlapping voxels and touching voxels. Table 4.2 shows the results.

The obtained overlapping error for the three tested cases was very small.

Additionally, the efficiency of each step of the algorithm was measured (Table 4.3). The
tests were run on a PC with one first generation Intel Core i7 2.8Gz and 4GB RAM. The

contact zone was calculated using the distance-based method described in Section 4.1.
Once contact zones were calculated, the time to register them was also measured. The

table includes all the times each stage was run during the fracture reduction process. In
the case of simple fractures, each stage needs to be executed once. For the tibia fracture,
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Table 4.3: Efficiency of the distance-based fracture reduction process. The tests were
run on a PC with one first generation Intel Core i7 2.8Gz and 4GB RAM. Runtime is
given in seconds.

Calculate #Fracture Register #Fracture Fracture #points

fracture zone fracture zone reduction

zone (s) calculations zones (s) registrations (Total

time) (s)

Fibula 3.15 1 0.04 1 3.21 125599

Tibia 18.70 4 0.06 2 74.87 401416

Talus 8.37 1 0.09 1 8.49 519812

Calcaneus 11.39 1 0.08 1 11.51 346087

contact zones were calculated 4 times and the registration process was executed twice.

Table 4.3 shows that the fracture reduction process requires a few seconds for simple
cases and over a minute for the more complex case. These runtimes should not be an

obstacle to its utilization in the pre-operative planning of a bone fracture.

4.4.2 Cadaver experiments

The results of the proposed method have also been compared to the ground truth. In

this case, a priori knowledge of the correct final position of each bone fragment enables
the measurement of displacement and rotation errors of each fragment . Four different

fractures of humerus were provided by Fürnstahl et al. [30]. The four fracture cases

contain up to 6 fragments (Table 4.4). Since the provided models only contain the
cortical area, the version of the algorithm described in Section 4.3, which only considers

cortical tissue, was used. Additionally, bone fragments were initially aligned using the
contralateral bone as template in 2 of the 8 experiments: Experiments 1 and 4.

The models were generated using two different scan resolutions (0.67mm and 1mm).

This allows testing the performance of the method with different point distributions.
Despite the fact that the provided models are polygon meshes, only points were taken

into consideration by our method (Figure 4.14). Moreover, the distance-based method
was used to calculate the contact zones between fragments. With the goal of evaluating
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Table 4.4: Cadaver experiments provided by Fürnstahl et al. [30].

Dataset Distance between # fragments # points

slices (mm) (unfractured mesh)

Experiment 1 Fracture 1 0.675 6 290450

Experiment 2 Fracture 2 0.675 5 503400

Experiment 3 Fracture 3 0.675 3 367690

Experiment 4 Fracture 4 0.675 5 361370

Experiment 5 Fracture 1 1 5 290450

Experiment 6 Fracture 2 1 5 503400

Experiment 7 Fracture 3 1 3 367690

Experiment 8 Fracture 4 1 4 361370

Figure 4.14: Results obtained by applying our method to the four cadaver cases provided
by [30].

the accuracy of our developed method, the correct fragment positions estimated by [30]

have been compared to the result obtained by our method. Exceptionally, experiment 5
could not be tested because the estimated correct position is unavailable.

With the aim of comparing the results obtained by our method, the tests were based

on those already performed by Fürnstahl et al. in [30]. During experiments, translation
(mm) and rotation (degrees) errors in the placement each fragment in its correct position
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Table 4.5: Results of applying the proposed approach to the cadaver datasets.

Translation error (mm) α (degrees) β (degrees)

Experiment 1 7.2968±2.4586 6.6984±2.5804 6.4492±4.1971

Experiment 2 1.6352±0.7555 7.7439±2.7796 6.6307±3.4122

Experiment 3 1.84±1.2051 6.7343±1.3085 6.782±1.2411

Experiment 4 3.2581±1.7875 6.7635±1.2983 6.5099±1.1554

Experiment 5 - - -

Experiment 6 2.4741±0.3095 8.9245±3.9489 8.0785±5.0821

Experiment 7 2.6155±1.0226 4.4828±0.1104 3.0207±2.3492

Experiment 8 3.3667±2.2657 5.6371±2.2053 5.9581±2.4849

were measured (Table 4.5). The translation error was defined as the Euclidean distance

between the centroid of the fragment in the calculated position and the ground truth. The
rotational errors α and β were calculated based on the fragment’s three 2nd moment

vectors in calculated and ground truth position. α was computed as the maximum
rotational difference around the two largest moment vectors and has a stronger effect on

the overall shape of the reconstructed bone. β was calculated as the rotational difference
around the smallest 2nd moment vector, quantifying the in-plane rotational error of the

fragment on the bone surface.

The obtained results show that the error committed by our method was slightly higher
than the error made by the method of Fürnstahl et al. [30]. Nevertheless, our method

calculated the fracture area without user interaction. The research of new approaches to
improve the registration of fracture lines could reduce the error.

4.5 Conclusions

In this chapter, an algorithm to automatically compute the contact zone between bone
fragments is presented. The calculated contact zones enable the automatic reduction

of complex fractures. To that end, an automatic method to match bone fragments in
complex fractures has also been proposed. In some cases, trabecular tissue cannot

be extracted from CT scans because of the anatomical properties of the bone or the
configuration of the CT scanner. Moreover, this tissue can be deformed due to the
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fracture or even small fragments can be discarded by specialists during the fracture

reduction process. In order to deal with that situation, the procedure has been adapted to
work with only cortical tissue. In the case of displaced fractures, the method could need

a prior coarse alignment especially if bone fragments are rotated with respect to their
correct position. Interactive tools or template-based approaches may be used to roughly

align bone fragments before applying the developed algorithms.

The algorithms described in this chapter have been successfully applied in different
fracture cases. The obtained results show that fracture reductions have been successfully

computed for all the tested clinical cases, since there is no visible overlapping or
gaps between fragments. The small overlapping error demonstrates the absence of

visual overlapping in the figures. The calculation of the contact zone only takes a
few seconds for the more complex cases. Nevertheless, this calculation could be easily

parallelised in multi-core architectures due to the fact that the algorithm is based on the
individual processing of each point of the bone fragments. In this way, overall time could

be considerably reduced. Furthermore, the method has been evaluated with cadaver
experiments. In this case, the correct alignment of the fragments was previously known,

thus the obtained results have been compared to the ground truth. The developed method
achieved results close to those obtained by currently proposed methods, but without

requiring user interaction. Despite these results, a clinical study should be carried out to
determine if the developed method would lead to an improvement in the pre-operative

planning of bone fracture reduction.

The developed algorithms achieve the objectives contemplated in this thesis, related
to facilitating the automation of the computer-assisted fracture reduction process and

analysing and evaluating the obtained results. As future research, new automatic
algorithms could be developed to perform the prior coarse alignment of bone fragment

in complex fractures without the need of user interaction. Additionally, new registering

approaches could be studied to improve the accuracy of the computer-assisted bone
fracture reduction, especially when only cortical tissue is available.
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5
GENERATION OF TRIANGLE MESHES REPRESENTING

FRACTURED BONES

The generation of triangle meshes from medical images is a complex task. In addition,
the morphology of bone fragments increases the complexity of the problem. As shown

in Chapter 2, the shape the segmented regions is very irregular because trabecular tissue
appears in the outer part of the bone fragment due to the fracture, making the process

more complicated. These features influence the choice of a method for generating
meshes.

In this chapter, a study has been carried out in order to test the suitability of mesh

generation methods to model bone fragments. Some of the most well-known mesh
generation methods have been tested and their main advantages and disadvantages are

shown. Specifically, MC [63], Ball-pivoting [6], Poisson surface generation [53] and
Algebraic Point Set Surface (APSS) [36, 35] methods have been considered (Figure 5.1).

Although there are many methods to generate triangle meshes from point clouds, we
chose these four alternatives because they are commonly implemented in libraries and

applications to work with data from medical imaging. The obtained results show the
performance of each method when applied to different bones and fracture types. In

addition, the appropriateness and quality of the results are analysed focusing on the
point distribution. Finally, the suitability of each method in the context of visualization

and computer-assisted medical procedures is analysed and discussed.

The conducted study shows that current methods are not completely satisfactory in the
generation of triangle meshes representing bone fragments to be used in computer-
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Marching Cubes Ball-pivoting Poisson reconstruction APSS

Figure 5.1: From left to right: triangle meshes representing a bone fragment generated
using MC from regions, Ball-pivoting, Poisson reconstruction and APSS.

assisted medical procedures. The development of new methods to generate geometrically

simple 3D models from CT image stacks that preserve the original information extracted
from them would be of great interest. In order to achieve that, a preliminary study for

the development of a new method to generate triangle meshes from segmented medical
images is presented. The method does not modify the points extracted from CT images,

and avoid generating triangles inside the bone. The aim of this initial study is to analyse

if a spatial decomposition may help in the process of generating a triangle mesh. The
proposed method uses a tetra-tree [47] to address the mesh generation using a divide-

and-conquer approach. However, any other spatial decomposition could have been a
valid alternative for this initial study. The tetra-tree has been chosen because conducted

studies have demonstrated its possibilities in interactive environments [46]. The method
is under development and therefore this chapter only presents some initial results and

exposes the detected issues to be improved.

5.1 Evaluation of alternatives to generate triangle meshes
representing bone fragments from medical images

As stated in Section 2.1.2, nowadays most of the published studies that work with
triangle meshes representing bone fragments use MC to generate them [48]. Besides

MC, the suitability of three alternative methods to generate triangle meshes to represent
bone fragments has been tested in this study: Ball-pivoting, Poisson and APSS.

These three methods have been widely used to generate triangle meshes for different
applications [12, 104]. Nevertheless, their use is not widespread in the generation of
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meshes representing bone fragments.

The original MC is an algorithm to generate isosurfaces, which are represented by

triangle meshes, from 3D discrete scalar information. The algorithm processes the scalar
volume taking a cube composed by eight neighbour locations at each time. A case

table is used in order to decide how to generate triangles depending on the value at the
eight neighbour locations. The case table is generalized to 15 families by rotations and

symmetries. The original version of the algorithm can lead to incorrect triangles because
of ambiguous cases, and therefore different approaches have been proposed to solve this

problem [74]. In this chapter, the modification proposed by [69] is used.

The models generated by MC are usually huge and contain noise due to the morphology
of trabecular tissue. As an alternative, three additional methods have been considered for

this study: Ball-pivoting [6], Poisson surface reconstruction [53] and APSS [36, 35].

Ball-pivoting is a geometric algorithm that triangulates a point cloud by traversing a
ball of a specific size over the surface. The algorithm starts with an initial triangle and

tests whether the ball is able to reach a point from each triangle edge. If so, the reached
point is added to the model. This procedure is repeated until the ball is not able to reach

any point from the current edges. This method produces good results if the distance
between points is homogeneous. Otherwise some points could not be triangulated and

the obtained model would be incomplete.

Poisson surface reconstruction requires as input a set of points and their associated
normal vectors. This method formalizes the surface approximation as a Poisson problem.

Both the points and normals are interpreted as samples of an indicator function that
is 0 outside the model and 1 inside it. In order to approximate the indicator function,

trivariant B-splines are used. This algorithm is robust against noise in the input data. As

a last step, the MC algorithm is applied to extract a triangle mesh associated with the
generated implicit surface.

APSS is based on Moving Least Squares (MLS) for the generation of surfaces from

point clouds. The algorithm fits an algebraic sphere rather than a plane. By doing this,
the algorithm improves stability in cases in which plane-based MLS fails. As in the
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previous case, MC is applied to generate explicit geometry.

The previous two surface-based algorithms do not preserve the original points, since

they approximate implicit surfaces. In both cases, the amount of generated triangles will
depend on the resolution of the discretization performed in order to apply MC. A higher

resolution leads to better preservation of the shape of the implicit surface, but also to a
larger amount of triangles. In the tests conducted, we prioritize the quality of the models.

5.1.1 Data preparation

The input of all the methods tested as alternative to MC are point clouds representing
the outer part of bone fragments. These point clouds must be extracted from the

information available in medical images. In this study, contours are generated after the
segmentation process and then internal contours are removed in 2D. Finally, normals are

estimated using the topological information of the contours. This process is explained
in detail in the next paragraphs. Alternatively, MC could be applied to CT image

stacks after segmentation, and then point clouds and normals could be extracted in
3D from the generated triangles. Nonetheless, we discarded this approach because MC

generates many internal triangles due to trabecular tissue, and it modifies the original
points extracted from medical images. The presence of noise inside the bone could be

attenuated by using compression algorithms based on connectivity [77]. However, the
inner noise is difficult to remove even by using manual tools, because trabecular tissue

is connected with cortical tissue and it also appears in the outer part of the bone because

of the fracture.

In a first step, all the bone fragments are segmented from CT scans. For that purpose,
the segmentation algorithm described in Chapter 3 is used. The algorithm generates a

region for each bone fragment in each slice. Then the external contour of each region is
extracted. With that aim, an approach similar to the proposed in [80] is applied. First,

the Marching Squares (MS) algorithm is utilized in order to generate contours from the
segmented regions [40]. This algorithm can be considered as a 2D adaptation of MC.

Using a divide-and-conquer approach, the algorithm studies each cell composed of four
points in a slice to detect boundaries. The algorithm does not ensure that the generated

contours are closed, but this is not relevant in this case since the final goal is to generate
point clouds. Due to the noise present in the regions because of trabecular tissue, inner

86



5.1. Evaluation of alternatives to generate triangle meshes representing bone fragments from
medical images

A B C

Figure 5.2: Point clouds extracted from CT scans. These points are used as input for the
surface reconstruction algorithms. A - Complex distal fracture of tibia and fibula. B -
Simple fracture of patella. C - Comminuted fracture of radius.

contours may be obtained. These inner contours are removed using the point-in-polygon

algorithm by Feito and Torres [26]; hence only the outer contour of each fragment is
extracted in each slice. This algorithm allows determining if a contour is inside other

contours without the need to perform complex calculations, such as solving systems
of equations. After removing internal contours, the vertices of each external contour are

grouped in order to form the point cloud used as input by the mesh generation algorithms
(Figure 5.2).

In addition to the outer contours, Poisson and APSS algorithms also require the surface

normal vector at each point. In order to estimate normals, the procedure described in

Section 4.1.2 is utilized. Although [36] proposed their own approach to estimate normal
vectors, we used our own procedure for all the tested methods to avoid compromising

the comparison.

Once point clouds have been obtained, mesh generation methods can be executed. The
Visualization Toolkit (VTK) [85] has been used with the aim of applying MC to the

CT stacks. On the other hand, the three alternative methods have been executed using
the MeshLab software [102]. In order to conduct a more complete comparative, the

MC algorithm has been applied to both regions and contours. For that purpose, a new
image stack was built for each dataset from the geometrical information of the external
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contours. Once inner contours had been removed, external contours were mapped to an

empty CT stack. By doing this, a new stack containing only information of the outer part
of each fragment was generated.

5.1.2 Tests run with clinical cases

The methods were used to generate triangle meshes from 5 CT image stacks previously
processed to extract the external contour of bone fragments in each slice. These CT

stacks contain fragments from 3 different types of fractures: a complex fracture that
produced big fragments, three simple fractures that leaded to a big and a small fragment,

and a comminuted fracture in which small fragments were generated. Figure 5.2 shows
a test case of each of the 3 fracture types. The resolution of all images is 512x512. The

results show the performance of each method depending on the features of the CT scans
and the type of fracture.

The first CT stack shows a complex distal fracture of fibula and tibia (Figure 5.2,

A). The fracture produced five big fragments of irregular size: 2 fragments of fibula
and 3 fragments of tibia. The stack has 173 slices with dimensions 159x159mm and

0.625mm spacing. The next three datasets contain simple fractures in which a small and
a big fragment were generated. The second stack represents a simple fracture of patella

(Figure 5.2, B) and contains 157 slices. The dimensions of each slice are 156x156mm
and the separation between slices is 0.625mm. The third stack represents a simple

fracture of calcaneus and contains 205 slices. The separation between slices is 0.625mm

and the dimensions of each slice are 173x173mm. The fourth stack contains a simple
fracture of talus and it is formed by 156 slices with dimensions 150x150mm and with

0.625mm spacing. The last stack shows a comminuted fracture of radius that produced
five fragments (Figure 5.2, C). The stack has 134 slices with dimensions 96x96mm and

1.25mm spacing. These data are summarized in Table 5.1.

