87,814 research outputs found

    Multinet : enabler for next generation enterprise wireless services

    Get PDF
    Wireless communications are currently experiencing a fast migration toward the beyond third-generation (B3G)/fourth generation (4G) era. This represents a generational change in wireless systems: new capabilities related to mobility and new services support is required and new concepts as individual-centric, user-centric or ambient-aware communications are included. One of the main restrictions associated to wireless technology is mobility management, this feature was not considered in the design phase; for this reason, a complete solution is not already found, although different solutions are proposed and are being proposed. In MULTINET project, features as mobility and multihoming are applied to wireless network to provide the necessary network and application functionality enhancements for seamless data communication mobility considering end-user scenario and preferences. The aim of this paper is to show the benefits of these functionalities from the Service Providers and final User point of view

    Handoff Management: A Critical Function in Mobility Management for Fourth Generation (4G) Wireless Networks

    Get PDF
    Efficient mobility management techniques are critical to the success of next-generation wireless systems. Handoff management, which is one of the two basic functions of mobility management, has become more critical in fourth generation wireless networks which support multimedia services. The paper treats basic issues involved in handoff management aspect of general mobility management in wireless communication systems. The relevance of mobility management, handoff management, and general mobility management protocols are explained. The taxonomy of handoff mechanisms, causes of delays in handoffs, and security in handoff procedures are elicited. The paper concludes highlighting some open areas of research in providing seamless services

    Fourth Generation Wireless Systems: Requirements and Challenges for the Next Frontier

    Get PDF
    Fourth generation wireless systems (4G) are likely to reach the consumer market in another 4-5 years. 4G comes with the promise of increased bandwidth, higher speeds, greater interoperability across communication protocols, and user friendly, innovative, and secure applications. In this article, I list the requirements of the 4G systems by considering the needs of the users in the future. These requirements can be met if technical and business challenges can be overcome. Technical challenges include mobility management, quality of service, interoperability, high data rate, security, survivability, spectrum, intelligent mobile devices, middleware, and network access. I discuss the most plausible solutions to these technical challenges in this paper. Business-related challenges include billing, payment methods, pricing, size of investments, content provision and mediation, and the trade-off between richness and reach. If these technical and business challenges can be met, then 4G will become the next frontier in data and voice communication infrastructure

    Bit error rate estimation in WiMAX communications at vehicular speeds using Nakagami-m fading model

    Get PDF
    The wireless communication industry has experienced a rapid technological evolution from its basic first generation (1G) wireless systems to the latest fourth generation (4G) wireless broadband systems. Wireless broadband systems are becoming increasingly popular with consumers and the technological strength of 4G has played a major role behind the success of wireless broadband systems. The IEEE 802.16m standard of the Worldwide Interoperability for Microwave Access (WiMAX) has been accepted as a 4G standard by the Institute of Electrical and Electronics Engineers in 2011. The IEEE 802.16m is fully optimised for wireless communications in fixed environments and can deliver very high throughput and excellent quality of service. In mobile communication environments however, WiMAX consumers experience a graceful degradation of service as a direct function of vehicular speeds. At high vehicular speeds, the throughput drops in WiMAX systems and unless proactive measures such as forward error control and packet size optimisation are adopted and properly adjusted, many applications cannot be facilitated at high vehicular speeds in WiMAX communications. For any proactive measure, bit error rate estimation as a function of vehicular speed, serves as a useful tool. In this thesis, we present an analytical model for bit error rate estimation in WiMAX communications using the Nakagami-m fading model. We also show, through an analysis of the data collected from a practical WiMAX system, that the Nakagami-m model can be made adaptive as a function of speed, to represent fading in fixed environments as well as mobile environments

