6 research outputs found

    A Novel High Efficiency Fractal Multiview Video Codec

    Get PDF
    Multiview video which is one of the main types of three-dimensional (3D) video signals, captured by a set of video cameras from various viewpoints, has attracted much interest recently. Data compression for multiview video has become a major issue. In this paper, a novel high efficiency fractal multiview video codec is proposed. Firstly, intraframe algorithm based on the H.264/AVC intraprediction modes and combining fractal and motion compensation (CFMC) algorithm in which range blocks are predicted by domain blocks in the previously decoded frame using translational motion with gray value transformation is proposed for compressing the anchor viewpoint video. Then temporal-spatial prediction structure and fast disparity estimation algorithm exploiting parallax distribution constraints are designed to compress the multiview video data. The proposed fractal multiview video codec can exploit temporal and spatial correlations adequately. Experimental results show that it can obtain about 0.36 dB increase in the decoding quality and 36.21% decrease in encoding bitrate compared with JMVC8.5, and the encoding time is saved by 95.71%. The rate-distortion comparisons with other multiview video coding methods also demonstrate the superiority of the proposed scheme

    Video coding based on fractals and sparse representations

    Get PDF
    Orientador: Hélio PedriniDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Vídeos são sequências de imagens estáticas representando cenas em movimento. Transmitir e armazenar essas imagens sem nenhum tipo de pré-processamento necessitaria de enormes larguras de banda nos canais de comunicação e uma quantidade massiva de espaço de armazenamento. A fim de reduzir o número de bits necessários para tais dados, foram criados métodos de compressão com perda. Esses métodos geralmente consistem em um codificador e um decodificador, tal que o codificador gera uma sequência de bits que representa uma aproximação razoável do vídeo através de um formato pré-especificado e o decodificador lê essa sequência, convertendo-a novamente em uma série de imagens. A transmissão de vídeos sob restrições extremas de largura de banda tem aplicações importantes como videoconferências e circuitos fechados de televisão. Neste trabalho são abordados dois métodos destinados a essa aplicação, decomposição usando representações esparsas e compressão fractal. A ampla maioria dos codificadores tem como mecanismo principal o uso de transformações inversíveis capazes de representar imagens espacialmente suaves com poucos coeficientes não-nulos. Representações esparsas são uma generalização dessa ideia, em que a transformação tem como base um conjunto cujo número de elementos excede a dimensão do espaço vetorial onde ela opera. A projeção dos dados pode ser feita a partir de uma heurística rápida chamada Matching Pursuit. Uma abordagem combinando essa heurística com um algoritmo para gerar a base sobrecompleta por aprendizado de máquina é apresentada. Codificadores fractais representam uma aproximação da imagem como um sistema de funções iterativas. Para isso, criam e transmitem uma sequência de comandos, chamada colagem, capazes de obter uma representação da imagem na escala original dada a mesma imagem em uma escala reduzida. A colagem é criada de tal forma que, se aplicada a uma imagem inicial qualquer repetidas vezes, reduzindo sua escala antes de toda iteração, converge em uma aproximação da imagem codificada. Métodos simplificados e rápidos para a criação da colagem e uma generalização desses métodos para a compressão de vídeos são apresentados. Ao invés de construir a colagem tentando mapear qualquer bloco da escala reduzida na escala original, apenas um conjunto pequeno de blocos é considerado. O método de compressão proposto para vídeos agrupa um conjunto de quadros consecutivos do vídeo em um fractal volumétrico. A colagem mapeia blocos tridimensionais entre as escalas, considerando uma escala menor tanto no tempo quanto no espaço. Uma adaptação desse método para canais de comunicação cuja largura de banda é instável também é propostaAbstract: A video is a sequence of still images representing scenes in motion. A video is a sequence of extremely similar images separated by abrupt changes in their content. If these images were transmitted and stored without any kind of preprocessing, this would require a massive amount of storage space and communication channels with very high bandwidths. Lossy compression methods were created in order to reduce the number of bits used to represent this kind of data. These methods generally consist in an encoder and a decoder, where the encoder generates a sequence of bits that represents an acceptable approximation of the video using a certain predefined format and the decoder reads this sequence, converting it back into a series of images. Transmitting videos under extremely limited bandwidth has important applications in video conferences or closed-circuit television systems. Two different approaches are explored in this work, decomposition based on sparse representations and fractal coding. Most video coders are based on invertible transforms capable of representing spatially smooth images with few non-zero coeficients. Sparse representations are a generalization of this idea using a transform that has an overcomplete dictionary as a basis. Overcomplete dictionaries are sets with more elements in it than the dimension of the vector space in which the transform operates. The data can be projected into this basis using a fast heuristic called Matching Pursuits. A video encoder combining this fast heuristic with a machine learning algorithm capable of constructing the overcomplete dictionary is proposed. Fractal encoders represent an approximation of the image through an iterated function system. In order to do that, a sequence of instructions, called a collage, is created and transmitted. The collage can construct an approximation of the original image given a smaller scale version of it. It is created in such a way that, when applied to any initial image several times, contracting it before each iteration, it converges into an approximation of the encoded image. Simplier and faster methods for creating a collage and a generalization of these methods to video compression are presented. Instead of constructing a collage by matching any block from the smaller scale to the original one, a small subset of possible matches is considered. The proposed video encoding method creates groups of consecutive frames which are used to construct a volumetric fractal. The collage maps tridimensional blocks between the different scales, using a smaller scale in both space and time. An improved version of this algorithm designed for communication channels with variable bandwidth is presentedMestradoCiência da ComputaçãoMestre em Ciência da Computaçã

