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 There is an open discussion between those who defend mass distributed models for 

humanoid robots and those in favor of simple concentrated models. Even though each of them 

has its advantages and disadvantages, little research has been conducted analyzing the control 

performance due to the mismatch between the model and the real robot, and how the 

simplifications affect the controller’s output. In this paper we address this problem by combining 

a reduced model of the humanoid robot, which has an easier mathematical formulation and 

implementation, with a fractional order controller, which is robust to changes in the model 

parameters. This controller is a generalization of the well-known PID structure obtained from the 

application of Fractional Calculus to control, as will be discussed in the paper. This control 

strategy guarantees the robustness of the system, minimizing the effects from the assumption 

that the robot has a simple mass distribution. The humanoid robot is modeled and identified as a 

triple inverted pendulum and, using a gain scheduling strategy, the performances of a classical 

PID controller and a fractional order PID controller are compared, tuning the controller 

parameters with a genetic algorithm. 

Keywords: Humanoid robot model; Fractional order control; Reduced dynamic model. 

I. INTRODUCTION 

In recent years there has been a strong discussion between researchers in favor of using mass distributed 

models to model a humanoid robot, where the mass and inertia of every link are known, and those who 

prefer to use a simplified or concentrated mass model, where all robot dynamics are simplified and 

concentrated in the center of gravity, as stated in Arbulú, 2009. 
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Those who prefer complete dynamic models defend that they allow the representation of more complex 

behaviors, ensuring the accuracy of the model and reducing the complexity of the control method. Khatib 

et al., 2008 performed a whole-body motion hierarchically dividing the control into tasks. Arbulu et al., 

2010 used Lie algebra to obtain the humanoid whole-body dynamics and reduce the computation time. 

Kajita et al., 2003 presented a work where the humanoid motion is accomplish controlling the momentum 

of a complete body model.  

Many researchers make use of reduced dynamic models to control humanoids, some examples are the 2D 

and 3D linear inverted pendulum modes (LIPM) in Kajita et al., 1991 and Kajita et al., 2001, the cart-

table presented in Kajita et al., 2003 or the angular momentum pendulum model presented in Komura et 

al., 2005.  

The reduced models do not cover all the dynamic behavior and non linearities of the real model; however, 

they are commonly used and many researchers have obtained good experimental results. Kaynov et al., 

2009 modeled a humanoid robot as a double inverted pendulum to study stability; Mistry et al., 2010 

modeled a humanoid  as an inverted pendulum of five links and performed a stand up task; Pan et al., 

2004 used an evolutionary approach to control a triple inverted pendulum. Other examples of triple 

pendulum control are the works by Tsachouridis, 1999 with H∞ and Xiaofeng et al., 2009 with fuzzy 

methods. 

On the other hand, fractional calculus can be defined as a natural extension of the classical mathematics. 

Since the earliest theoretical contributions on fractional derivatives and integrals made by Euler, Liouville 

and Abel, fractional order control has drawn the attention of many researchers (Monje et al., 2010).  

For convenience, Laplace domain notion is commonly used to describe the fractional integro-differential 

operation. The Laplace transform of the fractional derivative/integral under zero initial conditions for 

order ! (0 < ! <1)  is given by   

 £{a Dt
±! f (t)}= s±! F (s) . (1) 

Podlubny et al., 1997 proposed a generalization of the classical PI and PID controllers defined as PIλ and 

PIλDµ, where the integrator order λ and the differentiator order µ assume real non-integer values. He also 
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proved that these types of fractional order controllers have better control performances (Podlubny, 

1999(a) and Podlubny, 1999(b)).  

This new type of controllers encouraged a lot of works dedicated to fractional order control systems. 

Consequently, a considerable attention has been attracted to PIλ, PDµ and PIλDµ controllers, as reviewed 

by Monje et al., 2010. Thereafter, numerous tuning methods have been developed for the setting of the 

parameters of these fractional order controllers. In Buslowicz, 2008 a numerical algorithm is proposed for 

checking the stability of linear continuous-time fractional order systems with delays of the retarded type. 

