276 research outputs found

    Fractional Control of a Humanoid Robot Reduced Model with Model Disturbances

    Get PDF
    There is an open discussion between those who defend mass-distributed models for humanoid robots and those in favor of simple concentrated models. Even though each of them has its advantages and disadvantages, little research has been conducted analyzing the control performance due to the mismatch between the model and the real robot, and how the simplifications affect the controller's output. In this article we address this problem by combining a reduced model of the humanoid robot, which has an easier mathematical formulation and implementation, with a fractional order controller, which is robust to changes in the model parameters. This controller is a generalization of the well-known proportional-integral-derivative (PID) structure obtained from the application of Fractional Calculus for control, as will be discussed in this article. This control strategy guarantees the robustness of the system, minimizing the effects from the assumption that the robot has a simple mass distribution. The humanoid robot is modeled and identified as a triple inverted pendulum and, using a gain scheduling strategy, the performances of a classical PID controller and a fractional order PID controller are compared, tuning the controller parameters with a genetic algorithm.The research leading to these results has received funding from the ARCADIA project DPI2010-21047- C02-01, funded by CICYT project grant on behalf of Spanish Ministry of Economy and Competitiveness, and from the RoboCity2030-II-CM project (S2009/DPI-1559), funded by the Research and Development Work Programme of the Community of Madrid and cofunded by Structural Funds of the EU.Publicad

    Experimental Robot Model Adjustments Based on Force-Torque Sensor Information

    Get PDF
    The computational complexity of humanoid robot balance control is reduced through the application of simplified kinematics and dynamics models. However, these simplifications lead to the introduction of errors that add to other inherent electro-mechanic inaccuracies and affect the robotic system. Linear control systems deal with these inaccuracies if they operate around a specific working point but are less precise if they do not. This work presents a model improvement based on the Linear Inverted Pendulum Model (LIPM) to be applied in a non-linear control system. The aim is to minimize the control error and reduce robot oscillations for multiple working points. The new model, named the Dynamic LIPM (DLIPM), is used to plan the robot behavior with respect to changes in the balance status denoted by the zero moment point (ZMP). Thanks to the use of information from force-torque sensors, an experimental procedure has been applied to characterize the inaccuracies and introduce them into the new model. The experiments consist of balance perturbations similar to those of push-recovery trials, in which step-shaped ZMP variations are produced. The results show that the responses of the robot with respect to balance perturbations are more precise and the mechanical oscillations are reduced without comprising robot dynamicsThe research leading to these results received funding from the RoboCity2030-III-CM project (Robótica aplicada a la mejora de la calidad de vida de los ciudadanos. Fase III; S2013/MIT-2748), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU

    Finite-time disturbance reconstruction and robust fractional-order controller design for hybrid port-Hamiltonian dynamics of biped robots

    Full text link
    In this paper, disturbance reconstruction and robust trajectory tracking control of biped robots with hybrid dynamics in the port-Hamiltonian form is investigated. A new type of Hamiltonian function is introduced, which ensures the finite-time stability of the closed-loop system. The proposed control system consists of two loops: an inner and an outer loop. A fractional proportional-integral-derivative filter is used to achieve finite-time convergence for position tracking errors at the outer loop. A fractional-order sliding mode controller acts as a centralized controller at the inner-loop, ensuring the finite-time stability of the velocity tracking error. In this loop, the undesired effects of unknown external disturbance and parameter uncertainties are compensated using estimators. Two disturbance estimators are envisioned. The former is designed using fractional calculus. The latter is an adaptive estimator, and it is constructed using the general dynamic of biped robots. Stability analysis shows that the closed-loop system is finite-time stable in both contact-less and impact phases. Simulation studies on two types of biped robots (i.e., two-link walker and RABBIT biped robot) demonstrate the proposed controller's tracking performance and disturbance rejection capability

    Trajectory Tracking Control Design for Dual-Arm Robots Using Dynamic Surface Controller

    Get PDF
    This paper presents a dynamic surface controller (DSC) for dual-arm robots (DAR) tracking desired trajectories. The DSC algorithm is based on backstepping technique and multiple sliding surface control principle, but with an important addition. In the design of DSC, low-pass filters are included which prevent the complexity in computing due to the “explosion of terms”, i.e. the number of terms in the control law rapidly gets out of hand. Therefore, a controller constructed from this algorithm is simulated on a four degrees of freedom (DOF) dual-arm robot with a complex kinetic dynamic model. Moreover, the stability of the control system is proved by using Lyapunov theory. The simulation results show the effectiveness of the controller which provide precise tracking performance of the manipulator