    Distributed video through telecommunication networks using fractal image compression techniques

    Get PDF
    The research presented in this thesis investigates the use of fractal compression techniques for a real time video distribution system. The motivation for this work was that the method has some useful properties which satisfy many requirements for video compression. In addition, as a novel technique, the fractal compression method has a great potential. In this thesis, we initially develop an understanding of the state of the art in image and video compression and describe the mathematical concepts and basic terminology of the fractal compression algorithm. Several schemes which aim to the improve of the algorithm, for still images are then examined. Amongst these, two novel contributions are described. The first is the partitioning of the image into sections which resulted insignificant reduction of the compression time. In the second, the use of the median metric as alternative to the RMS was considered but was not finally adopted, since the RMS proved to be a more efficient measure. The extension of the fractal compression algorithm from still images to image sequences is then examined and three different schemes to reduce the temporal redundancy of the video compression algorithm are described. The reduction in the execution time of the compression algorithm that can be obtained by the techniques described is significant although real time execution has not yet been achieved. Finally, the basic concepts of distributed programming and networks, as basic elements of a video distribution system, are presented and the hardware and software components of a fractal video distribution system are described. The implementation of the fractal compression algorithm on a TMS320C40 is also considered for speed benefits and it is found that a relatively large number of processors are needed for real time execution

    Fast Edge Preserving Fractal System

    Get PDF
    Electrical Engineerin

    Fitting and tracking of a scene model in very low bit rate video coding

    Get PDF

    Codificação de vídeo: priorização do menor custo de codificação na otimização em taxa-distorção

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2009.O presente trabalho propõe duas novas estratégias para compressão de sinais de vídeo através de algoritmos otimizados em taxa-distorção (RD), focando aplicações típicas de vídeo digital para operação em baixas taxas de bits. As estratégias propostas são implementadas em um codificador de vídeo baseado no padrão H.264, o qual apresenta uma alta complexidade computacional devido principalmente ao grande número de modos de codificação disponível. São apresentadas duas propostas de redução da complexidade, mantendo o desempenho RD próximo àquele do codificador H.264 otimizado em RD usando busca exaustiva. A primeira proposta (denominada rate sorting and truncation - RST) realiza o ordenamento tanto dos vetores de movimento (VMs) quanto dos modos de codificação em ordem ascendente de taxa de bits. O processo de codificação é interrompido quando a taxa de bits dos novos VMs e modos de codificação exceder à menor taxa já obtida para um pré-estabelecido nível de qualidade de imagem. Assim, um grande número de VMs e diversos modos de codificação são descartados antes que sejam avaliados. A segunda proposta consiste em um algoritmo rápido, baseado no perfil de distribuição de vetores do codificador H.264, para estimação de movimento (denominado logarithmic diamond shape search - LDSS). O uso da estratégia RST associada ao algoritmo LDSS reduz até 98% a carga computacional com perda marginal de desempenho RD.This research work proposes two new video compression strategies, aiming at typical low bit rate video applications using rate-distortion (RD) optimized algorithms. The proposed strategies are implemented on an H.264 video encoder, which has high computational complexity due mainly to the large number of coding modes available. Two approaches are presented for reducing the encoder computational complexity, maintaining the RD performance close to the full search RD optimized H.264 encoder. The first approach (termed rate sorting and truncation - RST) is based on sorting the motion vectors (MVs) and coding modes in an ascending rate order. This sorting and encoding process, which is stopped when the rate value exceeds the previous best rate for a required image quality level, allows the elimination of MVs and coding modes before checking their distortion. Apart from obtaining a significant complexity reduction, the process still remains optimized in RD sense. The second approach is an algorithm (termed logarithmic diamond shape search - LDSS), which explores the MVs distribution profile for the RD optimized H.264 encoder. The use of the RST strategy associated with LDSS algorithm yields up to a 98% reduction in the computational burden, with insignificant RD performance loss
    corecore