130 research outputs found

    On detection of OFDM signals for cognitive radio applications

    Get PDF
    As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation.As the requirement for wireless telecommunications services continues to grow, it has become increasingly important to ensure that the Radio Frequency (RF) spectrum is managed efficiently. As a result of the current spectrum allocation policy, it has been found that portions of RF spectrum belonging to licensed users are often severely underutilised, at particular times and geographical locations. Awareness of this problem has led to the development of Dynamic Spectrum Access (DSA) and Cognitive Radio (CR) as possible solutions. In one variation of the shared-use model for DSA, it is proposed that the inefficient use of licensed spectrum could be overcome by enabling unlicensed users to opportunistically access the spectrum when the licensed user is not transmitting. In order for an unlicensed device to make decisions, it must be aware of its own RF environment and, therefore, it has been proposed that DSA could been abled using CR. One approach that has be identified to allow the CR to gain information about its operating environment is spectrum sensing. An interesting solution that has been identified for spectrum sensing is cyclostationary detection. This property refers to the inherent periodic nature of the second order statistics of many communications signals. One of the most common modulation formats in use today is Orthogonal Frequency Division Multiplexing (OFDM), which exhibits cyclostationarity due to the addition of a Cyclic Prefix (CP). This thesis examines several statistical tests for cyclostationarity in OFDM signals that may be used for spectrum sensing in DSA and CR. In particular, focus is placed on statistical tests that rely on estimation of the Cyclic Autocorrelation Function (CAF). Based on splitting the CAF into two complex component functions, several new statistical tests are introduced and are shown to lead to an improvement in detection performance when compared to the existing algorithms. The performance of each new algorithm is assessed in Additive White Gaussian Noise (AWGN), impulsive noise and when subjected to impairments such as multipath fading and Carrier Frequency Offset (CFO). Finally, each algorithm is targeted for Field Programmable Gate Array (FPGA) implementation using a Xilinx 7 series device. In order to keep resource costs to a minimum, it is suggested that the new algorithms are implemented on the FPGA using hardware sharing, and a simple mathematical re-arrangement of certain tests statistics is proposed to circumvent a costly division operation

    Sensing opportunities in UMTS spectrum

    Get PDF
    The UMTS radio frequency spectrum is a highly expensive commodity. While the UMTS standards make very efficient use of the allocated bands there is however opportunity for further advancements. This paper focuses on opportunistic use of the UMTS spectrum as a means of ensuring that the maximum possible use of this valuable resource is made. In particular we focus on the local detection of UMTS TDD signals through the use of a cyclostationary feature detector. Simulation results for the use of this detector in the presence of multipath propagation and shadowing effects are presented

    Algorithmic Framework and Implementation of Spectrum Holes Detection for Cognitive Radios

    Get PDF
    The ability to dynamically discover portions of unused radio spectrum (spectrum holes) is an important ability of cognitive radio systems. Spectrum holes present a potential opportunity for wireless communication. Detection of holes and signals allows cognitive radios to dynamically access and share the spectrum with minimal interference. This work steps through the design, implementation, and analysis of a spectrum holes detector for cognitive radios. Energy detection and cyclostationary detection algorithms for detecting spectrum holes are compared through computer simulations. Ultimately an energy detection algorithm is proposed which performs better than the cyclostationary detection algorithm and requires no a-priori knowledge of noise power. The energy detection algorithm is implemented on the bladeRF x115 software-defined radio for wideband detection, leveraging on-board FPGA hardware and field-programmable analog hardware to scan a gigahertz-order range of frequencies and discover spectrum holes in real time. Resource utilization and requirements of the implementation are analyzed, and a utilization of 8.8% of the FPGA\u27s logic resources is reported. Experiments are performed on the implementation to measure its detection performance and demonstrate its ability to detect holes over a wide bandwidth with reasonable latency

