
THE THREE-DIMENSIONAL ART GALLERY
PROBLEM AND ITS SOLUTIONS

Jefri Marzal

School of Information Technology
Murdoch University

This thesis is presented for the degree of Doctor of Information Technology
School of Information Technology

Murdoch University
2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository

https://core.ac.uk/display/11243941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

ABSTRACT

This thesis addressed the three-dimensional Art Gallery Problem (3D-AGP), a version of the

art gallery problem, which aims to determine the number of guards required to cover the

interior of a pseudo-polyhedron as well as the placement of these guards. This study

exclusively focused on the version of the 3D-AGP in which the art gallery is modelled by an

orthogonal pseudo-polyhedron, instead of a pseudo-polyhedron. An orthogonal pseudo-

polyhedron provides a simple yet effective model for an art gallery because of the fact that

most real-life buildings and art galleries are largely orthogonal in shape. Thus far, the existing

solutions to the 3D-AGP employ mobile guards, in which each mobile guard is allowed to

roam over an entire interior face or edge of a simple orthogonal polyhedron. In many real-

word applications including the monitoring an art gallery, mobile guards are not always

adequate. For instance, surveillance cameras are usually installed at fixed locations.

The guard placement method proposed in this thesis addresses such limitations. It uses fixed-

point guards inside an orthogonal pseudo-polyhedron. This formulation of the art gallery

problem is closer to that of the classical art gallery problem. The use of fixed-point guards

also makes our method applicable to wider application areas. Furthermore, unlike the existing

solutions which are only applicable to simple orthogonal polyhedra, our solution applies to

orthogonal pseudo-polyhedra, which is a super-class of simple orthogonal polyhedron.

In this thesis, a general solution to the guard placement problem for 3D-AGP on any

orthogonal pseudo-polyhedron has been presented. This method is the first solution known so

far to fixed-point guard placement for orthogonal pseudo-polyhedron. Furthermore, it has

been shown that the upper bound for the number of fixed-point guards required for covering

any orthogonal polyhedron having n vertices is (n3/2), which is the lowest upper bound

known so far for the number of fixed-point guards for any orthogonal polyhedron.

This thesis also provides a new way to characterise the type of a vertex in any orthogonal

pseudo-polyhedron and has conjectured a quantitative relationship between the numbers of

vertices with different vertex configurations in any orthogonal pseudo-polyhedron. This

conjecture, if proved to be true, will be useful for gaining insight into the structure of any

orthogonal pseudo-polyhedron involved in many 3-dimensional computational geometrical

problems. Finally the thesis has also described a new method for splitting orthogonal polygon

iv

using a polyline and a new method for splitting an orthogonal polyhedron using a polyplane.

These algorithms are useful in applications such as metal fabrication.

v

TABLE OF CONTENTS

ABSTRACT iii

TABLE OF CONTENTS v

ACKNOWLEDGEMENTS viii

LIST OF PUBLICATIONS ix

CONTRIBUTIONS OF THE THESIS x

LIST OF FIGURES xi

LIST OF TABLES xiii

CHAPTER 1: THE ART GALLERY PROBLEMS 1

1.1 The Classical Art Gallery Problem 1
1.2 Three-Dimensional Art Gallery Problems 5
1.3 Aims and Significance of this Research 8
1.4 Research Objectives 9
1.5 Outcomes of the Research 10
1.6 Structure of the Thesis 11

CHAPTER 2: CONCEPTS AND TERMINOLOGY FOR POLYGONS AND
POLYHEDRA 14

2.1 Polygon 14
2.1.1 Definitions and terminology 14
2.1.2 Decomposition of polygons 18
2.1.3 Optimisation issues in the decomposition of polygon 20

2.2 Polyhedron 21
 2.2.1 Definitions and terminology 21
 2.2.2 Orthogonal polyhedron 25
 2.2.3 Decomposition of polyhedron 29
2.3 Data Representation for Polygon and Polyhedra 31
 2.3.1 Data representation for an orthogonal polygon 31
 2.3.2 Data representation for an orthogonal polyhedron 32
 2.3.3 Data representation for a polyhedron 35