    UNIVERSAL FILTER MULTICARRIER MODULATION SYSTEM WITH VARIED PARAMETERS & IMPACT ON PAPR

    Get PDF
    One of the main objectives of multicarrier modulation is to provide multiple accesses for wireless communication systems with higher data rates while having minimum out of band radiation, high spectral efficiency and less complexity. Orthogonal frequency division multiplexing (OFDM), Universal filter multicarrier (UFMC), Filter bank multicarrier (FBMC) and Generalized frequency division multiplexing (GFDM) modulation techniques have been developed to support fourth generation and beyond 4G wireless systems. Demand of high data rate in fourth generation wireless communication systems has been fulfilled by OFDM techniques but it suffers from the limitation of less spectral efficiency and high PAPR (Peak to average power ratio). Thus to support next generation wireless systems other waveform models are getting attention. Among the techniques available, UFMC seems to be attractive due to high spectral efficiency and less complexity. It has not explored much so in this paper, performance of UFMC have been evaluated with different design factors such as number of sub bands, FFT (Fast Fourier Transform) size, filter characteristics and modulation under the light of PAPR

    The Italian research project ROAD-NGN ‘Optical frequency/wavelength division multiple access techniques for next generation networks'

    Get PDF
    The paper describes the activities of the Italian national research project ROAD-NGN ‘Optical frequency/wavelength division multiple access techniques for next generation networks’; the project aims to investigate and experiment new technological solutions to facilitate the migration of access systems from copper to optical fibre, and to help the integration with broadband wireless architectures, with particular interest for the backhauling of the fourth generation (4G) Long Term Evolution (LTE) networks. The approaches, based on the orthogonal frequency division multiplexing (OFDM) and wavelength division multiplexing (WDM) techniques, can enable the unbundling of the local loop (ULL) and are upgradable toward very ultra wideband systems

    EVM as generic QoS trigger for heterogeneous wieless overlay network

    Full text link
    Fourth Generation (4G) Wireless System will integrate heterogeneous wireless overlay systems i.e. interworking of WLAN/ GSM/ CDMA/ WiMAX/ LTE/ etc with guaranteed Quality of Service (QoS) and Experience (QoE).QoS(E) vary from network to network and is application sensitive. User needs an optimal mobility solution while roaming in Overlaid wireless environment i.e. user could seamlessly transfer his session/ call to a best available network bearing guaranteed Quality of Experience. And If this Seamless transfer of session is executed between two networks having different access standards then it is called Vertical Handover (VHO). Contemporary VHO decision algorithms are based on generic QoS metrics viz. SNR, bandwidth, jitter, BER and delay. In this paper, Error Vector Magnitude (EVM) is proposed to be a generic QoS trigger for VHO execution. EVM is defined as the deviation of inphase/ quadrature (I/Q) values from ideal signal states and thus provides a measure of signal quality. In 4G Interoperable environment, OFDM is the leading Modulation scheme (more prone to multi-path fading). EVM (modulation error) properly characterises the wireless link/ channel for accurate VHO decision. EVM depends on the inherent transmission impairments viz. frequency offset, phase noise, non-linear-impairment, skewness etc. for a given wireless link. Paper provides an insight to the analytical aspect of EVM & measures EVM (%) for key management subframes like association/re-association/disassociation/ probe request/response frames. EVM relation is explored for different possible NAV-Network Allocation Vectors (frame duration). Finally EVM is compared with SNR, BER and investigation concludes EVM as a promising QoS trigger for OFDM based emerging wireless standards.Comment: 12 pages, 7 figures, IJWMN 2010 august issue vol. 2, no.

    A Systematic Study of the Behaviour of PMEPR in Relation to OFDM Design Parameters

    Get PDF
    The design of systems with enhanced quality of service (QoS) and improved power efficiency has evolved into an intensive research area in wired and wireless communications engineering. Orthogonal frequency division multiplexing (OFDM) has been proven to have the potential to achieve high data rates, adapt to severe channel conditions and exhibit spectral efficiency; this has gained its popular support in the design industry, especially for fourth generation (4G) systems. However, the high peak to mean envelope power ratio (PMEPR) exhibited by OFDM signals require linear operation of analog devices, with the associated trade-off of poor power efficiency. Several methods to reduce this PMEPR problem have been effectively researched while revealing the shortcomings. In this study we recognize the need to present the effect of OFDM system parameters on the behaviour of the PMEPR. In order to provide a basis for systematic selection of OFDM design parameters for PMEPR mitigation, we first study the reaction of the PMEPR to OFDM design parameters, we then analyse the effect of OFDM design parameters on the shortcomings of the PMEPR-limiting clipping technique.Peer reviewe
    • 

    corecore