193 research outputs found

    IST Austria Thesis

    Get PDF
    This thesis considers two examples of reconfiguration problems: flipping edges in edge-labelled triangulations of planar point sets and swapping labelled tokens placed on vertices of a graph. In both cases the studied structures – all the triangulations of a given point set or all token placements on a given graph – can be thought of as vertices of the so-called reconfiguration graph, in which two vertices are adjacent if the corresponding structures differ by a single elementary operation – by a flip of a diagonal in a triangulation or by a swap of tokens on adjacent vertices, respectively. We study the reconfiguration of one instance of a structure into another via (shortest) paths in the reconfiguration graph. For triangulations of point sets in which each edge has a unique label and a flip transfers the label from the removed edge to the new edge, we prove a polynomial-time testable condition, called the Orbit Theorem, that characterizes when two triangulations of the same point set lie in the same connected component of the reconfiguration graph. The condition was first conjectured by Bose, Lubiw, Pathak and Verdonschot. We additionally provide a polynomial time algorithm that computes a reconfiguring flip sequence, if it exists. Our proof of the Orbit Theorem uses topological properties of a certain high-dimensional cell complex that has the usual reconfiguration graph as its 1-skeleton. In the context of token swapping on a tree graph, we make partial progress on the problem of finding shortest reconfiguration sequences. We disprove the so-called Happy Leaf Conjecture and demonstrate the importance of swapping tokens that are already placed at the correct vertices. We also prove that a generalization of the problem to weighted coloured token swapping is NP-hard on trees but solvable in polynomial time on paths and stars

    Percolation on self-dual polygon configurations

    Full text link
    Recently, Scullard and Ziff noticed that a broad class of planar percolation models are self-dual under a simple condition that, in a parametrized version of such a model, reduces to a single equation. They state that the solution of the resulting equation gives the critical point. However, just as in the classical case of bond percolation on the square lattice, self-duality is simply the starting point: the mathematical difficulty is precisely showing that self-duality implies criticality. Here we do so for a generalization of the models considered by Scullard and Ziff. In these models, the states of the bonds need not be independent; furthermore, increasing events need not be positively correlated, so new techniques are needed in the analysis. The main new ingredients are a generalization of Harris's Lemma to products of partially ordered sets, and a new proof of a type of Russo-Seymour-Welsh Lemma with minimal symmetry assumptions.Comment: Expanded; 73 pages, 24 figure

    Counting a black hole in Lorentzian product triangulations

    Full text link
    We take a step toward a nonperturbative gravitational path integral for black-hole geometries by deriving an expression for the expansion rate of null geodesic congruences in the approach of causal dynamical triangulations. We propose to use the integrated expansion rate in building a quantum horizon finder in the sum over spacetime geometries. It takes the form of a counting formula for various types of discrete building blocks which differ in how they focus and defocus light rays. In the course of the derivation, we introduce the concept of a Lorentzian dynamical triangulation of product type, whose applicability goes beyond that of describing black-hole configurations.Comment: 42 pages, 11 figure

    Links, two-handles, and four-manifolds

    Full text link
    We show that only finitely many links in a closed 3-manifold share the same complement, up to twists along discs and annuli. Using the same techniques, we prove that by adding 2-handles on the same link we get only finitely many smooth cobordisms between two given closed 3-manifolds. As a consequence, there are finitely many smooth closed 4-manifolds constructed from some Kirby diagram with bounded number of crossings, discs, and strands, or from some Turaev special shadow with bounded number of vertices. (These are the 4-dimensional analogues of Heegaard diagrams and special spines for 3-manifolds.) We therefore get two filtrations on the set of all smooth closed 4-manifolds with finite sets. The two filtrations are equivalent after linear rescalings, and their cardinality grows at least as n^{c*n}.Comment: 23 pages, 9 figures. Final versio

    Collection of abstracts of the 24th European Workshop on Computational Geometry

    Get PDF
    International audienceThe 24th European Workshop on Computational Geomety (EuroCG'08) was held at INRIA Nancy - Grand Est & LORIA on March 18-20, 2008. The present collection of abstracts contains the 63 scientific contributions as well as three invited talks presented at the workshop

    Chromatic Numbers of Simplicial Manifolds

    Full text link
    Higher chromatic numbers χs\chi_s of simplicial complexes naturally generalize the chromatic number χ1\chi_1 of a graph. In any fixed dimension dd, the ss-chromatic number χs\chi_s of dd-complexes can become arbitrarily large for s≤⌈d/2⌉s\leq\lceil d/2\rceil [6,18]. In contrast, χd+1=1\chi_{d+1}=1, and only little is known on χs\chi_s for ⌈d/2⌉<s≤d\lceil d/2\rceil<s\leq d. A particular class of dd-complexes are triangulations of dd-manifolds. As a consequence of the Map Color Theorem for surfaces [29], the 2-chromatic number of any fixed surface is finite. However, by combining results from the literature, we will see that χ2\chi_2 for surfaces becomes arbitrarily large with growing genus. The proof for this is via Steiner triple systems and is non-constructive. In particular, up to now, no explicit triangulations of surfaces with high χ2\chi_2 were known. We show that orientable surfaces of genus at least 20 and non-orientable surfaces of genus at least 26 have a 2-chromatic number of at least 4. Via a projective Steiner triple systems, we construct an explicit triangulation of a non-orientable surface of genus 2542 and with face vector f=(127,8001,5334)f=(127,8001,5334) that has 2-chromatic number 5 or 6. We also give orientable examples with 2-chromatic numbers 5 and 6. For 3-dimensional manifolds, an iterated moment curve construction [18] along with embedding results [6] can be used to produce triangulations with arbitrarily large 2-chromatic number, but of tremendous size. Via a topological version of the geometric construction of [18], we obtain a rather small triangulation of the 3-dimensional sphere S3S^3 with face vector f=(167,1579,2824,1412)f=(167,1579,2824,1412) and 2-chromatic number 5.Comment: 22 pages, 11 figures, revised presentatio