In the tests conducted, firstly the MC algorithm was used to generate triangle meshes
from segmented CT image stacks. The algorithm was applied to the regions obtained

by the segmentation method. As before explained, MC was also applied to the external
contours of the regions. The MC algorithm used an isovalue of 200 since it was the

intensity threshold employed by the segmentation algorithm. Secondly, Ball-pivoting,
Poisson reconstruction and APSS were applied to point clouds representing the external
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Table 5.1: Point distribution for each CT image stack tested. Resolution of all slices is
512x512.

Size of slice (mm) Distance between Spacing between Ratio

points (mm) slices (mm)

Fibula and tibia 159x159 0.3105 0.625 2.0126

Patella 156x156 0.3047 0.625 2.0513

Calcaneus 173x173 0.3379 0.625 1.8497

Talus 150x150 0.293 0.625 2.1333

Radius 96x96 0.1875 1.25 6.6667

contour of each bone fragment. The radius utilized by the Ball-pivoting algorithm was

slightly higher than the distance between slices considering that points in consecutive
slices should be triangulated together. The specific value for each case was empirically

adjusted. In the case of Poisson reconstruction, an octree level 8 was used to extract
the triangle mesh. The performed tests showed that a higher depth level barely modifies

the result for the tested cases. The grid resolution used to extract the geometry from
the implicit surface obtained by APSS was in the range 50-200 and depended on each

test case. As previously mentioned in this section, we prioritized the quality of the
meshes over the reduction of the amount of generated geometry when executing Poisson

reconstruction and APSS.

Firstly, the size of the triangle meshes obtained by the different tested method has been

compared. Figures 5.3 and 5.4 show the size of the obtained meshes. MC generated
complex models with a lot of geometry inside the bone due to the trabecular tissue.

Despite not including information about the inside of the bone, MC from contours
only produced 26.6% less points and 25% less triangles. This is due to the fact that

trabecular tissue appeared in the outer part of the bone because of the fracture. Moreover,
incomplete models were created when applying MC to contours (Figure 5.5). Ball-

pivoting does not modify the original points of the contours. The number of points
of the meshes obtained by the Poisson reconstruction method was slightly lower, but

the number of triangles was higher in comparison with Ball-pivoting. The number of
geometric elements generated by APSS was significantly higher compared to Poisson
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Figure 5.3: Number of vertices generated by applying the tested methods to each dataset.
Fragments belonging to the same bone are displayed in the same colour tone. Original
points are shown as a grey area.
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reconstruction, because the implementation of APSS employs a grid, and Poisson makes

use of an octree in order to generate the explicit geometry (Figure 5.6).

Table 5.2 shows the main features of the models generated by applying MC to regions
and contours extracted from the test data. Specifically, unreferenced vertices, boundary

edges and connected components have been calculated. Additionally, we checked
whether the models are two-manifold. The two approaches created complete models

since unreferenced vertices were not obtained. In addition, the 87.5% of the models
generated by MC from regions and all the models obtained by MC from contours

are two-manifold. Nonetheless, MC from regions produced holes and many connected
components in some of the models because of the trabecular tissue inside the bone. The

use of MC from contours leaded to more boundary edges in spite of not containing
inner geometry. This is due to the fact that in some cases the algorithm was not

able to connect points belonging to different contours. Moreover, models generated
from contours contained several connected components because the fracture causes that

trabecular tissue appears in the outer part of the bone and thus models are prone to
contain noise in the fracture zone.

Tables 5.3, 5.4 and 5.5 show the characteristics of the models generated by applying

Ball-pivoting, Poisson reconstruction and APSS to points clouds representing the outer
part of each bone fragment. Ball-pivoting obtained incomplete models since it was not

able to triangulate all the points. In addition, models created with Ball-pivoting were
not two-manifold, contained many boundary edges, and there were a lot of error in the

orientation of the triangles. Figure 5.6 shows mis-oriented triangles in all the meshes
generated by Ball-pivoting. Since Ball-pivoting builds models by incrementally adding

points to them, only a connected component was obtained. On the other hand, models
generated by Poisson reconstruction and APSS do not contain unreferenced vertices,

since they are based on implicit surfaces. Poisson reconstruction generated better models

from a visual point of view (Figure 5.6). However, this method did not respect the shape
of small bone fragments. In addition, the method did not preserve the shape of the bone

at the top and the bottom of big fragments. Poisson reconstruction always produces
closed models, thus it does not obtain boundary edges. Nonetheless, the method leaded

to several connected components, because of the trabecular tissue that appears in the
fracture zones. 75% of the models built by Poisson reconstruction are two-manifold.
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Table 5.2: Features of the triangle meshes generated by applying MC to regions and
contours extracted from each of the datasets.

Fragment Method Unreferenced Boundary Connected 2-manifold
vertices edges components

Fibula 1 MCR 0 350 55 Yes
Fibula 1 MCC 0 280 23 Yes

Fibula 2 MCR 0 56 145 No
Fibula 2 MCC 0 56 48 Yes

Tibia 1 MCR 0 1006 570 Yes
Tibia 1 MCC 0 580 280 Yes

Tibia 2 MCR 0 0 152 Yes
Tibia 2 MCC 0 214 37 Yes

Tibia 3 MCR 0 0 258 Yes
Tibia 3 MCC 0 146 102 Yes

Patella 1 MCR 0 26 158 Yes
Patella 1 MCC 0 262 2 Yes

Patella 2 MCR 0 62 2 Yes
Patella 2 MCC 0 100 1 Yes

Calcaneus 1 MCR 0 322 1949 No
Calcaneus 1 MCC 0 252 12 Yes

Calcaneus 2 MCR 0 124 30 Yes
Calcaneus 2 MCC 0 204 2 Yes

Talus 1 MCR 0 178 751 Yes
Talus 1 MCC 0 332 21 Yes

Talus 2 MCR 0 142 16 Yes
Talus 2 MCC 0 226 2 Yes

Radius 1 MCR 0 824 137 Yes
Radius 1 MCC 0 792 19 Yes

Radius 2 MCR 0 0 8 Yes
Radius 2 MCC 0 72 7 Yes

Radius 3 MCR 0 0 3 Yes
Radius 3 MCC 0 164 1 Yes

Radius 4 MCR 0 0 1 Yes
Radius 4 MCC 0 138 1 Yes

Radius 5 MCR 0 0 3 Yes
Radius 5 MCC 0 72 3 Yes
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Marching Cubes from regions

Marching Cubes from contours

A B C

Figure 5.5: Meshes generated using MC from regions and contours. A - Complex distal
fracture of tibia and fibula. B - Simple fracture of patella. C - Comminuted fracture of
radius.
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Table 5.3: Features of the triangle meshes generated by applying Ball-pivoting to
contours extracted from each of the datasets.

Bone # fragment Unreferenced Boundary Connected 2-manifold
vertices edges components

Fibula 1 7370 10746 1 No
Fibula 2 5720 8531 1 No
Tibia 1 34568 48247 1 No
Tibia 2 6426 6128 1 No
Tibia 3 10080 14613 1 No

Patella 1 612 2594 1 No
Patella 2 364 440 1 No

Calcaneus 1 1516 7322 1 No
Calcaneus 2 95 1088 1 No

Talus 1 567 10057 1 No
Talus 2 1978 1932 1 No

Radius 1 6821 11273 1 No
Radius 2 814 1064 1 No
Radius 3 635 948 1 No
Radius 4 174 313 1 No
Radius 5 246 375 1 No

APSS produced models similar to those created by MC, but it generated many boundary
edges because the algorithm was more sensitive to noise than MC since it built additional

triangles using points representing noise even outside the fracture zone. The method
obtained only one connected component in all the models and 43.75% of the models

generated by APSS were two-manifold.

Additionally, the adequacy and quality of the obtained results have been analysed

depending on the features of the CT scans. The distribution of the points generated from
a CT image stack depends on the resolution and the size of the 2D images, and the

distance between slices. Since the resolution of all the test images is 512x512, the only
varying data are the size of the images and the distance between slices. Table 5.1 shows

the value of both variables for all the tested CT image stacks. For the first five CT stacks,
the distance between slices approximately doubles the distance between points in the

same slice. Despite the fact that all the tested algorithms perform better if the points are
uniformly distributed, they obtained reasonable good results in most of these five cases.
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Ball-pivoting

Poisson reconstruction

APSS

A B C

Figure 5.6: Meshes generated using Ball-pivoting, Poisson and APSS. A - Complex
distal fracture of tibia and fibula. B - Simple fracture of patella. C - Comminuted fracture
of radius.
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Table 5.4: Features of the triangle meshes generated by applying Poisson reconstruction
to contours extracted from each of the datasets.

Bone # fragment Unreferenced Boundary Connected 2-manifold
vertices edges components

Fibula 1 0 0 3 Yes
Fibula 2 0 0 1 Yes
Tibia 1 0 0 4 No
Tibia 2 0 0 4 No
Tibia 3 0 0 17 No

Patella 1 0 0 1 Yes
Patella 2 0 0 1 Yes

Calcaneus 1 0 0 7 Yes
Calcaneus 2 0 0 1 Yes

Talus 1 0 0 7 Yes
Talus 2 0 0 4 Yes

Radius 1 0 0 3 Yes
Radius 2 0 0 1 No
Radius 3 0 0 1 Yes
Radius 4 0 8 1 Yes
Radius 5 0 0 1 Yes

The distribution of points extracted from the last CT image stack (fracture of radius) is

more heterogeneous, because the distance between slices is more than 6 times higher
than the distance between points in the same slice. In this situation, the triangle mesh

generated by MC from regions showed more discontinuities between slices. Moreover,
MC from contours generated more holes than in the other five cases. Ball-pivoting was

not able to properly triangulate in most cases; hence the obtained mesh contains many
holes and incorrect triangles. Poisson reconstruction performed better than Ball-pivoting.

Nevertheless, the algorithm had difficulties in modelling the more detailed areas, such
as the fracture zone. APSS generated better results in the fracture areas but the triangle

mesh exhibits ripples because of the distance between slices.

5.1.3 Discussion an analysis of the obtained results

Bone fragment models generated from CT scans are expected to have certain features
that influence the choice of the method to be used to generate them. These features have

96



5.1. Evaluation of alternatives to generate triangle meshes representing bone fragments from
medical images

Table 5.5: Features of the triangle meshes generated by applying APSS to contours
extracted from each of the datasets.

Bone # fragment Unreferenced Boundary Connected 2-manifold
vertices edges components

Fibula 1 0 2876 1 No
Fibula 2 0 3110 1 No
Tibia 1 0 19691 1 No
Tibia 2 0 5145 1 No
Tibia 3 0 8196 1 No

Patella 1 0 886 1 Yes
Patella 2 0 51 1 Yes

Calcaneus 1 0 7778 1 No
Calcaneus 2 0 2444 1 Yes

Talus 1 0 12415 1 No
Talus 2 0 3030 1 No

Radius 1 0 3538 1 No
Radius 2 0 1283 1 Yes
Radius 3 0 386 1 Yes
Radius 4 0 377 1 Yes
Radius 5 0 63 1 Yes

been translated into criteria so that the best suited method should meet as much criteria
as possible.

On the one hand, the first set of criteria is related to the features that a model should

have for using it in a computer-assisted medical procedure. One of the most important

applications of the generation of bone fragment models from CT images is computer-
assisted bone fracture reduction. As stated in Chapter 2, some of the methods proposed to

compute a fracture reduction require the calculation of the fracture zone. These methods
place bone fragments in their correct position by calculating, matching and registering

fracture zones [113, 75, 30]. Therefore, it is important that the reconstruction method
does not significantly modify the shape of the fracture zone. The accuracy of the obtained

results is a key factor in computer-assisted medical procedures, thus mesh generation
methods must avoid modifying the features of the fragments directly extracted from

medical images. Because of the presence of trabecular tissue, fracture zones usually
contain small details. These methods must keep the shape of the fragments in the more
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detailed areas. Moreover, they must preserve the shape of small fragments. The criteria

associated with the use of the generated models in computer-assisted medical procedures
have been summarized as follows:

• C1: Does not modify the original position of the points directly extracted from
medical images. Preserves the original features of the fragments.

• C2: Does not have difficulties in modelling the more detailed areas in the fracture
zone.

• C3: Keep the shape of small bone fragments.

The second group of criteria is based on the features that a bone fragment model should
have in order to use it for visualization purposes. Sometimes, the generated models are

not used in the calculations carried out in computer-assisted procedures, and the goal is to
display them in the best possible way so that they look like real bone. In these, cases the

accuracy with which the reconstruction is performed is not crucial and the main purpose
of reconstruction methods is to obtain good-looking models; hence it is desirable to

obtain models with smooth surfaces. This can be a challenge if the distance between
slices is too big. Furthermore, the generated normal vectors must be well oriented

for properly computing the visualization properties of the model. Additionally, the
information inside the bone is usually not useful for visualization purposes. Therefore,

it is advisable to remove it during the reconstruction process, in order to improve
the performance of the visualization. The criteria related to visualization have been

summarized as follows:

• C4: Generates correctly oriented normal vectors and well-oriented triangles.

• C5: Generates smooth models from a visual point of view.

• C6: Does not produce geometry inside the bone.

Finally, other criteria have been defined based on the general features that 3D
models should have in any context, because these features are valuable regardless the
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Table 5.6: Comparison between different mesh generation methods. For each method,
we evaluated the degree to which it fulfils the described criteria. A higher number of
asterisks means a better fulfilment. Refer to the text for a detailed description of each
criterion.

Computer-assisted Visualization General

procedures

Method C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

MC from regions * ** ** ** ** ** **

MC from contours * ** * ** *

Ball-pivoting ** **

Poisson ** ** * ** ** * *

APSS * ** * ** ** * *

application. It is important that the generated models are complete and thus they do

not contain holes. This can be a special challenge if the distance between slices is big.
Trabecular tissue is prone to generate noise data during segmentation, and therefore, the

reconstruction methods must be robust to noise and artefacts. Finally, the reconstructed
models must have the simplest geometry without compromising their shape, with the

aim of facilitating their use in visualization and computer-assisted procedures. These

general criteria have been summarized as follows:

• C7: Does not produce incomplete models, nor models with holes.

• C8: Does not generate noise data or artefacts.

• C9: Properly triangulates when the distance between slices is big.

• C10: Generates models with a reduced amount of polygons.

Table 5.6 shows the evaluation of each method considering the previously defined

criteria. We gave 0, 1 or 2 asterisks to each method depending on the grade to which
it fulfils each criterion. A higher number of asterisks means a better fulfilment.
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Table 5.7: Computer-assisted score (CAS) and visualization score (VS) obtained by
each mesh generation method.

Method CAS VS

MC from regions 5.5 4

MC from contours 2.5 1.5

Ball-pivoting 2 1

Poisson 3 5.5

APSS 4 3

In order to calculate a score associated with each method, we assigned 0.5 for each
asterisk, giving equal emphasis to all criteria. Then the total scores associated with

visualization and computer-assisted medical procedures were calculated. Table 5.7
shows the scores obtained by each method. The computer-assisted score (CAS) was

calculated as the sum of the scores obtained in the general criteria and in all the criteria

related to computer-assisted medical procedures:

C AS =C 1+C 2+C 3+C 7+C 8+C 9+C 10 (5.1)

On the other hand the visualization score (VS) was calculated as the sum of the scores

obtained in the general criteria and in all the criteria related to visualization:

V S =C 4+C 5+C 6+C 7+C 8+C 9+C 10 (5.2)

Considering the visualization criteria, Poisson reconstruction obtained the best results
since it produced smooth models from a visual point of view and it barely generated

geometry inside the models. However, the method significantly modified the original
shape of the bone fragments (Figure 5.7). In addition, small details in bone fragments

can be removed. This can be a drawback in computer-assisted processes that require
accuracy, such as virtual fracture reduction.
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APSSPoisson

Figure 5.7: Two meshes generated by Poisson reconstruction and APSS representing the
same fracture zone. In both cases, original points are in red. Differences in position can
be appreciated between the original and the generated points.