CHAPTER 3: VERTEX CONFIGURATIONS OF ORTHOGONAL PSEUDO-
POLYHEDRA

3.1 Introduction 38
3.2 Vertex Configuration Conjecture 39
3.3 The Number of Defferent Vertex Configurations in any OPP 40
3.4 Constructing Orthogonal Pseudo-Polyhedra 47
 3.4.1 Joining operation 48

vi

3.5 The Vertex Configurations Conjecture 52
3.6 Duality of Vertex Configurations 59
3.7 Summary 61

CHAPTER 4: SPLITTING OPERATIONS 62

4.1 Introduction 62
4.2 Splitting an Orthogonal Polygon Using a Polyline 64
 4.2.1 Definition and Terminology 64
 4.2.2 An algorithm of splitting an orthogonal polygon using a polyline 67

4.2.3 Combining the vertices of an orthogonal polygon and a polyline 68
4.2.4 Grouping vertices 70
4.2.5 Implementation of the algorithm 71
4.2.6. Time complexity analysis and discussion 72

4.3 Splitting an Orthogonal Polyhedron Using a Polyplane 72
 4.3.1 Definition and terminology 73
 4.3.2 An algorithm of splitting an orthogonal polyhedron using a polyplane 77
 4.3.3 Combining vertices 77
 4.3.4 Grouping vertices 79
 4.3.5 Implementation of the algorithm 82
 4.3.6 Time complexity analysis and discussion 83
4.4 Splitting Polyhedra in a Bounding Box 84
 4.4.1 Definition and terminology 85
 4.4.2 The algorithm for splitting polyhedra 87
 4.4.3 Intersection line and plane 88
 4.4.4 Computing a splitting plane 89
 4.4.5 Calculating the intersection point on an edge of a polyhedron 91
 4.4.6 Splitting a polyhedron into two polyhedra 92
 4.4.7 Implementation of the algorithm 94
 4.4.8 Time complexity analysis and discussion 96
4.5 Summary 97

CHAPTER 5: PLACEMENT OF FIXED-POINT GUARDS IN AN ORTHOGONAL

PSEUDO-POLYHEDRON 98
5.1 Terminology and Related Research 100
5.2 The Fixed-Point Guard Placement Algorithm 103
5.3 Partitioning of an Orthogonal Pseudo-Polyhedron 104
5.4 Computing Visibility Subsets in an Orthogonal Pseudo-Polyhedron 108
5.5 Mapping 3D-AGP into Minimum Set Cover Problem 112
5.6 Solving the Minimum Set Cover Problem  An Example 113
 5.6.1 Integer Linear Programming formulation of the MSC problem 115
5.7 The time Complexity of the Fixed-Point Guard Placement Algorithm 116
5.8 Reducing the Number of Guards 117
5.9 Summary 121

CHAPTER 6: AN UPPER BOUND ON THE NUMBER OF FIXED-POINT
 GUARDS FOR ORTHOGONAL POLYHEDRA 122
6.1 Introduction 122

vii

6.2 Determining the Dominant Pieces 123
6.2.1 Around pieces of various types of vertex 124
6.2.2 Remote pieces 126

6.3 Reducing the Number of Input Data for the MSC Problem 127
6.4 Upper Bound of Fixed-Point Guards for an Orthogonal Polyhedron 128
 6.4.1 Counting the number of dominant visible pieces 128
 6.4.2 Counting the number of partially visible pieces 129
 6.4.3 Relationship between the number of vertices and reflex vertices 133
6.5 Summary 134

CHAPTER 7: CONCLUSION AND FUTURE RESEARCH 135

7.1 Conclusion 135
7.2 Future Research 138

REFERENCES 140

APENDIXES 145

Appendix 1 : The solution of 3D-AGP case (input as Table 5.1) by using dual simplex
algorithm 145

Appendix 2: The solution of 3D-AGP case (input as Table 5.2) by using dual simplex
algorithm 150

viii

ACKNOWLEDGEMENTS

Foremost, I would like take this opportunity to express my sincere appreciation to my thesis

supervisor Dr. Hong Xie for his guidance and encouragement throughout my Doctoral of

Information Technology (DIT) study and research at Murdoch University. His guidance

helped me in all the time of research and writing this thesis. I could not have imagined

having a better supervisor for my DIT study. To him I owe too much.