A frequency approach for the auto-tuning of fractional order PIλDµ is proposed in Monje et al., 2008, 

where PIλ is used to cancel the slope of the curve phase of a position servo system with a time delay 

around a frequency point and the PDµ controller is designed to fulfill the specification of gain crossover 

frequency. A new stabilizing problem is presented in Caponetto et al., 2010 using a generalization of the 

Hermite-Biehler theorem applicable to the fractional quasi-polynomials. 

Fractional calculus also extends to other kinds of control strategies different from PID ones, but in the 

case study presented in this paper we propose the use of the fractional order PIλDµ controller as a robust 

alternative for the control of a humanoid robot simplified model based on the triple inverted pendulum, 

improving the system performance and overtaking the mismatches produced between the simplified and 

real models of the robot.  

To test the robustness of the control system, we will compare the performances of a classical PID 

controller and the fractional order PID controller when the humanoid performs a standing up task from a 

chair. We will overload the system adding 1 Kg to every pendulum link, with the objective of evaluating 

the robot performance when there is a change in the mass of the model. The controller gains will be 

optimized using an algorithm based on differential evolution. 

The rest of the paper is organized as follows. Section II presents the simplified model of the HOAP 

humanoid robot as a triple inverted pendulum, together with its state space representation. Section III 

gives some considerations on the implementation of fractional order controllers. Section IV introduces the 

Differential Evolution method used to tune the different controllers proposed. In Section V, the 

simulation results are given and discussed, concluding in Section VI with the main conclusions and future 

works. 
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II. HUMANOID ROBOT MODEL 

In a very simplified way, a humanoid robot can be dynamically modeled as a triple inverted pendulum. 

As it can be seen in Fig. 1 (Left), we have modeled the HOAP humanoid robot as a triple pendulum, 

where the ankle joint of the robot corresponds to the first pendulum joint, the knee joint corresponds to 

the second one and the hip joint corresponds to the third one (see Fig. 1 (Right)). 

The similarity is stated under the assumptions that the pendulum masses are concentrated at the tip of 

every link and the link masses are negligible. The control action that allows every mass im  to move a 

position iq  is the torque iτ . 

Since the task we want to perform is the standing up of the robot from a chair, choosing the triple 

pendulum as the model allows the direct mapping between the pendulum joints and the joints needed for 

the robot to stand up. It is a good trade between selecting a simple inverted pendulum model and a 

complete model. 

 

Fig. 1: Left: Reduced model of HOAP humanoid robot sitting on a chair. The proposed model is a two dimensional 

triple inverted pendulum with massless links and the center of mass at the tip of the pendulum. Right: Triple inverted 

pendulum with masses, lengths, torques and positions. 

TRIPLE PENDULUM EQUATIONS 

To obtain the triple pendulum equations let us define the position and velocity of every link. 
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 x1 = l1 sin q1, !x1 = l1 cosq1 !q1  (2) 

 z1 = l1 cosq1, !z1 = ! l1 sin q1 !q1  (3) 

 x2 = l1 sin q1 + l2 sin q2  (4) 

 !x2 = l1 cosq1 !q1 + l2 cosq2 !q2  (5) 

 z2 = l1 cosq1 + l2 cosq2  (6) 

 !z2 = ! l1 sin q1 !q1 ! l2 sin q2 !q2  (7) 

 x3 = l1 sin q1 + l2 sin q2 + l3 sin q3  (8) 

 !x3 = l1 cosq1 !q1 + l2 cosq2 !q2 + l3 cosq3 !q3  (9) 

 z3 = l1 cosq1 + l2 cosq2 + l3 cosq3  (10) 

 !z3 = ! l1 sin q1 !q1 ! l2 sin q2 !q2 ! l3 sin q3 !q3  (11) 

Articulated torques can be derived using the Lagrangian equation: 

 
d
dt

!L
! !qi

"

#$
%

&'
(
!L
! qi

= ! i  (12) 

where the Lagrangian is the difference between kinetic and potential energy: 

 L = T ! V  (13) 

Let us define the potential energy: 

 V = m1gz1 +m2gz2 +m3gz3  (14) 

Substituting: 

 V = (m1 +m2 +m3)gl1 cosq1 + (m2 +m3)gl2 cosq2 +m3gl3 cosq3  (15) 
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Let us define the kinetic energy: 

 T =
1
2

m1v1
2 +

1
2

m2v2
2 +

1
2

m3v3
2  (16) 

where v1 , 2v  and 3v  are the speed of the centers of mass of the inverted pendulum, vi
2 = !xi

2 + !zi
2 . 

