5,435 research outputs found

    Shaded Tangles for the Design and Verification of Quantum Programs (Extended Abstract)

    Full text link
    We give a scheme for interpreting shaded tangles as quantum programs, with the property that isotopic tangles yield equivalent programs. We analyze many known quantum programs in this way -- including entanglement manipulation and error correction -- and in each case present a fully-topological formal verification, yielding in several cases substantial new insight into how the program works. We also use our methods to identify several new or generalized procedures.Comment: In Proceedings QPL 2017, arXiv:1802.0973

    Qudit surface codes and gauge theory with finite cyclic groups

    Get PDF
    Surface codes describe quantum memory stored as a global property of interacting spins on a surface. The state space is fixed by a complete set of quasi-local stabilizer operators and the code dimension depends on the first homology group of the surface complex. These code states can be actively stabilized by measurements or, alternatively, can be prepared by cooling to the ground subspace of a quasi-local spin Hamiltonian. In the case of spin-1/2 (qubit) lattices, such ground states have been proposed as topologically protected memory for qubits. We extend these constructions to lattices or more generally cell complexes with qudits, either of prime level or of level dℓd^\ell for dd prime and ℓ≥0\ell \geq 0, and therefore under tensor decomposition, to arbitrary finite levels. The Hamiltonian describes an exact Zd≅Z/dZ\mathbb{Z}_d\cong\mathbb{Z}/d\mathbb{Z} gauge theory whose excitations correspond to abelian anyons. We provide protocols for qudit storage and retrieval and propose an interferometric verification of topological order by measuring quasi-particle statistics.Comment: 26 pages, 5 figure

    Bounding bubbles: the vertex representation of 3d Group Field Theory and the suppression of pseudo-manifolds

    Full text link
    Based on recent work on simplicial diffeomorphisms in colored group field theories, we develop a representation of the colored Boulatov model, in which the GFT fields depend on variables associated to vertices of the associated simplicial complex, as opposed to edges. On top of simplifying the action of diffeomorphisms, the main advantage of this representation is that the GFT Feynman graphs have a different stranded structure, which allows a direct identification of subgraphs associated to bubbles, and their evaluation is simplified drastically. As a first important application of this formulation, we derive new scaling bounds for the regularized amplitudes, organized in terms of the genera of the bubbles, and show how the pseudo-manifolds configurations appearing in the perturbative expansion are suppressed as compared to manifolds. Moreover, these bounds are proved to be optimal.Comment: 28 pages, 17 figures. Few typos fixed. Minor corrections in figure 6 and theorem

    Fourier descriptors under rotation, scaling, translation and various distortion for hand drawn planar curves

    Get PDF
    The ordinary Fourier coefficients are difficult to use as input to categorizers because they contain factors dependent upon size and rotation as well as an arbitrary phase angle. From these Fourier coefficients, however, other more useful features are derived. By using these derived property constants, a distinction is made between genuine shape constants and constants representing size, location and orientation. In the present work, we extended the method of Fourier descriptors to produce a set of normalized coefficients, which are invariant under RST (Rotation, Scaling and Translation) for hand drawn planar curves. We have used these shapes for study of the behavior of Fourier descriptors under various distortions. For such planar curves, the optimal curve matching technique is used

    A Monte Carlo method for critical systems in infinite volume: the planar Ising model

    Get PDF
    In this paper we propose a Monte Carlo method for generating finite-domain marginals of critical distributions of statistical models in infinite volume. The algorithm corrects the problem of the long-range effects of boundaries associated to generating critical distributions on finite lattices. It uses the advantage of scale invariance combined with ideas of the renormalization group in order to construct a type of "holographic" boundary condition that encodes the presence of an infinite volume beyond it. We check the quality of the distribution obtained in the case of the planar Ising model by comparing various observables with their infinite-plane prediction. We accurately reproduce planar two-, three- and four-point functions of spin and energy operators. We also define a lattice stress-energy tensor, and numerically obtain the associated conformal Ward identities and the Ising central charge.Comment: 43 pages, 21 figure

    Shape from periodic texture using the eigenvectors of local affine distortion

    Get PDF
    This paper shows how the local slant and tilt angles of regularly textured curved surfaces can be estimated directly, without the need for iterative numerical optimization, We work in the frequency domain and measure texture distortion using the affine distortion of the pattern of spectral peaks. The key theoretical contribution is to show that the directions of the eigenvectors of the affine distortion matrices can be used to estimate local slant and tilt angles of tangent planes to curved surfaces. In particular, the leading eigenvector points in the tilt direction. Although not as geometrically transparent, the direction of the second eigenvector can be used to estimate the slant direction. The required affine distortion matrices are computed using the correspondences between spectral peaks, established on the basis of their energy ordering. We apply the method to a variety of real-world and synthetic imagery

    Local Uniqueness of the Circular Integral Invariant

    Full text link
    This article is concerned with the representation of curves by means of integral invariants. In contrast to the classical differential invariants they have the advantage of being less sensitive with respect to noise. The integral invariant most common in use is the circular integral invariant. A major drawback of this curve descriptor, however, is the absence of any uniqueness result for this representation. This article serves as a contribution towards closing this gap by showing that the circular integral invariant is injective in a neighbourhood of the circle. In addition, we provide a stability estimate valid on this neighbourhood. The proof is an application of Riesz-Schauder theory and the implicit function theorem in a Banach space setting

    (3+1)-dimensional topological phases and self-dual quantum geometries encoded on Heegard surfaces

    Full text link
    We apply the recently suggested strategy to lift state spaces and operators for (2+1)-dimensional topological quantum field theories to state spaces and operators for a (3+1)-dimensional TQFT with defects. We start from the (2+1)-dimensional Turaev-Viro theory and obtain a state space, consistent with the state space expected from the Crane-Yetter model with line defects. This work has important applications for quantum gravity as well as the theory of topological phases in (3+1) dimensions. It provides a self-dual quantum geometry realization based on a vacuum state peaked on a homogeneously curved geometry. The state spaces and operators we construct here provide also an improved version of the Walker-Wang model, and simplify its analysis considerably. We in particular show that the fusion bases of the (2+1)-dimensional theory lead to a rich set of bases for the (3+1)-dimensional theory. This includes a quantum deformed spin network basis, which in a loop quantum gravity context diagonalizes spatial geometry operators. We also obtain a dual curvature basis, that diagonalizes the Walker-Wang Hamiltonian. Furthermore, the construction presented here can be generalized to provide state spaces for the recently introduced dichromatic four-dimensional manifold invariants.Comment: 27 pages, many figures, v2: minor correction
    • …
    corecore