Taking into account the criteria associated with computer-assisted medical procedures,

MC from regions is the best option, since it slightly modifies the information directly
extracted from CT scans and it does not have difficulties in modelling the more detailed

areas and preserves the shape of small fragments. The main drawback of the MC
algorithm is the large size of the obtained models. Nevertheless, this problem can be

attenuated by using simplification methods. In that sense, algorithms based on vertex
decimation [86] or progressive meshes [41] are commonly used in the literature. In

this way, the total number of triangles can be reduced while preserving an acceptable

approximation to the original geometry.

Compared to its application to regions, MC from contours obtains similar results in
terms of preservation of the information and amount of geometry, but it produces holes

and noise, especially if the distance between slices is big (Figure 5.5).

The main advantage of the Ball-pivoting algorithm is that it does not modify the original
position of the points. Nevertheless, the method cannot assure that all the points are used

to build the mesh because points usually are seldom uniformly distributed. Consequently,
the method generated incomplete models in most of the tested cases (Figure 5.6).
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Table 5.8: Advantages and disadvantages of the five approaches tested for the generation
of triangle meshes representing bone fragments.

Method Advantages Disadvantages

MC from regions Generates complete models and
well-oriented triangles. Slightly
modifies the original shape of the
fragments.

Generates complex meshes with a
lot of geometry inside because of
trabecular tissue.

MC from contours Compared to MC from regions, it
reduces the amount of geometry
inside the bone.

Generates complex and
incomplete models.

Ball-pivoting Does not modify the original
position of the points, and thus
preserves the original features of
the fragments.

Produces mis-oriented triangles.
Does not generate correct
triangles in small fragments.
Does not properly triangulate if
the distance between slices is big.

Poisson Generates smooth meshes from a
visual point of view.

Does not respect the shape of
small fragments. Has difficulties
in modelling the more detailed
areas.

APSS Slightly modifies the original
shape of the fragments.

It is susceptible to noise and thus
generates artefacts in some cases.
Generates ripples if the distance
between slices is big.

APSS obtained visually good results and while slightly modifying the original shape
of the bone fragments (Figure 5.7). However, it produced artefacts and ripples in some

cases (Figure 5.6). The advantages and disadvantages of each method when generating
3D meshes of fractured bones are summarized in Table 5.8.

5.2 Generation of triangle meshes from medical images using
a tetra-tree

The review presented in Section 2.1.2 and the tests described in Section 5.1.2 showed
that triangle meshes generated by MC are the best suited to be used in computer-assisted

medical procedures. Nevertheless, these models are complex, contain unconnected
geometry and modify the data extracted from the CT image stack. Therefore, generated
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meshes need to be post-processed to improve their features.

In this section, an initial study for the development of a new method to generate triangle

meshes from medical images is presented. The method allows generating 3D models
using contours directly extracted from CT image stacks. The triangulation of consecutive

contours involves the resolution of some complex problems, such us deciding which
points should be sewn together in 3D, or managing sewing when the contours are

subdivided in consecutive slices (Figure 5.8). The method presented in this section
deals with these problems by using a divide-and-conquer approach. For that purpose,

the proposed method uses a spatial decomposition named tetra-tree [47] . The choice
of the spatial decomposition depends on how it fits the bone fragment; hence any other

spatial decomposition might have been used in this preliminary study. The tetra-tree has
been chosen because conducted studies demonstrated its suitability for being used in

interactive environments [46]. The main purpose of this initial study is to determine if a
spatial decomposition may help in the reconstruction of the mesh, allowing the analysis

of the advantages and disadvantages of using it. In this section, only initial results are
shown and issues to be improved are outlined.

slice i

slice i+1

Figure 5.8: Simplified representation of the case in which contours from two consecutive
slices do not have a one-to-one correspondence. Left, zoomed area showing the difficulty
of deciding which points should be sewed together in 3D.

5.2.1 Classification in the tetra-tree

The generation of triangle meshes from point clouds is a complex problem that requires

deciding which points should be triangulated together. The use of spatial decompositions
[84] allows dividing the point cloud into small sets of points, reducing the mesh

generation problem to smaller sub-problems. A tetra-tree [47] is a spatial decomposition
technique that recursively divides the space into tetra-cones with a common origin, so
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Figure 5.9: Left, a representation of the subdivision of a tetra-cone. Right, a schema that
represents the bounding tetrahedra associated with a tetra-cone [49].

that these tetra-cones cover the entire space without overlapping among them. As the
tetra-tree is built, the points are classified in the generated tetra-cones.

A tetra-tree is a hierarchical space decomposition defined in the whole space. At its first

level, the tetra-tree divides the entire space into eight tetra-cones. A tetra-cone is a space
region defined by three planes that intersect in one point. This intersection point usually

is the centroid of the model but it could be any other point in 3D space. These eight
tetra-cones cover the entire space without overlapping. In the next level, each tetra-cone

is homogeneously divided into four new tetra-cones, as shown in Figure 5.9 (left). Each
new tetra-cone is subdivided until reaching one of the following conditions:

• The maximum level of subdivisions is achieved. This level is previously defined.

• The tetra-cone contains fewer points than a previously set threshold.

In our proposal, the input of the mesh generation algorithm is a set of contour points
generated using the algorithm explained in Section 5.1, and the origin of the tetra-tree is

the centroid of these contour points. During the tetra-tree generation, all these points are
classified in the hierarchy of tetra-cones. Then the tetra-tree is adapted in order to fit the

classified geometric elements. For that purpose, the enveloping tetrahedron associated
with each tetra-cone is calculated. The enveloping tetrahedron of a given tetra-cone is

the smallest tetrahedron that shares the origin and the lateral faces with that tetra-cone,
and contains all the points that are classified into it (see Figure 5.9, right).
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Figure 5.10: Left, external contours extracted from the segmentation results. Centre, a
tetra-tree associated to the contour points. Right, points belonging to each tetra-cone are
shown in a different colour.

Since a tetra-cone is defined by three planes that intersect in a point, the top cover of

each tetrahedron is a triangle. This top cover is perpendicular to the segment that goes
from the centroid of the model to its incircle. The distance from the centroid of the model

to the top cover is established by the point classified in the tetra-cone which is furthest
to the centroid. Figure 5.10 shows an adapted tetra-tree associated with the point cloud

representing the patella.

In order to implement a divide-and-conquer approach, contours are classified in a tetra-
tree [47] and triangle patches are generated in each of the tetra-cones. After that, the

patches are hierarchically sewn in order to obtain the final mesh. In that stage of the
algorithm, the patches are previously projected onto the planes defined by the top cover

of each tetra-cone; hence the decision of which points should be sewn together becomes

a 2D problem. Furthermore, the use of a tetra-tree provides additional properties to the
generated model that encourage its utilization in interactive environments [46]. This

spatial decomposition enables the visualization of the triangles that either take part
or are close to taking part in an interaction, enabling the accessibility to far or non-

visible parts of the generated model without having to use additional algorithms such as
ray-triangle or ray-box intersection tests. Additionally, the tetra-tree provides a smooth

transition when changing the Level of Detail (LoD) during interaction. In contrast to
other widely used spatial decompositions like the octree [13], the tetra-tree is object-

centred; hence the classification of the geometry is invariant to rotations. Moreover, the
construction cost is lower and the interaction times are faster than using an octree [46].
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With the aim of easing the understanding of the proposed algorithms, a simple model

representing a patella (Figure 5.10, left) will be used to exemplify the process in the
following subsections. Since the tetra-tree is centred on a point and is based on spherical

subdivisions, this spatial decomposition fits better irregular bones like the patella, as well
as isolated ends of large bones such as the distal femur.

5.2.2 Generation of patches

The classification of all the contour points in the tetra-tree enables the execution of
a divide-and-conquer approach, so that the points classified in each tetra-cone are

triangulated in order to generate patches. Nevertheless, not all the points classified in a
tetra-cone must be triangulated together. In order to avoid generating incorrect triangles,

the points are clustered before being triangulated. A Euclidean cluster extraction
algorithm has been used to group the points that must be triangulated together. With

this algorithm, the points are grouped whenever they can be connected by points closer
than a pre-defined threshold. In the case of the patella that we use as example, only one

cluster is generated for each tetra-cone.

Once the clusters have been generated, the points belonging to each cluster are
used to generate patches. For this purpose, several triangulation algorithms were

tested. Specifically, Ball-pivoting [6] and Delaunay triangulation [91] were considered.
Nonetheless, both alternatives were discarded, because they did not produce acceptable

results. Ball-pivoting achieves good results if the distance between slices is not too

high. Otherwise, the algorithm generates holes. On the other hand, a 2D Delaunay
triangulation was tested after projecting the points onto the top cover of their associated

tetra-cone. However, the algorithm generates incorrect triangles in concave areas
because of the projection of the points.

The proposed method triangulates points belonging to consecutive contours. In order

to perform the triangulation, the connectivity information of the contours is used. First,
the contour points are sorted and grouped by slices. Then the contours of each slice are

divided into connected polylines. After that, the polylines belonging to consecutive slices
are triangulated. Depending on the number of polylines in which each contour has been

divided, three different triangulation cases are considered: one-to-one, one-to-two and
two-to-two (Figure 5.11). Any other case is discarded and thus not triangulated during
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one-to-one one-to-two two-to-two

Figure 5.11: The tree different cases considered when sewing polylines between
consecutive slices. Any other case is not triangulated in this stage of the algorithm.

this stage of the algorithm. Depending on each case, a different triangulation algorithm
is applied.

One-to-one triangulation

The easiest case occurs when both contours are composed by only one polyline. In this
case new triangles are generated, minimizing the number of triangles with large sides

and small angles. Given the first two points of each polyline A0, A1,B0,B1, the algorithm
first computes the distance from A0 to B1 and the distance from B0 to A1. The smaller

of these two distances defines the segment which is used to generate the triangle. In
Figure 5.12, the red coloured triangle A0B0 A1 is discarded since the distance between

B0 and A1 is bigger than the distance from A0 to B1. This step is repeated until all the
points belonging to one of the polylines have been triangulated. Finally, the last point of

the already sewn polyline is used to generate triangles with the remaining points of the
opposite polyline. Considering that all the points of B have been triangulated and A j is

the next point in A to be triangulated, the algorithm tries to generate new triangles until
the distance from A j to Bm is greater than twice the average distance between A and B.

This constraint provides a better triangle distribution and avoids degenerated triangles.
In Figure 5.12, the purple coloured triangle An−1Bm An is discarded because the distance

from Bm to An is bigger than twice the average distance between A and B.

One-to-two triangulation

If one of the contours is composed by two sub-polylines - A and B -, these must be

sorted before being sewn. Then the sub-polylines are sequentially sewn to the polyline
C of the opposite contour. Since the two sub-polylines are sewn using the same process,

the algorithm to sew a single sub-polyline A to a polyline C is explained for simplicity.
Firstly, the polyline point Ci closest to the first point of A is calculated. In Figure 5.13,
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A0 A1
An-1

Bm
B1

B0

An

Figure 5.12: Top, example of a one-to-one triangulation of polylines using the proposed
algorithm. Bottom, obtained triangles.

the closest point to A0 is coloured in purple. After that, the one-to-one algorithm is
applied but starting from the closest point previously calculated. Using that algorithm,

new triangles are generated until all the points of A have been triangulated. Then the
last point of A is used to generate new triangles. The main difficulty consists of deciding

when to stop sewing a sub-polyline and to start the next one. Being C j the next point of
the polyline to be triangulated, the algorithm stops sewing the sub-polyline A when the

distance from the last point of A to C j is greater than twice the average distance between
A and C and it is also bigger than the distance from the first point of B to C j . As in

the one-to-one case, these constraints provide a better triangle distribution and avoid
degenerate triangles. Once the first sub-polyline A has been sewn, the same procedure is

repeated for the second sub-polyline B. In Figure 5.13, the closest point to B0 is coloured
in blue. Being Ck the next point of C to be triangulated, in this case new triangles are

generated until the distance from the last point of B to Ck is larger than twice the average
distance between B and C or all the points have been triangulated. In Figure 5.13, the red

coloured triangle Cl−1BmCl is discarded because the distance from Bm to Cl is bigger
than twice the average distance between B and C.

Two-to-two triangulation

The two-to-two case requires deciding which sub-polylines have to be sewn together.

Two sub-polylines are sewn if the average distance between them is less than a pre-
defined threshold. This value is manually set and mainly depends on the distance
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Figure 5.13: Top, example of a one-to-two triangulation of polylines using the proposed
algorithm. Bottom, obtained triangles.

Figure 5.14: From left to right: front and back views of the result of applying the
triangulation algorithm to each cluster in the leaf nodes of the hierarchy.

between slices in the source medical images. The order in which the sub-polylines are

sewn is also determined by the distance between them. Firstly, the system tries to sew
together the two closest sub-polylines, and then the two remaining sub-polylines. In

both cases, the one-to-one algorithm (Figure 5.12) is used in order to sew the two sub-
polylines.

The triangulation algorithm described above must be repeated in order to generate

patches for each cluster. Figure 5.14 shows the patches generated by the triangulation
algorithm in the case of the patella.
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Figure 5.15: Left, external contours of the patches generated in each leaf tetra-cone. The
external contour of each patch is displayed in a different colour. Right, pairs of polylines
that are triangulated together in the last level of the tetra-tree. Each pair is displayed in
the same colour.

5.2.3 Sewing triangle patches

The triangulation algorithm generates one or more triangle patches for each tetra-cone.

In order to close the mesh, these patches need to be sewn together. For that purpose,
the tetra-tree hierarchy is traversed in post-order. For each node of the hierarchy, the

patches stored in its 4 children nodes that are closer than the previously defined threshold
are sewn. As occurs in the patch generation algorithm, the threshold value is manually

chosen and depends on the point distribution, and thus on the distance between slices and
the resolution of the source medical images. The order in which the patches are sewn is

defined by the distance between patches and closer patches have priority.

The algorithm proposed to sew two patch contours starts with the identification of the

points to be sewn. For that purpose, the external edges of each patch are calculated as the
edges that only belong to one triangle (Figure 5.15, left). Then these edges are projected

onto the plane defined by the top cover of the tetra-cone containing them. In order to
avoid overlapping of the projection of the two patches, the patches are separated by

the displacing them the distance between the centroids of both patches, in the direction
defined by both centroids. In 2D, the edges to be sewn are defined as those whose points

can be connected to a point belonging to the other patch without intersecting any of the
two patches (Figure 5.16). Figure 5.15 (right) shows the polylines to be sewn between
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Figure 5.16: Schema representing the selection of the edges to be sewn between two
patches. Solid lines connect points of edges that belong to the group of edges to be sewn
group since they do not intersect with any patch. Dotted lines intersect with the patch,
and therefore their associated edges are discarded.

every two patches. Finally, new triangles are generated using the one-to-one method to

sew two polylines already described in Section 5.2.2.

This sewing procedure is repeated in each node of the hierarchy. Once all the nodes of a
level have been processed, the generated patches are transferred to the parent node and

the sewing algorithm is repeated at the upper level. The process is repeated until reaching
the root node of the tetra-tree. The top image of Figure 5.17 shows the patches generated

in each of the tetra-cones belonging to the top level of the tetra-tree.

At the top level, the parent node receives the patches generated in its eight children
nodes. These patches have to be sewn together in order to close the mesh. In this step

of the algorithm, patches are sewn two by two in a sequential process. Figure 5.17

summarizes the three stages of this process.