Substituting Eq. (4,...,13) into Eq. (16) and Eq. (18) and then into Eq. (15), we obtain the equation of 

motion of the triple pendulum, whose compact form is stated as follows: 

 vi
2 = !xi

2 + !zi
2  (17) 

 ! = H(q)!!q +C(q, !q) !q +G(q)  (18) 

where H ! !3"3  is the inertia matrix, C ! !3"3  is the matrix of centrifugal and coriolis forces and 

G ! !3"1  is the gravity matrix. The components of every matrix can be expressed as: 
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!
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#
#
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&
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"
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 (19) 

 h11 = l1
2 m1 +m2 +m3( )  (20) 

 h22 = l2
2 m2 +m3( )  (21) 

 h33 = l3
2m3  (22) 

 h12 = h21 = (m2 +m3)l1l2cos(q1 ! q2 )  (23) 

 h13 = h31 = m3l1l3cos(q1 ! q3)  (24) 

 h23 = h32 = m3l2l3cos(q2 ! q3)  (25) 

 c12 = ! c21 = ! (m2 +m3)l1l2sin(q2 ! q1)  (26) 
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 c13 = ! c31 = ! m3l1l3sin(q3 ! q1)  (27) 

 c23 = ! c32 = ! m3l2l3sin(q3 ! q2 )  (28) 

 g1 = ! gl1 m1 +m2 +m3( )sin q1( )  (29) 

 g2 = ! gl2 m2 +m3( )sin q2( )  (30) 

 g3 = ! gl3m3 sin q3( )  (31) 

STATE SPACE REPRESENTATION OF THE TRIPLE PENDULUM 

The inverted triple pendulum can be expressed as a dynamical system in the standard form: 

 !X = AX + BU ,    Y =CX  (32) 

where X is the state vector, U is the control vector and Y is the output vector. 

To obtain the representation of the triple pendulum system let us define the following state variables: 

X1 = q1, X 2 = !q1, X 3 = q2 , X 4 = !q2 , X 5 = q3, X 6 = !q3 . 

Taking this into account, and reordering Eq. (20), matrices A, B and C can be obtained knowing that: 

 !X1 = X 2 , !X 3 = X 4 , !X 5 = X 6  (33) 

 

!X 2

!X 4

!X 6

!

"

#
#
#

$

%

&
&
&
= f̂ (X1, X 2 , X 3, X 4 , X 5, X 6 )  (34) 

where f̂  contains nonlinear terms of the state variables. 

To avoid the nonlinear terms, we have linearize over X i0  using a Taylor expansion:  

 !"X = A !X + B !U  (35) 
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where 

 A =
! f
!X

|
X =X0

U =U0

; B =
! f
!U

|
X =X0

U =U0

 (36) 

and !X i = X i ! X i0 . 

Since the desired trajectory has a wide variation, we have selected three regions of linearization, obtaining 

three subsystems. We have divided the desired trajectory in three regions and we have chosen the middle 

point of every region as the linearization point. In Fig. 2 the selected linearization positions are shown. 

The result is three linear systems that are going to be controlled with standard and fractional order PID 

controllers using the differential evolution approach, as will be explained later.  

 

Fig 2: The three positions of the system linearization. Every position is a point of linearization and defines a linear 

system 

III. IMPLEMENTATION OF THE FRACTIONAL ORDER CONTROLER 

Before introducing the differential evolution method used for the tuning of the different controllers 

proposed in this paper, some considerations on the implementation of the fractional order PIλDµ controller 

have to be taken into account (Oustaloup et al., 2010 and Caponetto et al., 2010). An extensive review 

regarding this topic is given by Monje et al., 2010. 

The generalized transfer function of this controller is given by  
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 c(s) = kp +
ki

s!
+ kd sµ  (37) 

In general, when fractional order controllers have to be implemented or simulations have to be performed, 

fractional transfer functions are usually replaced by integer transfer functions with a behavior close 

enough to the one desired, but much easier to handle. There are many different ways of finding such 

approximations but unfortunately it is not possible to say that one of them is the best, because even 

though some of them are better than others in regard to certain characteristics, the relative merits of each 

approximation depend on the differentiation order, on whether one is more interested in an accurate 

frequency behavior or in accurate time responses, on how large admissible transfer functions may be, and 

other factors like these (Monje et al., 2010). 