I am also grateful to my thesis co-supervisor Associate Professor Chun Che Fung. He has

always offered me a stimulating, supportive, and comfortable environment to grow.

I would like to thank all my friends in Murdoch University for creating a friendly and

supportive environment. This includes Chareen, Ning, Boom, and Mohammed

This thesis would not have been possible without the financial support from Indonesian

Government. I would like to express my gratefulness to Ms. Avianti Amir for her assistance.

Last but not the least, I would like to thank my wife Timang Sutera for her understanding and

love, my daughter Puti Intan Mayang Sani, my son Arung Sulthan Pamuka, and my parents

ayahanda Masril and ibunda Zuarda for supporting me spiritually throughout my life.

ix

LIST OF PUBLICATIONS

The following papers have reported some of the results contained in this thesis.

Journal Papers:

J1. Marzal, J., H. Xie, and C. C. Fung. (2011). "Vertex Configurations and Their

Relationship on Orthogonal Pseudo Polyhedra" World Academy of Science,

Engineering and Technology (77): 1-8.

J2. Marzal, J., H. Xie, and C. C. Fung. (2012). "An Algorithm for Point-Guard Placement

on an Orthogonal Polyhedron " International Journal of Computational Geometry and

Applications (IJCGA). Submitted for review.

Conference proceedings:

C1. Marzal, J. and H. Xie (2009). Guards placement in the art gallery problem. The 10th

Postgraduate Electrical Engineering and Computing Symposium. Edith Cowan

University, Perth, Australia on October 1, 2009

C2. Marzal, J., H. Xie, and C. C. Fung. (2011). An Algorithm for Splitting an Orthogonal

Polyhedron with a Polyplane. International Conference on Uncertainty Reasoning and

Knowledge Engineering. Bali Indonesia on August 4-7, 2011

C3. Marzal, J., H. Xie, and C. C. Fung. (2011). An Algorithm for Splitting Polyhedra in a

Bounding Box from a View Point. International Technical Conference of IEEE Region

10, Bali Indonesia on November 21-24, 2011.

C4. Marzal, J., H. Xie, and C. C. Fung. (2012). Computing Visibility Subset in an

Orthogonal Polyhedron. International Conference on Computer Science, Information

System & Communication Technologies (ICCSISCT 2012), Bangkok, Thailand on

September 1-2, 2012. Accepted for oral presentation.

x

CONTRIBUTIONS OF THE THESIS

The contributions in this thesis are described below.

In this thesis, a general solution to the guard placement problem for 3D-AGP on any

orthogonal pseudo-polyhedron has been presented. To our knowledge, this method is the first

solution to fixed-point guard placement for orthogonal pseudo-polyhedron. This is

documented in Chapter 5. Some of the results have been reported in the conference paper C4

and the journal paper J2.

Furthermore, this thesis has shown that the upper bound for the number of fixed-point guards

required for covering any orthogonal polyhedron having n vertices is (n3/2), which is the

lowest upper bound known so far for the number of fixed-point guards for any orthogonal

polyhedron. This result is documented in Chapter 6.

This thesis also provides a new way to characterise the type of vertex in any orthogonal

pseudo-polyhedron and has conjectured a quantitative relationship between the numbers of

vertices with different vertex configurations in any orthogonal pseudo-polyhedron. This

result is documented in Chapter 3. Some of this work has been reported in the journal paper

J1.