In the first two stages of the process (Figure 5.17, top and middle), the criteria used to
select the points to be sewn is that each point must be sewn to its closest patch. Given a

pair of patches, Pa and Pb , the points to be sewn in Pa are those whose closest patch is
Pb . The points to be sewn in Pb are calculated using the same procedure. Then patches

are sewn using the one-to-one algorithm previously described to sew polylines. Due to
the holes associated with the first and the last slices of the stack, two sub-polylines may

be obtained when calculating the edges to be sewn in some cases. To deal with the sewing
in these cases, the two-to-two algorithm is applied.
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Figure 5.17: Left, patches received as input in each of the three stages carried out at
the top level of the tetra-tree. Centre, external edges of those patches. Right, calculated
polylines to be sewn in each of the three stages.

In the last stage of the process (Figure 5.17, bottom), only two patches are remaining.

In this stage, all the external edges of both patches belong to the polylines to be
sewn, and therefore, the algorithm to extract external contours is applied to get them.

Since the polylines representing the external contours are closed, the one-to-one sewing
algorithm requires being adapted to properly join the two patches. As mentioned above,

the generated model contains two holes associated with the contours in the first and the
last slices of the stack. Nevertheless, these two holes do not affect to the application of

the algorithm, and can be filled at the end. Figure 5.18 shows the results obtained by
applying the method in the case of the patella.
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Figure 5.18: Front and back views of a mesh generated using the proposed procedure in
the case of the patella.

5.2.4 Issues to be improved

Different tests have been carried out in order to measure the convenience of the

developed method to generate 3D meshes representing bone fragments. Although the
developed algorithm produces promising results in the generation of bone fragment

models, some cases in which the algorithm does not perform well have been detected.

The classification of points in the tetra-tree is not always optimal, and hinders the
generation of patches in the more irregular areas, especially in the case of long bones.

In addition, the classification of points often generates triangulation cases that cannot
be solved using the algorithms described in Section 5.2.2. Finally, in the case of models

with several concavities, the linear projection proposed in Section 5.2.3 in order to find
the edges to be triangulated for sewing two patches may not be the best option. These

cases should be fixed to enable the application of the method in the generation of more
complex bone fragment models. This section identifies and describes all the detected

cases.

Classification in the tetra-tree

Regarding the classification of the point cloud, the tetra-tree does not properly adjust to it

in the case of long bone fractures. In these cases, the more detailed area, which is usually
the fracture zone, is located at the ends of each bone fragment; hence the tetra-tree should

be further subdivided in those areas. Nevertheless, the stop criteria defined in Section
5.2.1 does not produce good results, since it carries out a more detailed subdivision

113



Chapter 5. Generation of triangle meshes representing fractured bones

Figure 5.19: Tetra-tree applied to two different point clouds representing long bone
fractures.

at the middle of the bone fragment (Figure 5.19). The research of new stop criteria is
required in order to obtain a better adjustment of the tetra-tree. In this way, additional

information such as the intensity value or the estimated curvature at each point could be
utilized.

Generation of patches

During the generation of patches from contours, we detected that two special
triangulation cases are not resolved. On the one hand, some isolated points can be

classified into one tetra-cone because of the location of the centroid and the orientation

of the tetra-tree (Figure 5.20, left). These points divide polylines into two sub-polylines,
and thus a hole is obtained during triangulation. Furthermore, isolated points may cause

that the triangulation algorithm described in Section 5.2.2 generates incorrect triangles
(Figure 5.20, right). In order to solve this case, two different approaches could be used:

developing a new triangulation algorithm that is not affected by isolated points, or
reclassifying the points of the affected tetra-cone avoiding isolated points.

On the other hand, a closed small contour can be completely classified in a single tetra-

cone. Therefore, that closed contour must be triangulated with the polyline extracted
from the next slice (Figure 5.21). The one-to-one triangulation algorithm described in
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Figure 5.20: Left, tetra-tree applied to a point cloud. Centre, points classified in each
tetra-cone are displayed in a different colour. Right, detailed view of the contours
containing the isolated points and triangulation performed by using the method described
in Section 5.2.2.

Figure 5.21: Left, point cloud representing a distal femur in which points classified into
each tetra-cone are displayed in a different colour. The remarked small closed contour
has been completely classified in a single tetra-cone. Right, the new triangulation case
that results from that classification.
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Section 5.2.2 is not able to properly generate triangles in that case. To address this

case, two different strategies could be utilized: reclassifying the points in the tetra-tree
avoiding the classification of entire contours in a single tetra-cone, or developing a new

triangulation algorithm with the purpose of dealing with this case.

Figure 5.22: Left, front and top view of the point cloud representing the distal end of
a femur. Points classified in each tetra-cone are displayed in a different colour. Red
rectangles point out a concave zone in the point cloud. Right, front view of the tetra-tree
associated with the point cloud. The top cover of the tetra-cone containing the concave
area is marked in red.

Sewing triangle patches

Once patches have been generated in the leaf tetra-cones, these are hierarchically sewn

as described in Section 5.2.3. In order to calculate the edges to be triangulated, patches
are linearly projected onto the top plane of their associated tetra-cone. This projection

obtains good results in some of the testes cases. However, the linear projection of the
patches onto the top plane of the tetra-tree does not work well if the bone fragments

have various concavities, such as the case of femoral condyles (Figure 5.22). In order to
deal with these cases, a different type of projection should be used.
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5.3 Conclusions

In this chapter, a comparison between well-known methods to generate triangle meshes
to represent bone fragments has been presented. This study has previously required

extracting point clouds representing the outer part of each bone fragment from CT scans.
In order to segment bone fragments from CT image stacks, the method proposed in

Chapter 3 has been used. Then the external contour of each segmented region has been
extracted. The points of both the segmented regions and the extracted outer contours

have been used as input for the tested algorithms. Additionally, surface normal vectors
have been estimated using the connectivity information of the contours. Finally, some

tests have been performed with the aim of knowing the benefits and shortcomings of
each method when generating triangle meshes representing different bones and fracture

types.

According to the obtained results, the performance of all the tested methods is heavily
influenced by the quality of the CT stacks. However, Poisson reconstruction obtained

best models for visualization and MC from regions was the best option for computer-
assisted medical procedures. All the methods obtained better results if the points

were homogeneously distributed. For that purpose, the distance between slices should
be smaller, but this implies increasing the radiation to the patient. Therefore, the

development of new data acquisition techniques that reduce radiation would greatly
improve the results obtained by the reconstruction algorithms. On the other hand,

segmentation results also influence the obtained meshes; due to the fracture, trabecular

tissue is in the outer part of the bone, and the irregularity of this type of tissue and the
low resolution of the CT image stack make difficult to correctly identify the boundary of

bone fragments, especially when two fragments appear joined by their fracture zones in
the CT image. This may lead to the generation of wrong surfaces in the fracture area.

In addition, a preliminary study for the development of a new method to generate

triangle meshes representing bone fragments has been presented. This method uses a
spatial decomposition named tetra-tree to implement a divide-and-conquer approach

that allows simplifying the problems that arise when triangulating the contours extracted
from consecutive slices. The use of a tetra-tree makes the models be more useful for

interactive applications [46]. The presented method is under development, and thus only
initial results have been shown as well as the detected issues to be improved. This work
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allows reaching the goal of researching and developing new methods to generate 3D

models representing bone fragments. In the future, the method could be extended to work
with alternative spatial decompositions that fit better the shape of any bone fragment. For

that purpose, these spatial decompositions could use not only the position of the points,
but also the intensity and the estimated curvature at each point, in order to adjust them

better to the bone fragment in the more detailed areas like the fracture zone.
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DISCUSSION, CONCLUSIONS AND FUTURE WORK

Computer-assisted techniques can supply technological support to the pre-operative

planning of the bone fracture reduction process, reducing surgery risk and diminishing
recovery time. In this work, we have reviewed the techniques and approaches proposed

to help medical specialists in this process, from the generation of bone and fragment
models to the analysis of the final composition. The methods have been summarized and

classified, and their main advantages and shortcomings have been highlighted. The study
of these methods has revealed that none of the stages of the computer-assisted reduction

process is completely resolved, neither the identification and generation of fragments,

nor the fracture reduction itself. As a consequence, this field of research is still open
and faces important challenges in a mid-term period. In this work we have presented

new methods to identify bone fragments from CT scans, to calculate the contact
zone between fragments, to compute the fracture reduction and to generate triangle

meshes representing bone fragments. Additionally, some tools have been developed to
help specialists to manipulate bone fragment models generated from medical images

(Appendix A).

6.1 Identification and generation of bone fragment models

The main difficulty in the segmentation step is to identify each one of the fragments

deterministically. Currently, this process requires manual user interaction and sometimes
expert knowledge. This issue is an open research line where previous knowledge

would be advisable and more accurate segmentation and labelling methods are needed.
With the aim of identifying each of the bone fragments, it is necessary to label them
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and to separate wrongly joined fragments. On the other hand, the key procedure in

the segmentation step of most of the currently proposed methods is the selection of
thresholds and seeds. Nowadays, the labelling step is in most cases performed manually.

As a consequence, both segmentation and labelling can require a post-processing step.
Thresholding-based approaches do not label bone fragments, thus fragments have to

be labelled after the segmentation process. The approach presented in this work uses
the placement of the seed required to segment each bone fragment to also label it.

Other approaches in the literature also resolve this problem by using seeded based
methods [38, 29]. In all these cases, seeds should be placed by an expert. Other studies

propose methods to label bone regions automatically, but then an expert should evaluate
the results and decide to which bone or fragment each region belongs. Ideally, all the

bone fragments should be segmented automatically and simple bone fragments should
be identified without user intervention. Then, in more complex cases, the expert could

decide the bone to which each fragment belongs.

Because of the complexity of the trabecular tissue, the selection of threshold intensity
values is a challenging procedure. Threshold values are difficult to determine, even

manually, and each slice may require a different value. In addition, it is particularly
difficult to set the threshold to segment bone tissue near joints. The method presented in

this PhD dissertation uses a linear regression model to calculate the threshold value for
each slice. Despite the fact that the calculated thresholds produce good results in most

cases, the model needs to be built for each set of datasets. Most of the proposed methods
in the literature require that the user to manually specify the intensity threshold. Ideally,

threshold values would be selected automatically from the information available in the
set of slices in all cases.

As mentioned in Section 3.1, it may be necessary to split up fragments during the

identification process. The low image resolution may cause very close fragments to

appear joined. This is especially common in fractures produced by high energy traumas.
Different approaches have been proposed to deal with this problem: interactive tools

[38, 98], 3D CCL and graph cuts [29], re-segmentation [57] or even comparison with
healthy models [96]. Nevertheless, manual and semi-automatic fragment separation

takes time; hence automatic methods would be important to enable time-saving.
One solution would be to improve the segmentation method, thus joined fragments
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are avoided. The presented method separates wrongly joined bone fragments during

segmentation by using additional seeds. A full automation of this process would be
profitable, because then no additional methods after the segmentation process would

be required. However, the usual low resolution of CT scans makes this automation very
difficult. An alternative approach would be to directly implement a method to overcome

the problem after the segmentation step. Therefore, the whole segmented solution would
be available and additional information could be used from the already segmented

adjacent slices.

The use of more precise data acquisition technology could prevent fragments from
appearing together in most cases. CT is the most common method to acquire 3D images

in order to distinguish bone tissue . This procedure has an important radiative impact
on the patient. In recent years, there is a tendency to use µCT images to add extra

precision to given regions. Nevertheless, this type of images increases radiation [88].
Thus, in spite of currently being the best option to distinguish bone tissue, CT scans

possess this inescapable drawback. For that reason, finding alternative scan methods to
improve medical images without increasing radiation is mandatory and has become a

challenge for the research community. Although the main purpose of medical images is
clinical diagnosis, they are also the input of computer-assisted techniques that can lead

to a reduction of surgery time.

On the other hand, there exist studies that try to segment bone tissue from Magnetic
Resonance Imaging (MRI) and X-ray . These techniques require extra information

because osseous tissue cannot be identified as easily as in a CT scan. Proposed methods
are based on an atlas previously constructed from CT images [39] or are applied to very

specific bone areas [45, 37]. However, there are no proposed studies to identify fractured
bone from these types of medical image.

With respect to the 3D reconstruction step, the MC [63] algorithm is a de facto standard
due to its simplicity and advantageous trade-off for generating geometric models.

However, this method has several disadvantages that represent a current challenge:
the large amount of generated geometry and the noise obtained due to the complexity

of trabecular tissue. In this PhD dissertation, some other mesh generation methods
(Poisson reconstruction [53], Ball pivoting [6] and APSS [36, 35]) have been tested
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in the generation of triangle meshes representing bone fragments, extracting their main

benefits and drawbacks. The conducted tests demonstrated that Poisson reconstruction
obtained the best meshes for visualization and MC from regions was the best option

for computer-assisted medical procedures. Furthermore, this work presents the initial
results of a preliminary study for the development of an innovative method to generate

3D models of bone fragments by sewing the external contours of the segmented bone
regions. In order to deal with special cases during the sewing procedure, the method

implements a divide-and-conquer approach using a spatial decomposition named tetra-
tree. Although the method produces promising results, some detected issues should be

improved in order to generate more complex models. The development of an alternative
spatial decomposition that fits any bone fragment better is an open research line. On the

other hand, point clouds have been used as input for the proposed method to compute
the fracture reduction because this data structure is easily generated and the proposed

method does not require the geometrical information provided by meshes. Nevertheless,
point clouds do not avoid the problems for visualizing, managing and interacting with

these large models.

The main drawback of using geometry optimization methods is the difference between
the processed models and the originally detected bone boundaries. This may cause

some bone fragment features, such as fracture surfaces, to become difficult to detect.
Paradoxically, smoothing is required to remove undesired ripples, whereas at the same

time it can blur the boundaries and hinder the extraction, identification and ulterior
reduction. However, these techniques are very useful in the visualization process where

a LoD strategy can be used in order to adapt the computational requirements to the
specialist’s demand.

6.2 Computer-assisted fracture reduction

The revision presented in Section 2.2.2 allowed us to discuss about the existing
approaches in the literature for computer-assisted fracture reduction regarding

comminuted fractures. Most of the proposed works in the literature are focused on
long bones (tibia, fibula, femur and humerus) [107, 105, 68, 114, 75, 97, 1, 30]. In a

long bone, the diaphysis is cylindrical and is completely surrounded by cortical tissue.
In contrast, the cortical zone in the epiphysis is very thin; hence trabecular tissue can

122



6.2. Computer-assisted fracture reduction

even appear in the outer part of the bone. Therefore, this extra information has favoured

the development of computer-assisted techniques to help specialists reduce long bone
fractures. With the aim of reducing fractures of irregular bones, only just interactive tools

have been proposed [19, 106, 28, 43]. As an exception, Chowdhury et al. [17] present
an approach to reduce craniofacial fractures by calculating, matching and registering

fracture zones and Kato [52] proposes to reduce acetabular fractures using a template.

Automatic methods require extra information in order to avoid user interaction. Most
of the proposed approaches use templates in order to match bone fragments [68, 1, 52].

Others take advantage of differentiable features of a specific bone. Winkelbach et al.
[107] propose a method to automatically reduce comminuted fractures of femur. For that

purpose, the authors make use of the special features of long bones already mentioned
in the previous paragraph. Chowdhury et al. [17] present an approach to automatically

reduce craniofacial fractures. In this case, the authors take advantage of a previous
classification of fragments as terminal or non-terminal, based on the presence or absence

of condyles. Nowadays, there is not a method to automatically reduce comminuted
fractures that could be applied to any bone. This PhD dissertation has presented a

method to automatically calculate the contact zone between each two fragments. The
calculated fracture zones enable the reduction of complex bone fractures. Regarding the

final alignment, most of the proposed works use an adaptation of the ICP algorithm. The
main drawback of this method is that local minima can be obtained. Therefore, a previous

coarse alignment of the bone fragments is required. For that purpose, the application
presented in Appendix A may be used to carry out a proper previous alignment of

bone fragments. The development of more robust registration methods to reduce the
probability of finding a local minimum would lead to the achievement of more automatic

approaches.