In this work a frequency identification method performed by the Matlab function invfreqs  has been used. 

With this method a rational transfer function is obtained whose frequency response fits the frequency 

response of the original irrational transfer function within a selected frequency range. This method is 

chosen due to its accuracy in the frequency range of interest, which can be adjusted by selecting the 

number of poles/zeros of the rational transfer function. 

IV. DIFFERENTIAL EVOLUTION 

Differential Evolution (DE) is a stochastic search optimization method based on genetic algorithms first 

proposed by Storn and Price, 1997. It is widely used in SLAM (Moreno et al., 2009), multiobjective 

optimization (Xue et al., 2003), pattern recognition (Bueno et al., 2012) or constraint optimization (Huang 

et al., 2007). 

This algorithm selects a random initial population over a bounded domain minx  and maxx , generating 

pN  population members. Similarly to other evolutionary algorithms, it perturbs the population, 

generating new members that are going to be evaluated in a fitness function.  

The selection and combination of new points are randomly chosen from three individuals. Two of the 

members, 1rx  and 2rx , are subtracted and multiplied by a weight F, and then added to another 3rx  

giving a trial solution: 
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 u0 = xr3 + F (xr1 ! xr2 )  (38) 

This solution u0  is evaluated in the fitness function and compared with the rest of the vector of the same 

index. This process is repeated until a population of N p  has competed against the trial solution randomly 

generated. Once the last vector has been evaluated, the best members are selected for the next iteration. 

The computation ends when a final condition has been achieved. Usual conditions are time, number of 

iterations or a specific value of the fitness function. 

In this paper we have used differential evolution to optimize the values of the PID controller gains 

kp ,ki ,kd ! R
3! 3  and the gains and orders of the fractional order controller kp ,ki ,kd ,!  and µ . 

V. RESULTS AND DISCUSSION 

IDENTIFICATION OF PENDULUMS PARAMETERS 

To characterize the triple inverted pendulum that models our Hoap humanoid robot a system 

identification is performed based on the work by Tang et al., 2008. For this purpose we have used DE 

optimizer, computing a triple pendulum’s Zero Moment Point (ZMP) trajectory and comparing it with the 

real ZMP measurement of the robot feet FSR sensors (Fig. 3), minimizing the quadratic difference. The 

results are shown in Table 1. 
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Fig. 3: ZMP trajectory of the triple inverted pendulum (ZMPTP) and ZMP of the real robot (ZMPreal) 

measured with the feet sensors 

The multibody ZMP equation in the sagital plane is 

 ZMP =
mi

i=1

n

! xi (!!zi + g) ! mi
i=1

n

! !!xi zi ! Iiy
i=1

n

! ! iy

mi
i=1

n

! (!!zi + g)
 (39) 

The reason why we use the ZMP to perform the identification is because ZMP is a measurement of 

stability, and we can obtain a real ZMP directly from robot sensors. This is more intuitive and gives more 

information than simple joint trajectories. 
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Table 1: Triple pendulum identification parameters 

 Mass (Kg) Link (m) 

Link 1 0.505 0.167 

Link 2 0.500 0.260 

Link 3 3.900 0.264 

 

Taking these parameters into account and the three operating points previously stated (Fig. 2), we obtain 

three linearized subsystems using Eq. (37). Each subsystem is controlled using a standard and a fractional 

order PID controller, whose gains kp ,ki ,kd ! R
3! 3 and fractional orders ! ,µ  are obtained using DE. 

To change between systems, we use a gain scheduling strategy. 

The desired trajectory has been manually defined using third order splines and it simulates a stand up 

trajectory. The trajectory has been divided into three regions of two seconds, each one corresponding to 

the three subsystems. In Fig. 4 the simulated trajectory is shown. 

 

Fig. 4: Simulation of the triple inverted pendulum trajectory 
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Furthermore, to estimate the controller robustness, we have overloaded the pendulum masses, adding 1 

Kg to each link and comparing the new responses with those obtained from the nominal system.    