    Humanoid robot control of complex postural tasks based on learning from demostration

    Get PDF
    Mención Internacional en el título de doctorThis thesis addresses the problem of planning and controlling complex tasks in a humanoid robot from a postural point of view. It is motivated by the growth of robotics in our current society, where simple robots are being integrated. Its objective is to make an advancement in the development of complex behaviors in humanoid robots, in order to allow them to share our environment in the future. The work presents different contributions in the areas of humanoid robot postural control, behavior planning, non-linear control, learning from demonstration and reinforcement learning. First, as an introduction of the thesis, a group of methods and mathematical formulations are presented, describing concepts such as humanoid robot modelling, generation of locomotion trajectories and generation of whole-body trajectories. Next, the process of human learning is studied in order to develop a novel method of postural task transference between a human and a robot. It uses the demonstrated action goal as a metrics of comparison, which is codified using the reward associated to the task execution. As an evolution of the previous study, this process is generalized to a set of sequential behaviors, which are executed by the robot based on human demonstrations. Afterwards, the execution of postural movements using a robust control approach is proposed. This method allows to control the desired trajectory even with mismatches in the robot model. Finally, an architecture that encompasses all methods of postural planning and control is presented. It is complemented by an environment recognition module that identifies the free space in order to perform path planning and generate safe movements for the robot. The experimental justification of this thesis was developed using the humanoid robot HOAP-3. Tasks such as walking, standing up from a chair, dancing or opening a door have been implemented using the techniques proposed in this work.Esta tesis aborda el problema de la planificación y control de tareas complejas de un robot humanoide desde el punto de vista postural. Viene motivada por el auge de la robótica en la sociedad actual, donde ya se están incorporando robots sencillos y su objetivo es avanzar en el desarrollo de comportamientos complejos en robots humanoides, para que en el futuro sean capaces de compartir nuestro entorno. El trabajo presenta diferentes contribuciones en las áreas de control postural de robots humanoides, planificación de comportamientos, control no lineal, aprendizaje por demostración y aprendizaje por refuerzo. En primer lugar se desarrollan un conjunto de métodos y formulaciones matemáticas sobre los que se sustenta la tesis, describiendo conceptos de modelado de robots humanoides, generación de trayectorias de locomoción y generación de trayectorias del cuerpo completo. A continuación se estudia el proceso de aprendizaje humano, para desarrollar un novedoso método de transferencia de una tarea postural de un humano a un robot, usando como métrica de comparación el objetivo de la acción demostrada, que es codificada a través del refuerzo asociado a la ejecución de dicha tarea. Como evolución del trabajo anterior, se generaliza este proceso para la realización de un conjunto de comportamientos secuenciales, que son de nuevo realizados por el robot basándose en las demostraciones de un ser humano. Seguidamente se estudia la ejecución de movimientos posturales utilizando un método de control robusto ante imprecisiones en el modelado del robot. Para analizar, se presenta una arquitectura que aglutina los métodos de planificación y el control postural desarrollados en los capítulos anteriores. Esto se complementa con un módulo de reconocimiento del entorno y extracción del espacio libre para poder planificar y generar movimientos seguros en dicho entorno. La justificación experimental de la tesis se ha desarrollado con el robot humanoide HOAP-3. En este robot se han implementado tareas como caminar, levantarse de una silla, bailar o abrir una puerta. Todo ello haciendo uso de las técnicas propuestas en este trabajo.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Manuel Ángel Armada Rodríguez.- Secretario: Luis Santiago Garrido Bullón.- Vocal: Sylvain Calino

    Becoming Human with Humanoid

    Get PDF
    Nowadays, our expectations of robots have been significantly increases. The robot, which was initially only doing simple jobs, is now expected to be smarter and more dynamic. People want a robot that resembles a human (humanoid) has and has emotional intelligence that can perform action-reaction interactions. This book consists of two sections. The first section focuses on emotional intelligence, while the second section discusses the control of robotics. The contents of the book reveal the outcomes of research conducted by scholars in robotics fields to accommodate needs of society and industry
    corecore