    Subject Index Volumes 1–200

    Get PDF

    The three-dimensional art gallery problem and its solutions

    Get PDF
    This thesis addressed the three-dimensional Art Gallery Problem (3D-AGP), a version of the art gallery problem, which aims to determine the number of guards required to cover the interior of a pseudo-polyhedron as well as the placement of these guards. This study exclusively focused on the version of the 3D-AGP in which the art gallery is modelled by an orthogonal pseudo-polyhedron, instead of a pseudo-polyhedron. An orthogonal pseudopolyhedron provides a simple yet effective model for an art gallery because of the fact that most real-life buildings and art galleries are largely orthogonal in shape. Thus far, the existing solutions to the 3D-AGP employ mobile guards, in which each mobile guard is allowed to roam over an entire interior face or edge of a simple orthogonal polyhedron. In many realword applications including the monitoring an art gallery, mobile guards are not always adequate. For instance, surveillance cameras are usually installed at fixed locations. The guard placement method proposed in this thesis addresses such limitations. It uses fixedpoint guards inside an orthogonal pseudo-polyhedron. This formulation of the art gallery problem is closer to that of the classical art gallery problem. The use of fixed-point guards also makes our method applicable to wider application areas. Furthermore, unlike the existing solutions which are only applicable to simple orthogonal polyhedra, our solution applies to orthogonal pseudo-polyhedra, which is a super-class of simple orthogonal polyhedron. In this thesis, a general solution to the guard placement problem for 3D-AGP on any orthogonal pseudo-polyhedron has been presented. This method is the first solution known so far to fixed-point guard placement for orthogonal pseudo-polyhedron. Furthermore, it has been shown that the upper bound for the number of fixed-point guards required for covering any orthogonal polyhedron having n vertices is (n3/2), which is the lowest upper bound known so far for the number of fixed-point guards for any orthogonal polyhedron. This thesis also provides a new way to characterise the type of a vertex in any orthogonal pseudo-polyhedron and has conjectured a quantitative relationship between the numbers of vertices with different vertex configurations in any orthogonal pseudo-polyhedron. This conjecture, if proved to be true, will be useful for gaining insight into the structure of any orthogonal pseudo-polyhedron involved in many 3-dimensional computational geometrical problems. Finally the thesis has also described a new method for splitting orthogonal polygon iv using a polyline and a new method for splitting an orthogonal polyhedron using a polyplane. These algorithms are useful in applications such as metal fabrication

    Hypersimplicial subdivisions

    Get PDF
    Let π:Rn→Rd be any linear projection, let A be the image of the standard basis. Motivated by Postnikov’s study of postitive Grassmannians via plabic graphs and Galashin’s connection of plabic graphs to slices of zonotopal tilings of 3-dimensional cyclic zonotopes, we study the poset of subdivisions induced by the restriction of π to the k-th hypersimplex, for k=1,…,n−1 . We show that: For arbitrary A and for k≤d+1 , the corresponding fiber polytope F(k)(A) is normally isomorphic to the Minkowski sum of the secondary polytopes of all subsets of A of size max{d+2,n−k+1} . When A=Pn is the vertex set of an n-gon, we answer the Baues question in the positive: the inclusion of the poset of π -coherent subdivisions into the poset of all π -induced subdivisions is a homotopy equivalence. When A=C(d,n) is the vertex set of a cyclic d-polytope with d odd and any n≥d+3, there are non-lifting (and even more so, non-separated) π -induced subdivisions for k=2.The authors were supported by the Einstein Foundation Berlin under grant EVF-2015-230. Work of F. Santos is also supported by grants MTM2017-83750-P/AEI/10.13039/501100011033 and PID2019-106188GB-I00/AEI/10.13039/501100011033 of the Spanish State Research Agency

    Creating 3D models of cultural heritage sites with terrestrial laser scanning and 3D imaging

    Get PDF
    Includes abstract.Includes bibliographical references.The advent of terrestrial laser-scanners made the digital preservation of cultural heritage sites an affordable technique to produce accurate and detailed 3D-computermodel representations for any kind of 3D-objects, such as buildings, infrastructure, and even entire landscapes. However, one of the key issues with this technique is the large amount of recorded points; a problem which was even more intensified by the recent advances in laser-scanning technology, which increased the data acquisition rate from 25 thousand to 1 million points per second. The following research presents a workflow for the processing of large-volume laser-scanning data, with a special focus on the needs of the Zamani initiative. The research project, based at the University of Cape Town, spatially documents African Cultural Heritage sites and Landscapes and produces meshed 3D models, of various, historically important objects, such as fortresses, mosques, churches, castles, palaces, rock art shelters, statues, stelae and even landscapes
    • …
    corecore