COMPARISON BETWEEN CLASSICAL AND FRACTIONAL ORDER CONTROLLERS 

All simulations have been performed in MATLAB, using Runge-Kutta solver and a sampling time of 1 

ms. 

The DE algorithm produces random values of the controller gains, which are used to simulate the system 

in Fig. 5. The fitness function to minimize is the difference between the system output and the reference. 

The best member of every iteration is mutated and evaluated again until a final value of the fitness 

function is reached or a total number of iterations is passed. In our case, the final value is 1 and the 

maximum number of iterations is 50. 

Fig. 5: Control system. The PID block is replaced by the PIDfr block when the fractional order control 

strategy is used 

This is done for every subsystem with the standard PID gains and with the fractional order PID gains and 

orders. 

To approximate the behavior of the fractional controller, we have used the frequency identification 

method invfreqs provided by MATLAB (Monje et al., 2010), described in Section III. The chosen 

crossover frequency has been 0.001 rad/s and the number of poles and zeros selected for the equivalent 

transfer function is 8, ensuring the fractional behavior along 4 decades of frequency. This expression is 

evaluated in MATLAB and implemented in the block PIDfr of Fig. 5.  
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For the sake of space, we are just presenting the parameters of the fractional order PID controller for the 

first region, similarly obtaining the corresponding controllers for the other two regions, and so for the 

classical PID case.  

kp1 =
404.727 ! 305.224 ! 782.663

1887.738 ! 102.147 ! 6281.782
1097.379 ! 13.248 417.511

"

#

$
$
$

%

&

'
'
'

 

ki1 =
! 13129.120 13074.195 ! 5581.229
! 1185.499 ! 118.561 1321.581
! 1971.739 ! 933.607 12007.290

"

#

$
$
$

%

&

'
'
'

 

kd1 =
10891.500 6320.620 1687.942
! 3646.421 1252.162 7721.200
1025.524 ! 943.733 ! 1851.324

"

#

$
$
$

%

&

'
'
'

 

! 1 = 0.595,µ1 = ! 0.432  

The results obtained for the three regions are presented in Fig. 6, 7 and 8, respectively.  
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Fig. 6: System response for joint 1 for the nominal (left) and overloaded (right) subsystem. In blue is the 

desired trajectory, in green the trajectory with the fractional order controller and in green the trajectory 

with the standard PID controller. In dotted red the limits of the three linearization regions 

 

Fig. 7: System response for joint 2 for the nominal (left) and overloaded (right) subsystem. In blue is the 

desired trajectory, in green the trajectory with the fractional order controller and in green the trajectory 

with the standard PID controller. In dotted red the limits of the three linearization regions 
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Fig. 8: System response for joint 3 for the nominal (left) and overloaded (right) subsystem. In blue is the 

desired trajectory, in green the trajectory with the fractional order controller and in green the trajectory 

with the standard PID controller. In dotted red the limits of the three linearization regions. 

As can be seen, the fractional order controller keeps the stability of the system in case a significant mass 

mismatch appears in the model. This way, we can guarantee the robustness of the control system to 

uncertainties in the model, compensating this way the effects of using for simplicity a reduced model of 

the robot for control purposes. On the contrary, the responses with the standard PID controller are 

unstable for some of the joins when the system is overloaded. 

VI. CONCLUSIONS AND FUTURE WORKS 

This paper addresses the problem of modeling and controlling a reduced model of a humanoid robot 

based on the triple inverted pendulum. A control technique that uses differential evolution and a fractional 

order PID controller is applied, obtaining very good results.  

The effect of mass mismatches between the real and the simplified model of the humanoid is 

compensated to a significant extent by the fractional order PID controller, which ensure the robust 

response of the whole system during the whole motion when a mass increase of 1 Kg is considered in 

each tip.  
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After comparing the behavior of the humanoid when performing a standing up movement using the 

standard PID controller and the fractional order one, it is concluded that, using differential evolution as 

gain optimizer, both controllers track the reference satisfactorily for the nominal case. However, when the 

robot is overloaded, only the fractional order controller ensures the stability of the system. 

Further steps on this research will be taken towards the implementation of this control strategy in the real 

robotic platform.  
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