26,133 research outputs found

    Modeling of Induced Hydraulically Fractured Wells in Shale Reservoirs Using Branched Fractals

    Get PDF
    Imperial Users onl

    Analogy between turbulence and quantum gravity: beyond Kolmogorov's 1941 theory

    Full text link
    Simple arguments based on the general properties of quantum fluctuations have been recently shown to imply that quantum fluctuations of spacetime obey the same scaling laws of the velocity fluctuations in a homogeneous incompressible turbulent flow, as described by Kolmogorov 1941 (K41) scaling theory. Less noted, however, is the fact that this analogy rules out the possibility of a fractal quantum spacetime, in contradiction with growing evidence in quantum gravity research. In this Note, we show that the notion of a fractal quantum spacetime can be restored by extending the analogy between turbulence and quantum gravity beyond the realm of K41 theory. In particular, it is shown that compatibility of a fractal quantum-space time with the recent Horava-Lifshitz scenario for quantum gravity, implies singular quantum wavefunctions. Finally, we propose an operational procedure, based on Extended Self-Similarity techniques, to inspect the (multi)-scaling properties of quantum gravitational fluctuations.Comment: Sliglty modified version of the article about to appear in IJMP

    Structure of interacting aggregates of silica nanoparticles in a polymer matrix: Small-angle scattering and Reverse Monte-Carlo simulations

    Full text link
    Reinforcement of elastomers by colloidal nanoparticles is an important application where microstructure needs to be understood - and if possible controlled - if one wishes to tune macroscopic mechanical properties. Here the three-dimensional structure of big aggregates of nanometric silica particles embedded in a soft polymeric matrix is determined by Small Angle Neutron Scattering. Experimentally, the crowded environment leading to strong reinforcement induces a strong interaction between aggregates, which generates a prominent interaction peak in the scattering. We propose to analyze the total signal by means of a decomposition in a classical colloidal structure factor describing aggregate interaction and an aggregate form factor determined by a Reverse Monte Carlo technique. The result gives new insights in the shape of aggregates and their complex interaction in elastomers. For comparison, fractal models for aggregate scattering are also discussed
    corecore