The stabilization of a fracture reduction is a key step in the process of guaranteeing

the fixation of the fragments in a long-term period. However, at the moment automatic
stabilization is almost an unexplored field. Nonetheless, several user-interactive

solutions have been proposed to help the specialist to plan the surgery and accelerate
the whole process. This lack of general solutions is due to intrinsic technical difficulties,

to the necessity of expert knowledge and to the requirement of a precise analysis of
the fracture reduction. During the simulation, plates and screws have to be defined
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according to the fracture. If plates are virtually designed, they must be later specifically

manufactured for the patient. Notwithstanding that some of the proposed approaches
have been tested in clinical cases, implant manufacturing is still an expensive process.

Thus, current solutions propose to contour standard implants in most cases.

6.3 Analysis and validation of a computer-assisted reduced
fracture

As commented in Section 2.1.2, the computer-assisted reduction of complex bone
fractures requires the generation of 3D models from CT images that represent the

fractured bones. These virtual models are usually generated using a MC-based approach.
Then noise is removed and models are simplified in most cases. Despite the fact that

these models are complex, no method has been proposed to evaluate their goodness. On
the other hand, there is no standard criterion for evaluating the accuracy of either the

fracture reduction composition or the model quality. Different authors have proposed
different methods to measure the quality of the obtained fracture reduction; hence the

different proposed methods cannot be easily compared. In most cases authors used
artificially generated bones to test their proposed techniques. In these cases, the results

obtained cannot be compared, since they used different bones to perform the tests:
corpse bones and artificial bones of different materials. The special features of long

bones have also been used to check the accuracy of the reduction. These features enable
the comparison between different methods, but this is restricted to long bone fractures.

Registration-based methods can use MSE to test the accuracy of the final alignment of
the fracture surfaces. This measurement can only evaluate this step of the process and it

is only applicable in methods that use registration techniques. With the aim of facilitating
comparatives, the fracture reduction method presented in this work has been evaluated

using parameters commonly used in the literature. Specifically, overlapping and contact
surface are calculated in clinical cases, and translation and rotation errors are used in

cadaver cases since the ground truth is previously known.

6.4 Future work

The next steps in this research line should allow the automation of the surgery as has
been introduced in other medical disciplines [50, 79]. This automation would enable
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the utilization of computer-guided surgery using robotic systems. Regarding this topic,

methods to compute the reduction of bone fractures proposed in the literature have
been applied in the planning of real surgery. Improvements of the currently proposed

techniques would ease the development of robotic systems to assist in or even to perform
a real fracture reduction. To the best of our knowledge, the commercial development is

not widespread. The research of new methods to automate the fracture reduction process
and the analysis of its results could contribute to the development and improvement of

this type of commercial solutions.

Given the previous discussion, the computer-assisted bone fracture reduction process
may be improved by researching the following topics:

• Identification of bone fragments from CT scans without needing user interaction.
This includes the automatic calculation of threshold values and seed placement, if

any. Expert aid should be reduced as much as possible.

• Development of new techniques that prevent fragments from appearing together
after the segmentation process. This may be achieved by improving segmentation

methods or by researching new image acquisition technologies that enhance image
resolution without increasing patient radiation.

• Refinement and generalization of the proposed method to generate 3D models

from medical images. Additionally, the method should be tested with more clinical
cases, not necessarily bones.

• Development of new optimization techniques to improve the generated 3D

bone fragment models without modifying the geometrical information originally
extracted from the medical data.

• Development of algorithms to automatically perform a coarse alignment of bone
fragments without the need of using templates or requiring extra information about

the original shape of the bone.

• Automatic calculation of the fixation devices needed to stabilize a fracture as well
as their position.
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Chapter 6. Discussion, conclusions and future research

• Development of a new spatial decomposition that fits the shape of any bone

fragment, and that is capable of being further subdivided in the more detailed
areas.

• Evaluation of the goodness of 3D bone fragment models generated from medical
images.

• Development of standard procedures in order to evaluate the goodness of a reduced

fracture from both a geometrical and a mechanical point of view.

• Generation of realistic and complex virtual fractures of different bones in order to

facilitate the testing of the developed methods.
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INTERACTIVE TOOLS TO ASSIST IN PRE-OPERATIVE

PLANNING OF BONE FRACTURE REDUCTION

Once developed methods for identifying bone fragments from CT scans, obtaining
3D models representing bone fragments, identifying fracture zones and reducing bone

fractures, they could be integrated into an application that would facilitate the work
of medical specialists. This Appendix describes this application in its initial state

in which known interactive techniques have been included to enable the generation
and manipulation of bone models (Figure A.1). This application facilitates the proper

visualization of geometric models representing bone structures and includes techniques
to optimize the processes involved in fracture reduction. These techniques allow for

better definition of the triangles involved in different processes, such as puzzle-solving
problems, and provide visual aid to specialist using advanced collision detection

algorithms.

The developed application contains tools to perform a detailed interaction with 3D
models of bone fragments, and enable the interactive fracture reduction in cases in

which it cannot be carried out automatically. The application uses MC to generate
bone fragment models from CT image stacks, since the tests conducted in Chapter 5

revealed that it was the best option for computer-assisted procedures. Notwithstanding,
the refinement of the method presented in Section 5.2.1 could enable its utilization for

generating models used as input in this type of procedures. As commented in Chapter
5, the use of the tetra-tree provides additional properties to the generated models that

improve the user experience in interactive applications. Although CT image stacks are
usually segmented before generating the 3D models, the developed application contains
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Appendix A. Interactive tools to assist in pre-operative planning of bone fracture reduction

Figure A.1: Examples of using the developed application to interact with osseous models
reconstructed from medical images.

tools to clean the image noise and to manually segment and label models. In addition, a

comparative study has been carried out with the aim of choosing the collision detection
strategy that suits best to the problem. The developed application uses swept sphere

hierarchies [56] to calculate overlapping triangles, nearest points and distances between
bone fragment models in real-time. Moreover, a stereoscopic motion-tracking device has

been integrated into the application with the goal of enhancing interaction.

The developed application is the basis for integrating the tools proposed in this PhD

dissertation. The application can be used in the pre-operative planning of a fracture
reduction surgery. In that way, the application may be used to better understand bone

fractures or even to carry out a manual alignment of the fracture. For that purpose,
proximity queries and collision detection methods can help specialists to carry out a

coarse alignment of the bone fragments if they are too displaced to apply automatic
algorithms. In the future, the developed application will allow including new methods

and techniques as well as to complete the fracture reduction process along with the
analysis of the obtained solution.
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A.1. Overview of an interactive tool for computer-assisted fracture reduction

Figure A.2: Screenshot of the application. A - Main canvas. B - Secondary canvas. C -
Buttons to switch canvas. D - Hierarchical tree of the scene. E - Toolbars.

A.1 Overview of an interactive tool for computer-assisted
fracture reduction

The Graphic User Interface (GUI) is mainly composed of four canvases and a hierarchy
tree. The main canvas (Figure A.2, A) allows moving the camera, and the other three

show static views: side, front, and top (Figure A.2, B). All the canvas can switch their
positions dynamically by clicking on any of the auxiliary canvas or by using the buttons

on the top of the window (Figure A.2, C). This interface is similar to that used in current

medical visualization applications; hence it is easy to use for professionals. On the
left side of the application window, a hierarchy tree shows the relationships between

the selected model and the other models in the scene (Figure A.2, D). At the top of
the window there is a toolbar that allows loading medical images, defining models

and their relationships, removing unnecessary parts, and enabling the calculation of
nearest points and overlapping triangles (Figure A.2, E). The procedure for using the

application can be summarized as follows. First of all, the user must specify the medical
images to be loaded. Once the images are loaded, the application generates a triangle

soup from them. Then models must be identified and defined using an area selector.
Each time a new model is defined, the user can set the models to which it is related
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and the application updates the hierarchy of models. Moreover, unnecessary parts and

outliers can be removed by using the area selector. The defined models can be selected,
translated and rotated to place them correctly in the scene. With the aim of providing

assistance during interaction, the application calculates automatically the nearest points
and the overlapping triangles between models. Distances and collisions are computed

only among the models in the same hierarchy. With the aim of enhancing the interaction,
the Leonar3Do [58] input device may be used to manipulate the models.

A.2 Features of the interactive tool

Once a 3D geometric model has been reconstructed, our application allows interacting
with it. With that aim, registration, collision detection, picking and multi-view methods

have been integrated into the application. These methods let the user define 3D models
from the reconstructed geometry and interact with each of them independently. In

addition, the detailed collision detection features and the multi-view implementation
provide visual aid to the user during interaction. Due to the size of the reconstructed

models and the absence of topology, these methods must be fast and robust. The tests
described in Section A.3 enabled the selection of a method suitable to work with this

type of models.

In order to improve the interaction, support for the Leonar3Do [58] system has been

included in the application. This is a virtual reality system that enables stereoscopic
interaction. It mainly consists of a spatial input device (the bird), 3D glasses and monitor-

mounted sensors (Figure A.3). Both the bird and the 3D glasses operate in six degrees
of freedom, and the sensors can track both the bird and the glasses. To that end, the

Leonar3Do system uses a technology based on infrared sensors. The bird has two buttons
that can be programmed. In addition, one of the buttons is sensitive to pressure. On

the other hand, the glasses enable stereoscopic vision. Leonar3Do can use either an
active or a passive system for stereoscopic vision support. While the passive system

uses commonly polarizing lenses, the active system uses liquid crystal shutters which
are powered through an USB port. In our case, the active system has been utilized.
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Figure A.3: Virtual representation of the Leonar3Do [58].

A.2.1 3D labelling of the models

In spite of CT image stacks being usually segmented before generating 3D models, the

developed application contains a tool to clean noise and to manually segment and label
models. This tool allows selecting a set of triangles and defining a model from them

(Figure A.4, bottom). The area selector can only select triangles that do not belong to
any model. When a model is defined by the area selector, the application allows relating it

to another previously defined model. Thus, it is possible to establish a hierarchy between

the defined models. Furthermore, the area selector can also be used to remove noise and
unnecessary parts from the scene (Figure A.4, top).

In order to determine the triangles that have been selected, it is necessary to check which

triangles have at least one vertex inside the selector. If the selector is a rectangle, each
selection requires as many frustum-triangle intersection tests as triangles are in the scene.

However, this task can be simplified by projecting the triangles in the plane determined
by the selector. In this way, it is only necessary to resolve a triangle-rectangle test for

each triangle in the scene. In addition, as the intersection is calculated in 2D, it is easy
to implement new shapes for the selector.
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Figure A.4: The area selector may be used to remove unnecessary parts and to define
models. Top, from left to right: selecting the part to remove; the selected part is displayed
in green; unnecessary parts are removed from the scene. Bottom, from left to right:
selecting the triangles that represent the patella; selected triangles are displayed in green;
finally, the defined model is shown in white.

Each time the user makes a selection, the scene has to be repainted in order to draw
the selector. This can be a problem when the scene is full of large models composed

of millions of triangles. In order to handle this problem, repainting the entire scene is
avoided by using a frame buffer. For that purpose, each time the scene changes, the

frame buffer is updated with the new scene. Afterwards, in the rendering function, the
content of the frame buffer is drawn in a 2D texture that is placed at the background of

the scene. Therefore, when a 2D selector is drawn, the application only needs to repaint
the background texture. To draw the selector, the Qt 2D drawing library is used.

A.2.2 Collision detection

With the aim of easing interaction between the models, the developed application not

only calculates the collisions among them but also provides visual aid to the user. For
that purpose, a detailed collision must be calculated . Due to the size of the reconstructed
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(a) (b)

Figure A.5: a) Calculation of the nearest points between some models. b) Overlapping
triangles are displayed in red.

models and the absence of topology, the methods used to compute the detailed collision

detection must be fast and robust. The tests described in Section A.3 allowed selecting a

method suited to work with that kind of models. The results showed that the Proximity
Query Package (PQP) library [56] is quite fast and robust and thus it is a proper choice

for working with these models. Besides detecting collisions, that library enables the
calculation of distances, nearest points and overlapping triangles in real-time. These

calculations are useful for avoiding that two models overlap or even letting the user know
which parts of the models are colliding (Figure A.5, right). Moreover, the distances and

the nearest points between models may help the user to place bone fragment models
into their correct position (Figure A.5, left). Support for the Leonar3Do system has been

implemented to improve the collision response. When a collision occurs, the spatial input
device emits a small vibration.

133



Appendix A. Interactive tools to assist in pre-operative planning of bone fracture reduction

A.2.3 3D Picking

Once the models are defined, the application allows selecting them by picking . To that
end, the Leonar3Do device is used. By moving this device, a 3D cursor in the scene is

manipulated. This cursor enables the selection of previously defined models. For that
purpose, the small programmable button has been utilized. If the button is pressed when

the 3D cursor is colliding with a model, that model becomes selected. If a model is
selected, the spatial input device manipulates the selected model instead of the 3D cursor.

Apart from this, each selected model can be rotated and translated by using the mouse.

When a model is selected, the transformations are applied independently from the rest
of the models in the scene.

There exist several strategies to implement picking in a 3D scene. Firstly, a picking

method based on unique colour IDs [92] was tried. This is a very easy to implement
method that has the following steps:

1. Disable lighting and textures.

2. Render each object using a unique colour.

3. Read colour data from the colour buffer at the current cursor position.

4. Determine the object to which the colour belongs.

5. Enable lightning and textures.

6. Render the scene.

The method is very fast and quite robust. However, the method was in conflict with the
frame buffer used by the area selector. Moreover, due to the fact that it is necessary to

assign a unique colour to each object, this method cannot work with many selectable
objects. For these reasons, a method based on ray picking has been implemented. The

method consists of throwing a ray from the observer that pass through the cursor position
and calculating the collision between the ray and all the objects in the scene. In order

to check the collisions, the PQP library has been used. In this way, the data structures
previously created are reused.
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Table A.1: Picking time using the ray picking method based on the PQP library. Run in
a PC with an Intel i7 2,80GHz, 4GB of RAM, and an NVidia GeForce GTS 240.

# triangles in the scene Picking time (s)

58206 0.0671

253696 0.2868

428411 0.3845

478462 0.4231

513658 0.4608

546308 0.4949

577827 0.5206

In order to measure the efficiency of the method, some tests have been performed. As

shown in Table A.1, the method calculates the ray picking in a reasonable good time,
even when there are several hundreds of thousands of triangles in the scene. Moreover,

the method is also robust since it is based on the PQP library.

A.2.4 Multi-canvas

Despite the fact that the 3D view provides extra information to the user, orthopaedic

surgeons and radiologists usually work with a 2D view of the injured area of the patient.
For this reason, the application includes four canvas: a canvas with a free camera and

three canvas with static cameras (Figure A.6). By default, the main canvas provides the
3D view, and the other three canvases represent top, side, and front views respectively.

However, the four canvases can switch their positions dynamically.

Instead of implementing multi-canvas using several glViewports [92], four QGLWidgets

have been used to implement the four canvas. In this way, the application takes
advantage of all the functionality that is already implemented in the QtOpenGL

module [9]. Compared to other approaches, the use of QGLWidget instances eases the
implementation of mouse events for each canvas. Each QGLWidget has an associated

QDockWidget that place it into the application window. As mentioned in Section A.1,
the four canvas can switch their positions dynamically by clicking on them or by pushing

the buttons located at the top of the window. In order to achieve that, an own camera class
was implemented.
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Figure A.6: Multiview architecture implemented in the application.

A.2.5 Stereo visualization and immersion

The Leonar3Do system has been used to provide stereo visualization . Specifically, active
glasses have been used to that end. When the stereo mode is activated, the main canvas

provides stereo visualization (Figure A.7). This visualization system allows the user to
better understand the scene and makes selecting objects easier by using the spatial input

device. In addition, the stereoscopic visualization increases the immersion feeling when
using the application.

The Leonar3Do system needs to be configured before being used for the first time. This

configuration depends on the display used. The height and the width of the monitor
must be set manually in order to define the space where the sensors work. Once these

parameters are set, the space in which the Leonar3Do works (LeoSpace) can be defined.