    Performance analysis of energy detection algorithm in cognitive radio

    Get PDF
    Rapid growth of wireless applications and services has made it essential to address spectrum scarcity problem. if we were scan a portion of radio spectrum including revenue-rich urban areas, we find that some frequency bands in the spectrum are largely unoccupied most of the time, some other frequency bands are partially occupied and the remaining frequency bands are heavily used. This leads to a underutilization of radio spectrum, Cognitive radio (CR) technology attempts alleviate this problem through improved utilization of radio spectrum. Cognitive radio is a form of wireless communication in which a transceiver can intelligently detect which RF communication channels are in use and which are not, and instantly move into vacant channels while avoiding occupied ones. This optimizes the use of available radio-frequency (RF) spectrum while minimizing interference to other users. There two types of cognitive radio, full cognitive radio and spectrum-sensing cognitive radio. Full cognitive radio takes into account all parameters that a wireless node or network can be aware of. Spectrum-sensing cognitive radio is used to detect channels in the radio frequency spectrum. Spectrum sensing is a fundamental requirement in cognitive radio network. Many signal detection techniques can be used in spectrum sensing so as to enhance the detection probability. In this thesis we analyze the performance of energy detector spectrum sensing algorithm in cognitive radio. By increasing the some parameters, the performance of algorithm can be improved as shown in the simulation results. In cognitive radio systems, secondary users should determine correctly whether the primary user is absent or not in a certain spectrum within a short detection period. Spectrum detection schemes based on fixed threshold are sensitive to noise uncertainty, the energy detection based on dynamic threshold can improve the antagonism of noise uncertainty; get a good performance of detection while without increasing the computer complexity uncertainty and improves detection performance for schemes are sensitive to noise uncertainty in lower signal-to-noise and large noise uncertainty environments

    Spectrum Sensing Techniqes in Cognitive Radio: Cyclostationary Method

    Get PDF
    Cognitive Radios promise to be a major shift in wireless communications based on developing a novel approach which attempt to reduce spectrum scarcity that growing up in the past and waited to increase in the future. Since formulating stages for increasing interest in wireless application proves to be extremely challenging, it is growing rapidly. Initially this growth leads to huge demand for the radio spectrum. The novelty of this approach needs to optimize the spectrum utilization and find the efficient way for sharing the radio frequencies through spectrum sensing process. Spectrum sensing is one of the most significant tasks that allow cognitive radio functionality to implement and one of the most challenging tasks. A main challenge in sensing process arises from the fact that, detecting signals with a very low SNR in back ground of noise or severely masked by interference in specific time based on high reliability. This thesis describes the fundamental cognitive radio system aspect based on design and implementation by connecting between the theoretical and practical issue. Efficient method for sensing and detecting are studied and discussed through two fast methods of computing the spectral correlation density function, the FFT Accumulation Method and the Strip Spectral Correlation Algorithm. Several simulations have been performed to show the ability and performance of studied algorithms.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    CYCLOSTATIONARY FEATURES BASED LOW COMPLEXITY MUTLIRESOLUTION SPECTRUM SENSING FOR COGNITVE RADIO APPLICATIONS

    Get PDF
    The demand for variety of services using wireless communication has grown remarkably in the past few many years, consequently causing an acute problem of spectrum scarcity. Today, it is one of the most challenging problems in modern wireless communication. To overcome this, the concept of cognitive radio has been proposed and this technology is fast maturing. The first and foremost function a cognitive radio must do is to sense the spectrum as accurately as possible and do it with least complexity. Among many techniques of spectrum sensing, the Multi-resolution Spectrum Sensing (MRSS) is a popular technique in recent literature. Various multi resolution techniques are used that include wavelet based spectrum estimation and spectral hole detection, wavelet based multi-resolution in analog domain and multi-resolution multiple antenna based detection. However, the basic idea is the same - the total bandwidth is sensed using coarse resolution energy detection, then, fine sensing is applied to the portion of interest. None of these techniques, however, use multi-resolution sensing using cyclostationary features for cognitive radio applications which are more reliable but computationally expensive. In this thesis, we suggest a cyclostationary features based low complexity multi-resolution spectrum sensing for cognitive radio applications. The proposed technique discussed in this thesis is inspired by the quickness of multi-resolution and the reliability of cyclostationary feature detection. The performance of the proposed scheme is primarily evaluated by its complexity analysis and by determining the minimum signal-to-noise ratio that gives 90% probability of correct classification. Both subjective and objective evaluation show that the proposed scheme is not only superior to the commonly used energy detection method but also to various multi-resolution sensing techniques as it relies on the robustness of cyclostationary feature detection. The results found are encouraging and the proposed algorithms are proved to be not only fast but also more robust and reliable
    corecore