The origin of the LeoSpace is the centre of the display. The left edge of the display
has X coordinate -1 and the right edge has X coordinate +1. Considering the ratio =

width/height previously established, the bottom edge has Y coordinate -ratio and the top
edge has Y coordinate +ratio. Outside this range, both the spatial input device and the

glasses cannot be positioned.

The Leonar3Do API (LeoAPI) is divided into two main parts: the tracking API and the
stereoscopic API. The first one allows knowing where both the spatial input device and

the glasses are situated. In the developed application, the spatial input device has been
used to manage a 3D cursor that enables the selection of models in the scene. Moreover,
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Figure A.7: Screenshot of the main canvas of the application. Left, non-stereo mode.
Right, stereo view with image superimposition.

the device allows manipulating a model once it has been selected. On the other hand,
the position of the glasses is used to manage the camera. For that purpose, the difference

in position of the glasses with respect to the previous frame is calculated. This value
represents the translation of the camera in each frame. Therefore, the camera moves

accordingly when the user move the head. In order to achieve that, both the translation
and the rotation of the user head are considered. This increases the feeling of immersion

and makes the application easier to use. Before painting anything, the scene is translated

and rotated in order to simulate the movement of the glasses. It is important to consider
that the camera position is modified by the LeoAPI so that it is placed at the focal point.

The stereoscopic API enables the implementation of the stereo view and it is responsible

for generating the final frame of the application, whether or not the stereo view mode
is activated. In our application, only the main canvas has support for stereoscopic

visualization. Because of that responsibility, it is necessary to disable the auto-buffer
swapping because the LeoAPI already does it. Moreover, the LeoAPI fills a projection

matrix that must be provided to OpenGL before rendering the main canvas. However,
this projection matrix can be modified before introducing it into the OpenGL pipeline.
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Figure A.8: Example of using the application. 1 - Triangle soup generated from CT
scans. 2 - Selection of some unnecessary triangles. 3 - Cleaned scene. 4 - Selection of a
model. 5 - Selected model. 6 - Interaction with defined models.

The Leonar3Do API specifies how many views have to be rendered (2 if the stereo mode
is activated, 1 otherwise). In the case of the stereo view, the LeoAPI is responsible for

generating the projection matrix for the two views. Before introducing the projection
matrix into the OpenGL pipeline, the translation and the rotation calculated from the

position of the glasses is added to these projection matrices. Inside the stereo mode, the
2D selector is deactivated by default, since it makes no sense. Therefore, all the models

have to be defined before activating the stereo mode.

A.3 Strategies for enabling interaction

Interactive environments require methods that allow computing collision detection tests
between geometrical models, usually triangle meshes [61, 101]. Since interaction must
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be in real time, it is necessary to use methods that resolve the collision detection quickly.

In addition, the methods must be robust so that the interactive environment remains
consistent.

Once the collision is detected, the interactive environment must give a response [31]. In

order to do that, it is important not only to detect the collision, but also to calculate
its details. This involves calculating some collision parameters, such us overlapping

triangles, distances, and nearest points. These calculations must be also computed
quickly in order to allow a real time interaction. In the literature, there are several

approaches to carry out some of these calculations. Each approach has their advantages
and disadvantages; hence the use of one method or the other depends on each situation.

The aim of this section is to describe and compare different strategies to calculate a
detailed collision between two triangle meshes. These strategies have been implemented

in order to test and compare them. These tests allow extracting the main benefits and
constraints of each strategy and thus selecting the approach that fits best to the developed

interactive application.

A.3.1 Proposed strategies

In order to compute collision detection, the following strategies have been considered:

spatial decompositions, convex hulls and bounding volume hierarchies. The main
objective is to determine their positive and negative features regarding the interaction

with a variety of models.

Spatial decompositions

Hierarchical spatial decompositions allow increasing the efficiency of the collision
detection, as they permit to reduce the space where the collision detection is performed.

In order to check the collision between two models, the spatial decompositions
associated with each model are compared recursively. Each recursive step tests whether

two nodes A and B, one from each hierarchy, collide. If A and B do not collide,
the collision test ends. Otherwise, the collision test is performed recursively on their

children. If A and B are both leaf nodes, the collision detection test is performed with the
triangles that are inside them. Some different strategies can be chosen while traversing

the hierarchy. For example, if A and B do not collide, A can be tested with each of the
children of B, B with each of the children of A, or each of the children of A with each of
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Figure A.9: Octree (left), tetra-tree (centre), and convex hull (right) associated to a point
cloud.

the children of B. This choice modifies the efficiency of the method and depends on each
specific case. To perform the triangle-triangle collision test, the point-in-solid algorithm

by Feito-Torres [26] has been used. This method allows performing a point-in-solid test
without any complex calculation. Furthermore, this method is robust because it can work

with non-manifold polyhedra.

In this study, two spatial decompositions have been considered: octree [13] and tetra-tree
[47]. The octree (Figure A.9, left) is one of the most used hierarchical data structures.

This structure starts from a cuboid that contains all the triangles, usually a bounding box.

In general, the root box is homogeneously divided into eight new boxes. The subdivision
stops when a prefixed level is reached or the amount of triangles in a box is less than

a given threshold. There are variations in the octree that can improve its performance.
One of the most used ones proposes a change in the subdivision method of the boxes, so

that instead of dividing homogeneously each box, the dividing point is selected so that it
increases efficiency.

As mentioned in Chapter 5, the tetra-tree (Figure A.9, centre) is a hierarchical data

structure that divides the entire space into eight equal parts named tetra-cones. Due to the
adjustment obtained by computing the bounding tetrahedra associated with each tetra-
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cone [49], the tetra-tree fits the mesh better than other approaches. In addition, the tetra-

tree allows classifying triangles quickly and robustly because it is based on barycentric
coordinates.

Convex hull

The convex hull of a set of points is the minimum convex object that contains all the
points (Figure A.9, right). Convex objects enable the application of specific algorithms

in order to detect a collision. In general, these algorithms are more efficient, because

they take advantage of the convex object features. Several collision detection algorithms
are based on convex objects, such us the Gilbert-Johnson-Keerthi (GJK) algorithm [32]

or some of its variants [11]. The quick hull method [4] was chosen to build the convex
hull. Nevertheless, the main disadvantage of this technique is that convex hulls do not fit

the mesh properly in most cases; hence the obtained results are not exact.

Bounding volume hierarchies

As an alternative to spatial decompositions and convex hulls, the use of bounding volume

hierarchies [34, 54] was considered. Unlike spatial decompositions, bounding volumes
do not fill all the space and their nodes can overlap between them. In this study, two

different bounding volume hierarchies were considered: swept sphere hierarchies [56]
and convex surface decomposition [23].

Larsen et al. [56] use swept sphere hierarchies to detect collisions, to identify

overlapping triangles, to determine nearest points, and to calculate distances. They used

three different types of swept volumes: a sphere, a cylinder with hemispherical caps, and
a rounded box. These volumes depend on the swept primitive used: a point, a segment,

and a rectangle. The efficiency of the algorithm depends on the volume used. The sphere
allows building the data structure quickly but the rounded box usually fits the mesh

better. Their algorithm utilizes a Bounding Volume Traversal Tree (BVTT) in order to
perform a query. Each node of the BVTT represents a single collision test between two

bounding volumes. Therefore, the BVTT is traversed to compute collision detection. In
order to improve query performance, this method uses a priority directed search when

the BVTT is being traversed. Moreover, temporal coherence is also taken into account.
This method is implemented in the PQP library.
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Table A.2: Features implemented by each method. Tetra-tree and octree use the Feito-
Torres algorithm.

Feito-Torres GJK PQP SWIFT++

Collision X X X X

Overlapping triangles X X

Distance X X X

Tolerance X X

Contact features X

Ehmann and Lin [23] present an approach to detect collisions and to calculate distances
based on convex surface decomposition . This approach has three main steps. Firstly,

the model is decomposed into convex parts. In order to achieve that, a method based on
graph search is used. Secondly, a bounding volume hierarchy is constructed based on

the previous decomposition. They propose a top-down approach in which each node of
the hierarchy bounds all the geometry in its child nodes. For that reason, the primitives

are divided recursively in order to obtain new convex patches. Lastly, queries can be
executed once the hierarchy is constructed. In order to resolve queries between pairs

of convex polyhedra, they use a distance minimization algorithm based on Voronoi
marching [22]. Queries are accelerated using spatial and temporal coherence. This

approach requires 2-manifold meshes whose triangles must be sorted counter-clockwise
and it is implemented in the Speedy Walking via Improved Feature Testing (SWIFT++)

library.

A.3.2 Implementation and results

In order to check their performance, the described strategies have been implemented

under the same conditions. For that purpose, the same programming language (C++)
and the same compiler (gcc) have been used. In addition, the qhull [4], PQP [56], and

SWIFT++ [23] libraries have been used.

Spatial decompositions, as well as the Feito-Torres algorithm have been implemented
without the use of any library. Moreover, implementations do not use any optimization
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and they do not consider spatial or temporal coherence. This means that the

implementation of these two algorithms is less optimized than the other approaches,
which are based on libraries. Therefore, the obtained results should not be as good as

the implemented libraries. On the other hand, the collision detection based on the qhull
implementation has not been tested because the results obtained are not as accurate as

the rest of approaches; hence the obtained results should not be compared to them.

The PQP library [56], that is written in C++, can work with any model composed of
triangles. Consequently, it is not necessary for the mesh to be closed or 2-manifold.

This library allows detecting collisions and overlapping triangles, calculating distances
and nearest points, and determining if two models are closer than a given threshold.

The SWIFT++ library [23] is implemented in C++ and is divided into two parts. The
main part allows computing intersections, calculating exact and approximate distances,

and resolving contact determination queries between two or more objects. These objects
must be convex and closed. The other part of the library enables the conversion of non-

convex and open models into convex hierarchies that can be processed by the main part
of the library. This library cannot work with non-2-manifold models or models that

contain clockwise triangles. The features of all the tested algorithms are summarized
in Table A.2.

Results

Some different tests were conducted to measure the efficiency of the proposed strategies.

With that aim, six models with a polygonal complexity in the range from 7172 to
1085634 triangles were used (Table A.3). Some of the used models (Figure A.10) have

holes and are not-2-manifold, thus the robustness of each strategy can be tested. The
measured parameters were the pre-processing time, the size of the data structures, and

the time to determine the collision detection and to calculate overlapping triangles. These
tests were performed on a PC with a 2,8 GHz Intel i7 and 4 GB of RAM.

Firstly, some tests were carried out to measure the performance of the two tested spatial

decompositions. Both data structures were built under the same conditions: same level
and maximum threshold of triangles per node. Nevertheless, it should be noted that the

octree is built by doing 8 subdivisions in each node, while the tetra-tree is built by doing
only 4; hence the number of octree nodes is higher. The obtained results are shown in
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Figure A.10: Models used for testing. From left to right and from top to bottom: horse,
skull, bunny, armadillo, dragon and buddha.

Table A.3. In general, the tetra-tree requires less pre-processing time, but needs more

memory space.

The pre-processing time and size of the considered spatial decompositions have been

measured (Table A.3). Moreover, the convex hull has also been tested (Table A.4). The
size of each structure has been estimated theoretically because the real size depends on

each machine and compiler. Therefore, the calculated size is approximate. In the case of
spatial decompositions, the memory size has been calculated based on the theoretical size

of each node. In order to achieve this, the number of nodes and the geometry associated
to the spatial decomposition have been measured. It was considered that each node in

the tetra-tree required 88 bytes: 16 bytes for children nodes (4 bytes for each pointer to a
child node) and 72 bytes for tetra-cone vertices (24 bytes per vertex). Since the centroid
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Table A.3: Pre-processing time (s) and size (MB) of the spatial decompositions.

Tetra-tree Octree

Models Vertices Triangles Pre-processing Size Pre-processing Size

Horse 3582 7172 0,427 0,0351 0,496 0,0399

Skull 20002 40000 2,49 0,2608 4,329 0,261

Bunny 35947 69451 4,544 0,4211 8,744 0,3254

Armadillo 172974 345944 28,184 2,0322 44,579 1,6549

Dragon 437645 869928 70,25 4,8031 104,68 2,1975

Buddha 543652 1085634 84,704 5,5607 138,542 4,8717

Table A.4: Pre-processing time (s) and size (MB) of the convex hull.

Convex Hull

Models Pre-processing Size

Horse 0,202 0,0252

Skull 3,8 0,6182

Bunny 4,3 0,2916

Armadillo 15,7 0,3662

Dragon 42,5 0,4613

Buddha 130,4 1,1556
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Table A.5: Pre-processing time (s) and size (MB) of the bounding volume hierarchies.

PQP SWIFT++

Models Pre-processing Size Pre-processing Size

Horse 0,045 2,8726 0,599 2,9544

Skull 0,265 16,0216 8,094 20,6092

Bunny 0,47 27,818 8,148 31,6224

Armadillo 2,552 138,5654 380,121 162,3651

Dragon 6,678 348,9311 Not 2-manifold Not 2-manifold

Buddha 8,327 435,5262 Not 2-manifold Not 2-manifold

is a common vertex for all the tetra-cones, it is only necessary to store 3 vertices per
tetra-cone. Additionally, the root node requires 340 bytes: 4 bytes for the origin pointer,

8 bytes for the pointers to the lists of vertices and triangles (4 bytes per pointer), 8 bytes
for the number of vertices and triangles (4 bytes per number), 32 bytes for the pointer to

the eight initial tetra-cones (4 bytes for each tetra-cone pointer), and 576 bytes for the
vertices of the initial tetra-cones (3 vertices per tetra-cone and 24 bytes per vertex). The

octree requires 80 bytes per node: 32 bytes for children nodes (4 bytes for each pointer
to a child node) and 48 for the structure (2 vertices and 3 coordinates per vertex). In this

case, the root node requires 72 bytes: 8 bytes for the pointers to the lists of vertices and
triangles, 8 bytes for the number of vertices and triangles, 32 bytes for the pointers to the

child nodes (4 bytes for each octant), and 24 bytes for the initial structure. In addition,

both spatial decompositions need 4 bytes for each classified triangle.

PQP allows knowing the size of each structure at runtime; hence this procedure has been
used to calculate the size of the structure associated with each model. It has not been

possible to compute the size of the data structures used by SWIFT++. However, this
library allows exporting the hierarchies to a file in order to facilitate reuse. The size of

that file has been used to approximate the size of the hierarchical structure.

The results are shown in Table A.5. PQP is the option that requires less pre-processing
time, but it needs a large amount of memory space. SWIFT++ also takes a long time and
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a lot of memory to build its structure. Moreover, it cannot be applied to all the tested

models. The convex hull size is small because its structure is very simple.

Table A.6 shows the performance of each method to calculate one collision detection
and the overlapping triangles. SWIFT++ is the fastest method that has been tested, but

it cannot work with all the proposed models, because some of them are non-2-manifold.
Moreover, it does not allow determining overlapping triangles. PQP has a reasonable

good performance and its main advantage is that it can work with all the tested models.
The methods based on spatial decompositions do not produce good results. The spatial

decompositions have been built under the same conditions as in Table A.3.

Some tests to measure the performance of the tetra-tree in an interactive environment
were carried out by Jiménez et al. [46]. Models of different sizes were used in order to

run these tests. Their results showed that the tetra-tree required less pre-processing time
than the octree, but it needed a little more space in memory. The tests showed that the

tetra-tree enables the selection of inaccessible parts without the use of extra algorithms.

In summary, SWIFT++ is the fastest tested library, but it requires a lot of pre-processing
time. On the other hand, PQP does not require much pre-processing time and it is

quite efficient at calculating collisions. Therefore, the use of each library depends on
the needs of each particular problem. Due to its robustness, PQP is a good option

for systems that work with meshes that could not be topologically correct. This is the
case of systems that work with meshes reconstructed from medical images, such us

surgery simulators. Therefore, PQP is the best option to calculate detailed collisions in
the developed application. Moreover, PQP could be a good solution for visualization

applications, since meshes used in such applications do not need to be topologically
correct. The SWIFT++ library is suitable for real time environments that require a good

performance and can ensure that the topology of the models is correct. For that reason,

this library could be used for working with solid models which have been generated by
mathematical and boolean operations and thus conserve their topology. In all cases, the

implemented systems must support a pre-processing step in which the data-structures
are built.
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Appendix A. Interactive tools to assist in pre-operative planning of bone fracture reduction

A.4 Conclusions

In this Appendix, an application that contains tools to perform a detailed interaction
with 3D models generated from CT image stacks is presented. This application is the

basis for integrating the algorithms developed in this PhD dissertation with the goal of
facilitating the work to medical specialists. Furthermore, a comparative study has been

carried out with the goal of choosing the strategy that fits best to calculate a detailed

collision detection between the reconstructed models in real-time.

Despite the fact that CT image stacks are commonly segmented before generating the
3D models, the developed application contains a tool to clean noise and to manually

segment and label models. The application not only detects collisions between models,
but also computes distances, nearest points and overlapping triangles. In order to enhance

interaction, a multi-view interface has been developed and a stereoscopic spatial input
device has been integrated into the application.

The developed application allows accomplishing the goal proposed in this PhD

dissertation of researching and utilizing spatial decomposition and collision detection
techniques to help specialists in the pre-operative planning of a fracture reduction

surgery. In this context, the application could help specialists to better understand bone
fractures. Moreover, the calculated collision detection parameters could ease the placing

of the fragments in the correct position. As commented in Chapter 4, the contact zones
calculated by the method described in this work enable the automatic reduction of bone

fractures in the case of moderate fracture displacement. In that sense, the developed
application allows carrying out a proper coarse alignment of the bone fragments in order

to facilitate the application of the algorithm described in Chapter 4 for reducing displaced
bone fractures.
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En los últimos años, el uso de técnicas computacionales para asistir procedimientos

quirúrgicos se ha incrementado de manera considerable. Este tipo de técnicas provee
herramientas para entrenar cirujanos nóveles, para mejorar la información disponible

durante la cirugía, o incluso para ayudar en la planificación pre-operatoria de una
intervención médica. Uno de esos procedimientos quirúrgicos es la reducción de una

fractura ósea, que puede ser definida como una condición médica en la que se rompe la
continuidad del hueso.

El tratamiento de una fractura ósea es una tarea compleja. En el caso de fracturas

simples, que son aquellas en las que el hueso queda dividido en dos fragmentos por
una única línea de fractura, una imagen de rayos X en la mayoría de los casos es

suficiente para planificar la cirugía correctamente. Sin embargo, la planificación de
una fractura compleja normalmente requiere utilizar otras técnicas de escaneado, con

el fin de obtener modelos 3D de las estructuras óseas que posibiliten la identificación
del número de fragmentos óseos, su posición, y su orden de colocación, así como la

elección de los elementos de fijación más adecuados. El uso de sistemas asistidos por

ordenador puede ayudar en el proceso mediante la identificación de los fragmentos
óseos, la habilitación de la interacción con modelos virtuales de fragmentos, el cálculo

de la reducción de la fractura, o el análisis de diferentes configuraciones de elementos
de fijación. La utilización de técnicas asistidas por ordenador en la planificación pre-

operatoria permite a los especialistas disminuir el tiempo de intervención y eludir
potenciales interpretaciones erróneas, con la consecuente disminución del tiempo de

recuperación del paciente [95, 93].
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Figure B.1: Vista detallada de las etapas de la planificación pre-operatoria asistida por
ordenador de una reducción de fractura ósea.

Planificación pre-operatoria de una reducción de fractura ósea
asistida por ordenador

La reducción de una fractura ósea asistida por ordenador puede dividirse principalmente

en tres etapas: (1) identificación de fragmentos óseos a partir de imágenes médicas
y generación de modelos virtuales de estos, (2) cálculo de la reducción y de la

estabilización de la fractura, (3) y análisis de los resultados obtenidos desde un punto

de vista tanto geométrico como mecánico (Figura B.1).

La generación de una representación virtual de los huesos y fragmentos es una etapa
artificial necesaria para obtener modelos útiles para las siguientes fases del proceso.

En función de los objetivos, pueden ser necesarias distintas representaciones; por
ejemplo, un modelo volumétrico para visualización, una nube de puntos para interacción,

o una malla de triángulos para llevar a cabo operaciones geométricas. Esta etapa
comienza con la extracción de tejido óseo a partir de imágenes médicas utilizando

técnicas de segmentación y etiquetado. Después, puede ser necesario llevar a cabo
una reconstrucción 3D para obtener modelos de las estructuras óseas. Estos modelos
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pueden requerir la utilización de técnicas de optimización con el propósito de producir

representaciones adecuadas para las siguientes etapas.

El objetivo principal de la reducción de fracturas asistida por ordenador es posicionar
y alinear los fragmentos de hueso con el fin de estabilizar la estructura ósea. Este

procedimiento requiere resolver una variedad de problemas que dependen tanto del tipo
de hueso como de fractura. En el caso de una fractura simple, la reducción consiste en

alinear los dos fragmentos para que recuperen su posición original. Si la fractura genera
más de dos fragmentos, se requiere llevar a cabo un procedimiento previo al alineamiento

para resolver el puzle. Además, en la mayoría de los casos es necesario estabilizar la
fractura mediante el uso de elementos de fijación tales como placas y tornillos.

El análisis de la reducción posibilita la evaluación de los resultados obtenidos. Este

análisis puede llevarse a cabo de diferentes maneras: obteniendo la precisión geométrica
de la reducción, utilizando análisis de elementos finitos o técnicas similares para probar

la estabilidad mecánica de la fractura, o incluso evaluando el proceso mediante su
comparación con la intervención real.

Esta tesis está principalmente centrada en la segmentación y el etiquetado de fragmentos

óseos a partir de imágenes médicas generadas mediante TC, en la generación de modelos
3D de fragmentos óseos, y en el cálculo de la reducción de fracturas, excluyendo la

utilización de elementos de fijación. Además, se ha realizado un análisis geométrico de
los resultados obtenidos.

Objetivos

Considerando las etapas descritas en la sección anterior, el objetivo principal de esta tesis

es investigar y desarrollar métodos que ayuden a los especialistas médicos a identificar
tejido óseo fracturado y a reducir fracturas óseas. Dado que la reducción interactiva de

una fractura ósea es un proceso costoso en tiempo, los métodos desarrollados deberían
tratar de reducir la actuación del especialista en todas las etapas del proceso. Finalmente,

deben proponerse métodos de evaluación con el fin de medir la calidad de los resultados
obtenidos. Los objetivos perseguidos en esta tesis son:
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• Investigar y desarrollar métodos que posibiliten la segmentación y el etiquetado

de fragmentos óseos a partir de imágenes médicas generadas mediante TC.

• Investigar y desarrollar algoritmos para facilitar la automatización del proceso de
reducción de fracturas.

• Investigar y desarrollar nuevos métodos de generación de modelos geométricos
que representen fragmentos óseos.

• Analizar y evaluar los resultados obtenidos por los métodos propuestos.

• Investigar y utilizar descomposiciones espaciales y técnicas de interacción y

detección de colisiones que ayuden a los especialistas en la planificación de una
reducción de fractura ósea.

Organización de esta tesis

Esta tesis está organizada en torno al proceso asistido por ordenador de reducción de
una fractura ósea. En primer lugar, el capítulo 2 realiza una revisión de los trabajos

propuestos actualmente. Después, cada capítulo desde el 3 al 5 está centrado en una etapa
distinta del proceso. Finalmente, el capítulo 6 esboza las conclusiones y el trabajo futuro.

El apéndice A presenta las herramientas interactivas desarrolladas con el propósito de
facilitar el entendimiento de las fracturas, y posibilitar un alineamiento aproximado de

los fragmentos óseos. Los siguientes párrafos describen la estructura del documento.

El capítulo 2 revisa los trabajos actualmente propuestos en la literatura relacionados con

la planificación pre-operatoria asistida por ordenador de la reducción de una fractura
ósea. En primer lugar, se analizan y clasifican los enfoques propuestos para identificar

hueso fracturado. Los trabajos más recientes para segmentar hueso sano también han
sido revisados con el fin de evaluar si las técnicas normalmente usadas para este

tipo de hueso son también aplicables a hueso fracturado. Además, se han descrito
los métodos comúnmente usados para generar y optimizar modelos 3D de fragmentos

óseos. A continuación, se han revisado y clasificado las técnicas asistidas por ordenador
actualmente propuestas para reducir fracturas óseas. Finalmente, se han analizado los

métodos a día de hoy utilizados para analizar y evaluar la planificación pre-operatoria
asistida por ordenador de la reducción de una fractura ósea.
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El capítulo 3 describe los principales aspectos que deben considerarse en la

identificación de tejido óseo, y los problemas que adicionalmente surgen cuando el hueso
está fracturado. La identificación de hueso fracturado incluye, no sólo la segmentación

de tejido óseo, sino también el etiquetado de los fragmentos de hueso y la detección de
las regiones fracturadas. El etiquetado de los fragmentos óseos implica la identificación

de cada fragmento de manera separada. Además, este capítulo presenta un nuevo método
para segmentar y etiquetar fragmentos óseos a partir de imágenes médicas generadas

mediante TC. El método está basado en crecimiento de regiones 2D y requiere una
interacción mínima por parte del especialista. El procedimiento propuesto permite,

durante el proceso de segmentación, separar fragmentos erróneamente conectados. El
método ha sido comparado con los enfoques actualmente utilizados en la literatura para

segmentar hueso sano y fracturado, obteniendo mejores resultados en la mayoría de
aspectos. Por otra parte, el método también ha sido evaluado usando varios casos clínicos

de diferentes huesos y tipos de fractura con resultados satisfactorios.

El capítulo 4 introduce un método automático para calcular la zona de contacto entre
dos fragmentos óseos. El método no requiere la generación previa de mallas 3D para

representar los fragmentos ya que tan sólo necesita nubes de puntos como entrada. El
método desarrollado facilita la aplicación de algoritmos de resolución de puzles debido

a que no obtiene la totalidad de la zona de fractura, sino el área de contacto entre cada
par de fragmentos. Por lo tanto, no es necesario encontrar correspondencias entre zonas

de fractura y los fragmentos pueden ser alineados de dos en dos. Por otra parte, también
se presenta un algoritmo de alineamiento con el propósito de reducir fracturas óseas de

manera automática utilizando las zonas de contacto calculadas. El método propuesto ha
sido aplicado con éxito en la reducción de distintas fracturas óseas. En primer lugar, el

método ha sido probado en fracturas de la zona del tobillo. Con el objetivo de medir el
rendimiento del método propuesto, se han calculado tanto el área de contacto como el

solapamiento entre fragmentos. En segundo lugar, el método ha sido aplicado a fracturas

de húmero en cadáveres que han permitido comparar los resultados con la realidad
observada.

El capítulo 5 presenta un estudio que evalúa el rendimiento y la idoneidad de destacados

algoritmos de reconstrucción para la generación, a partir de imágenes médicas, de
mallas de triángulos que representan fragmentos óseos. Los experimentos llevados a
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cabo han permitido extraer los beneficios y limitaciones de cada método al aplicarlo

en diferentes huesos y tipos de fractura. Además, se ha analizado la calidad de los
resultados obtenidos, poniendo el foco en las características especiales de los datos

de fracturas óseas obtenidos mediante TC. Teniendo en cuenta los resultados del
estudio, la reconstrucción de Poisson genera los mejores modelos para ser usados en

aplicaciones de visualización, y los modelos generados con MC son los más adecuados
para ser utilizados en la reducción de una fractura ósea asistida por ordenador. Por otro

lado, se presentan los resultados iniciales de un estudio preliminar para el desarrollo
de un novedoso método de generación de mallas de triángulos a partir de imágenes

médicas utilizando una descomposición del espacio. Además, como pre-procesamiento
se utiliza un nuevo enfoque para extraer los puntos de los contornos exteriores de las

regiones segmentadas, y estimar los vectores normales en cada punto. En este estudio
preliminar se ha utilizado una descomposición del espacio denominada tetra-tree. No

obstante, se podría haber utilizado cualquier otra estructura espacial para este estudio.
El nuevo método aborda la generación de la malla usando un enfoque basado en el

paradigma divide y vencerás, con el fin de minimizar los problemas que surgen al coser
contornos consecutivos. El objetivo principal de este estudio inicial es determinar si una

descomposición del espacio puede ayudar en la reconstrucción de la malla, permitiendo
el análisis de las ventajas e inconvenientes derivados de su utilización.

El apéndice A presenta una aplicación que contiene herramientas para llevar a cabo una

interacción detallada con modelos 3D de fragmentos óseos obtenidos a partir de TC. Esta
aplicación tiene como objetivo ser la base para la integración, tanto de los algoritmos

desarrollados en esta tesis, como de las nuevas herramientas que se desarrollarán en
el futuro. Con el propósito de generar modelos 3D a partir de las imágenes médicas

obtenidas mediante TC, la aplicación utiliza MC ya que los experimentos que se llevaron
a cabo en el capítulo 5 demostraron que obtiene los mejores modelos para ser aplicados

en procedimientos médicos asistidos por ordenador. A pesar de que las imágenes

médicas normalmente son segmentadas antes de generar los modelos 3D, la aplicación
desarrollada contiene herramientas para eliminar ruido, y para segmentar y etiquetar

manualmente los modelos. La aplicación calcula en tiempo real triángulos solapados,
distancias, y puntos más cercanos entre modelos. Con ese fin, se realizó un estudio

comparativo previo para determinar la mejor estrategia de detección de colisiones que
permite tratar con las características de los modelos obtenidos a partir de imágenes
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de TC. Finalmente, el sistema Leonar3Do ha sido incorporado en la aplicación para

mejorar la interacción y proveer visualización estéreo. La aplicación desarrollada puede
ser utilizada en la planificación pre-operatoria de una reducción de fractura ósea, ya que

facilita el entendimiento de la fractura, y permite realizar un alineamiento aproximado
de los fragmentos óseos.
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CONCLUSIONES

Las técnicas asistidas por ordenador pueden proveer soporte tecnológico en la

planificación pre-operatoria del proceso de reducción de fracturas óseas, reduciendo
riesgos durante la cirugía, y disminuyendo el tiempo de recuperación del paciente.

En esta tesis se han revisado las técnicas y enfoques propuestos para ayudar a los
especialistas médicos en este proceso, desde la generación de modelos de huesos y

fragmentos, hasta el análisis de la composición final. Estos trabajos han sido resumidos
y clasificados, destacando sus principales ventajas y carencias. La revisión llevada a

cabo ha puesto de manifiesto que ninguna de las etapas del proceso de reducción de
fracturas óseas asistido por ordenador está completamente resuelta, ni la identificación

y generación de fragmentos, ni la propia reducción de la fractura. Como consecuencia,
este campo de investigación sigue abierto y afronta importantes retos a medio plazo.

Esta tesis ha presentado nuevos métodos para identificar fragmentos óseos a partir de
imágenes TC, para calcular la zona de contacto entre fragmentos, para computar la

reducción de la fractura, y para generar mallas de triángulos que representen fragmentos
óseos. Además, se han desarrollado algunas herramientas para ayudar a los especialistas

a manipular modelos de fragmentos óseos construidos a partir de imágenes médicas.

Identificación y generación de modelos de fragmentos óseos

La principal dificultad que surge en esta etapa es la identificación de cada uno de los
fragmentos óseos de manera determinística. En la actualidad, este proceso requiere la

interacción manual del especialista y en ocasiones conocimiento experto. Este problema
constituye una línea de investigación abierta que requiere métodos de segmentación
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y etiquetado más precisos, y en la cual sería recomendable el uso de conocimiento

previo. Con el fin de identificar cada uno de los fragmentos óseos que componen una
fractura, se requiere tanto su etiquetado, como la separación de fragmentos erróneamente

conectados. Por otro lado, el procedimiento clave en la etapa de segmentación de la
mayoría de los métodos actuales es la selección de umbrales y semillas. Actualmente,

la fase de etiquetado se lleva a cabo de forma manual en la mayoría de los casos. Como
resultado, tanto la segmentación como el etiquetado pueden requerir un procesamiento

posterior. Los enfoques basados en umbralización no clasifican los fragmentos óseos,
por lo que estos tienen que ser etiquetados tras el proceso de segmentación. El enfoque

presentado en esta tesis aprovecha la colocación de las semillas, requeridas para
segmentar cada fragmento, para también etiquetarlo. Otros enfoques en la literatura

también resuelven este problema utilizando métodos basados en semillas [38, 29]. En
todos estos casos, las semillas deberían ser colocadas por un experto. Otros estudios

proponen métodos para etiquetar las regiones óseas automáticamente, pero después un
experto debe evaluar los resultados y decidir a qué hueso o fragmento pertenece cada

región. Idealmente, todos los fragmentos óseos deberían segmentarse automáticamente,
y los fragmentos más sencillos deberían ser identificados sin intervención del usuario.

Después, en los casos más complejos, el experto podría decidir el hueso al que pertenece
cada fragmento.

Dada la complejidad del tejido trabecular, la selección de umbrales de intensidad es

un procedimiento difícil, ya que es complicado determinar estos valores incluso de
forma manual, y cada loncha puede requerir un umbral diferente. Además, resulta

particularmente difícil establecer el umbral para segmentar tejido óseo cerca de las
articulaciones. El método presentado en esta tesis utiliza un modelo de regresión lineal

para calcular el umbral en cada loncha. A pesar de que los umbrales calculados obtienen
buenos resultados en la mayoría de los casos, el modelo necesita ser reconstruido para

cada conjunto de datos. La mayor parte de los métodos propuestos requieren que el

usuario especifique manualmente el umbral de intensidad. Lo ideal sería que, en todos
los casos, los valores umbrales fuesen seleccionados automáticamente a partir de la

información disponible en el conjunto de imágenes.

Tal y como se mencionó en la sección 3.1, durante el proceso de identificación puede
ser necesario separar fragmentos óseos. La baja resolución de la imagen puede causar
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que fragmentos muy cercanos aparezcan unidos. Esto es especialmente común en

fracturas producidas por fuertes impactos. Para abordar este problema se han propuesto
diferentes enfoques: herramientas interactivas [38, 98], etiquetado 3D de componentes

conectados y cortes de grafos [29], re-segmentación [57], o incluso comparaciones
con modelos sanos [96]. No obstante, la separación manual o semi-automática es

costosa, por lo que sería importante su automatización para posibilitar el ahorro de
tiempo. Una posible solución sería mejorar el método de segmentación de modo que no

obtenga fragmentos conectados. El método presentado en esta tesis separa fragmentos
durante la segmentación utilizando semillas adicionales. La automatización completa

de este proceso sería provechosa ya que evitaría el uso de métodos adicionales tras
el proceso de segmentación. Sin embargo, la usual baja resolución de las imágenes

médicas generadas mediante TC hace muy complicada dicha automatización. Un
enfoque alternativo consistiría en implementar un método para abordar este problema

tras la etapa de segmentación. De este modo, el resultado completo de la segmentación
estaría disponible y, por tanto, se podría utilizar información adicional extraída de las

lonchas adyacentes ya segmentadas.

La utilización de una tecnología de adquisición de datos más precisa podría evitar,
en la mayoría de los casos, que fragmentos óseos aparezcan unidos. La manera más

común de generar imágenes 3D en las que se pueda distinguir tejido óseo, es utilizar TC.
Este procedimiento conlleva un importante impacto radiactivo en el paciente. Además,

en los últimos años existe una tendencia a utilizar imágenes de microtomografías
computarizadas para añadir precisión extra a las regiones óseas. Este tipo de imágenes

incrementa la radiación [88]. Por lo tanto, a pesar de actualmente ser la mejor opción para
distinguir tejido óseo, las imágenes generadas mediante TC poseen este inconveniente

ineludible. De ahí que el desarrollo de métodos alternativos de escaneado, que mejoren
las imágenes médicas sin incrementar la radiación, se ha convertido en un reto para

la comunidad científica. Aunque el principal propósito de las imágenes médicas es el

diagnóstico clínico, estas son también la entrada de técnicas asistidas por ordenador que
pueden conducir a la reducción del tiempo de cirugía.

Por otro lado, algunos trabajos tratan de segmentar tejido óseo a partir de imágenes de

resonancia magnética o rayos X. Estas técnicas requieren información extra porque, en
esas imágenes, el tejido óseo no puede identificarse con la misma facilidad que utilizando
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imágenes médicas generadas mediante TC. Los métodos propuestos para identificar

tejido óseo en ese tipo de imágenes están basados en atlas previamente construidos a
partir de imágenes de TC [39], o están aplicados a áreas óseas muy específicas [45, 37].

Sin embargo, no se han propuesto estudios para identificar hueso fracturado a partir de
esos tipos de imagen médica.

Con respecto a la etapa de reconstrucción 3D, el algoritmo de MC [63] es un estándar

de facto debido a su simplicidad para generar modelos geométricos. No obstante, este
método tiene algunas desventajas que representan un reto en la actualidad: la gran

cantidad de geometría generada, y el ruido obtenido a causa de la complejidad del tejido
trabecular. En esta tesis se han probado algunos otros algoritmos de generación de mallas

(reconstrucción de Poisson [53], Ball-pivoting [6], y Algebraic Point Set Surface (APSS)
[36, 35]) para tratar de generar modelos de fragmentos óseos, extrayendo sus principales

beneficios y limitaciones. En las pruebas realizadas, la reconstrucción de Poisson obtuvo
las mejores mallas para visualización y MC a partir de regiones fue la mejor opción

para generar mallas que puedan ser usadas en procedimientos médicos asistidos por
ordenador. Además, esta tesis presenta los resultados iniciales de un estudio preliminar

para el desarrollo de un método innovador de generación de modelos 3D de fragmentos
óseos mediante el cosido de los contornos externos de las regiones segmentadas. Con

el fin de abordar los casos especiales que surgen durante el cosido, el método utiliza un
enfoque basado en el paradigma divide y vencerás utilizando una descomposición del

espacio denominada tetra-tree. Aunque el método obtiene resultados prometedores, se
han detectado algunos aspectos que deberían ser mejorados para poder generar modelos

más complejos. El desarrollo de una descomposición del espacio alternativa, que se
ajuste mejor a los modelos de fragmentos óseos, constituye una línea de investigación

abierta. Por otro lado, el método propuesto para calcular la reducción de fracturas
óseas utiliza nubes de puntos como entrada, ya que esta estructura de datos se genera

fácilmente, y dicho método no requiere la información geométrica que proveen las

mallas de triángulos. No obstante, las nubes de puntos no evitan los problemas para
visualizar, gestionar, e interactuar con estos modelos de gran tamaño.

El principal inconveniente de utilizar métodos de optimización es la diferencia entre los

modelos procesados y los contornos de las regiones originalmente segmentadas. Esto
puede causar que las características de algunos fragmentos óseos, como las zonas de
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fractura, lleguen a ser difíciles de detectar. Paradójicamente, los métodos de suavizado

son necesarios para eliminar artefactos no deseados en los modelos y, al mismo tiempo,
estos métodos pueden difuminar las fronteras y por tanto dificultar la extracción,

identificación, y posterior reducción de la fractura. Sin embargo, estas técnicas son muy
útiles en el proceso de visualización donde se puede seguir una estrategia de nivel de

detalle con el fin de adaptar los requisitos computacionales a la demanda del especialista.

Reducción de fractura ósea asistida por ordenador

La revisión llevada a cabo en la sección 2.2.2 nos permite discutir acerca de los
enfoques existentes en la literatura para la reducción de fracturas óseas conminutas

asistida por ordenador. Tal y como se muestra en la tabla 2.6, la mayor parte de los
métodos propuestos está centrado en huesos largos (tibia, peroné, fémur y húmero)

[107, 105, 68, 114, 75, 97, 1, 30]. En un hueso largo, la diáfisis es cilíndrica y está
completamente rodeada de tejido cortical. Por otro lado, en la epífisis la zona cortical es

muy fina e incluso el tejido trabecular puede aparecer en la zona exterior del hueso. Esta
información adicional ha favorecido el desarrollo de técnicas asistidas por ordenador

para ayudar al especialista en la reducción de fracturas de hueso largo. Por el contrario,
con el propósito de reducir fracturas de huesos irregulares tan sólo han sido propuestas

herramientas interactivas [19, 106, 28, 43]. Como excepción, Chowdhury et al. [17]
presentaron un enfoque para reducir fracturas craneofaciales mediante el cálculo, la

asociación y el alineamiento de las zonas de fractura, y Kato [52] propuso reducir

fracturas de acetábulo utilizando una plantilla.

Los métodos automáticos requieren información extra con el fin de evitar la interacción
del usuario. La mayor parte de los enfoques propuestos utilizan plantillas para

recolocar fragmentos óseos [68, 1, 52]. Otros enfoques aprovechan las características
diferenciables de un hueso específico. Winkelbach et al. [107] propusieron un método

para reducir fracturas conminutas de fémur de manera automática. Con ese propósito,
los autores hacen uso de las características especiales del hueso largo mencionadas

en el párrafo anterior. Chowdhury et al. [17] presentaron un enfoque para reducir
automáticamente fracturas craneofaciales. En este caso, los autores aprovechan una

clasificación previa de los fragmentos como terminales o no terminales, basada en la
presencia o ausencia de cóndilos. En la actualidad, no existe un método automático
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de reducción de fracturas que pueda ser aplicado a cualquier hueso. Esta tesis ha

presentado un método para calcular la zona de contacto entre cada par de fragmentos de
forma automática. Las zonas de contacto calculadas posibilitan la reducción de fracturas

óseas complejas. En cuanto al alineamiento final, la mayoría de los métodos propuestos
utilizan una adaptación del algoritmo iterativo del punto más cercano (ICP). La principal

deficiencia de este método es la posible obtención de soluciones locales. Por lo tanto, el
método requiere un alineamiento previo aproximado de los fragmentos óseos para evitar

ese problema. Con ese fin, se puede utilizar la aplicación presentada en el apéndice
A para realizar una alineamiento previo adecuado de los fragmentos. El desarrollo de

métodos de registro más robustos, que reduzcan la obtención de soluciones locales,
llevaría a la consecución de enfoques más automáticos.

La estabilización de una reducción de fractura es una etapa clave en el proceso de

garantizar la fijación de los fragmentos a largo plazo. En la actualidad, la estabilización
automática es un campo inexplorado. Sin embargo, se han propuesto algunas soluciones

interactivas para ayudar al especialista a planificar la cirugía y acelerar todo el proceso.
Esta falta de soluciones generales es debida a las dificultades técnicas intrínsecas, a

la necesidad de conocimiento experto, y a la exigencia de un análisis preciso de la
reducción. Durante la simulación, el material de osteosíntesis tiene que definirse de

acuerdo a la fractura. Si las placas se diseñan de manera virtual, luego deben ser
específicamente fabricadas para el paciente. A pesar de que algunos de los enfoques

propuestos han sido probados en casos clínicos, la fabricación de implantes es todavía
un proceso costoso. Por lo tanto, en la mayoría de los casos las soluciones actuales

proponen adaptar implantes estándar.

Análisis y validación del resultado obtenido al realizar una
reducción de fractura ósea asistida por ordenador

Tal y como se comentó en la sección 2.1.2, la reducción asistida por ordenador de
fracturas óseas complejas requiere, a partir de imágenes médicas generadas mediante

TC, la generación de modelos 3D de fragmentos óseos. Estos modelos virtuales se
generan normalmente utilizando un enfoque basado en MC. Después, en la mayoría

de los casos se elimina el ruido y se simplifican los modelos obtenidos. A pesar de que
estos modelos son complejos, no se han propuesto estudios para evaluar su calidad. Por
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otro lado, no existe un criterio estándar para evaluar, ni la precisión de la composición

llevada a cabo en la reducción, ni la calidad de los modelos. Algunos autores han
propuesto enfoques diferentes para medir la calidad de la reducción obtenida, por lo

que los métodos propuestos no pueden ser comparados fácilmente. En la mayoría de
los casos, los autores utilizan huesos generados de forma artificial para evaluar sus

métodos de reducción propuestos. En estos casos, los resultados obtenidos por distintos
autores no pueden compararse ya que utilizan distintos huesos para llevar a cabo los

tests: huesos de cadáveres y huesos artificiales de distintos materiales. Las características
especiales de los huesos largos también han sido utilizadas para comprobar la precisión

de la reducción. Estas características posibilitan la comparación de diferentes métodos
pero la restringen a fracturas de huesos largos. Los métodos basados en registro pueden

utilizar el error cuadrático medio para evaluar la precisión del alineamiento final de las
superficies de fractura. Esta medida sólo evalúa esta etapa del proceso y únicamente

es aplicable en métodos que utilizan técnicas de registro. Con el fin de facilitar las
comparativas, el método de reducción de fracturas propuesto en esta tesis ha sido

evaluado utilizando parámetros normalmente usados en la literatura. En concreto, se han
calculado el solapamiento y las zonas de contacto en los casos clínicos, y los errores de

traslación y rotación en los casos de cadáveres, ya que en estos se conocía previamente
la realidad observada.

Investigación futura

Los siguientes pasos en esta línea de investigación deberían permitir una automatización

de la cirugía tal y como se ha introducido en otras disciplinas médicas [50, 79]. Esta
automatización posibilitaría la cirugía guiada por ordenador mediante la utilización de

robots. A este respecto, los métodos propuestos para calcular la reducción de fracturas
óseas han sido aplicados en la planificación de la cirugía. La mejora de las técnicas

actualmente propuestas facilitaría el desarrollo de sistemas robóticos para asistir, o
incluso para llevar a cabo la intervención real. Hasta donde tenemos conocimiento, el

desarrollo comercial de estas tecnologías no está muy extendido. La investigación de
nuevos métodos para automatizar el proceso de reducción de fracturas y el análisis de los

resultados obtenidos, podría contribuir al desarrollo y mejora de este tipo de soluciones
comerciales.
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Teniendo en cuenta la discusión anterior, el proceso de reducción de fracturas asistido

por ordenador puede mejorarse mediante la investigación en los siguientes temas:

• Identificar fragmentos óseos a partir de imágenes generadas mediante TC sin
necesidad de la intervención del usuario. Esto incluye el cálculo automático de

umbrales y la colocación de semillas, si es que se requieren. La ayuda del experto
debería reducirse tanto como fuese posible.

• Desarrollar nuevas técnicas para evitar que distintos fragmentos óseos aparezcan
unidos tras el proceso de segmentación. Esto puede lograrse mejorando los

algoritmos de segmentación, e investigando nuevas tecnologías de adquisición que
mejoren la resolución de la imagen sin incrementar la radiación en el paciente.

• Completar y generalizar el método propuesto para producir modelos 3D de
fragmentos óseos. Adicionalmente, el método puede ser evaluado con más casos

clínicos, no necesariamente de fracturas óseas.

• Investigar nuevas técnicas de optimización para mejorar los modelos 3D

generados sin modificar la información geométrica originalmente extraída de los
datos médicos.

• Desarrollar algoritmos para llevar a cabo un alineamiento aproximado de los
fragmentos de manera automática, y sin la necesidad de utilizar plantillas o

requerir información adicional de la forma del hueso.

• Calcular los dispositivos de fijación necesarios para estabilizar una fractura, así

como posicionarlos automáticamente.

• Desarrollo de una nueva descomposición del espacio que se ajuste mejor a la forma

de cualquier fragmento óseo, y que sea capaz de subdividirse más en las zonas más
detalladas.

• Evaluar la calidad de los modelos 3D de fragmentos óseos generados a partir de
imágenes médicas.

• Desarrollar procedimientos estándar con el fin de evaluar la calidad de una
reducción de fractura, tanto desde un punto de vista geométrico, como mecánico.
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• Generar de manera virtual fracturas complejas y realistas de diferentes huesos,

con el fin de facilitar la evaluación de los métodos desarrollados.
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