Finally the thesis has also described a new method for splitting orthogonal polygon using a

polyline and a new method for splitting an orthogonal polyhedron using a polyplane. These

algorithms are useful in applications such as metal fabrication. This is documented in Chapter

4 and part of the work has been published in conference papers C2. A new method for

splitting polyhedra in a bounding box has been developed. It is also documented in Chapter 4

and it part of the work has been reported in paper C3.

xi

LIST OF FIGURES

Figure 2.1: (a) A Polygon and (b) a Polygon with Holes 16
Figure 2.2: (a) An Orthogonal Polygon and (b) an Orthogonal Polygon with Holes 17
Figure 2.3: Three Different Convexities on Orthogonal Polygons 18
Figure 2.4: A Multi-shell Polyhedron 22
Figure 2.5: A Polyhedron has a Hole 24
Figure 2.6: Relationship between the Pseudo-Polyhedron Class
 and the other Classes 24
Figure 2.7: (a) An Orthogonal Polyhedron and (b) an Orthogonal Pseudo-Polyhedron 25
Figure 2.8: Number of Faces around a Vertex 26
Figure 2.9: Different Dihedral Angles around a Vertex v 27
Figure 2.10: A Degree-Three and a Non-Degree-Three Orthogonal Polyhedron 27
Figure 2.11: The f Count in Euler Formula 28
Figure 2.12: Relationship among the Orthogonal Pseudo-Polyhedron Class and other

Classes 29
Figure. 2.13: Number of Tetrahedra in Different Tetrahedralisations 30
Figure 2.14: Reconstruction of an Orthogonal Polygon 32
Figure 2.15: Reconstruction of Orthogonal Polyhedron 35
Figure 2.16: Facet f1 is in the Right Side Oriented Edge Cycle 37

Figure 3.1: Two Different Vertex Configurations 40
Figure 3.2: Relative Position of Cubes: Adjacent (a), Diagonally Adjacent (b),
 Interstitial Cubes (c), 3-Consecutive Cubes (d),
 and 4-Consecutive Cubes (e) 41
Figure 3.3: Four Possible Vertex Configuration for V3 46
Figure 3.4: Four Possible Vertex Configurations for V4 46
Figure 3.5: Two Possible Vertex Configurations for V5 46
Figure 3.6: Six Possible Vertex Configurations for V6 47
Figure 3.7: (a) An OPP. (b) XY Decomposition (4 boxes). (c) YX Decomposition (5

boxes) 48
Figure 3.8: A tree Diagram of Vertex Configurations 51
Figure 3.9: P is a Result of Joining P1 and P2 58
Figure 3.10: A is a Vertex on the Inner Boundary of P1 and Outer Boundary of P2 60

Figure 4.1: Steps to Get an L-Shape Piece 63
Figure 4.2: An Orthogonal Polygon with a Polyline 65
Figure 4.3: Polylines on orthogonal polygons 66
Figure 4.4: One of the Two Intersection Vertices Lies on the Vertex of an Orthogonal

Polygon 68
Figure 4.5: Procedure CombiningVertices for Combining Vertices 69
Figure 4.6: Algorithm for Grouping Vertices 71
Figure 4.7: The Vertices of Orthogonal Polygon and a Polyline 71
Figure 4.8: Valid (a) and not Valid (b) Instances of Polyplane 74
Figure 4.9: An Orthogonal Polyhedron with a Polyplane 75

Figure 4.10: Valid (a,b,c) and not Valid (d) Polyplanes in Orthogonal Polyhedra 76

xii

Figure 4.11: Splitting an Orthogonal Polyhedron with a Polyplane 78
Figure 4.12: Procedure CVOPolyhedronPolyplane for Combining Vertices 79
Figure 4.13: Procedure GroupingVertices3D for Grouping the Combined Vertices 81
Figure 4.14: The Vertices of an Orthogonal Polyhedron after Splitting 82
Figure 4.15: A Walk for Grouping Vertices 83
Figure 4.16: One Edge of B is Shared by S in (a); There is no Edge of B Shared
 by S in (b) or (c) 86
Figure 4.7: Primitive Procedures and Functions for Splitting in a Bounding Box 88
Figure 4.18: Algorithm ComputingSplittingPlane for Computing
 a Splitting Plane 91
Figure 4.19: Algorithm IntersectionPoint for Determining Intersection Points 92
Figure 4.20: Grouping Polyhedra 93
Figure 4.22: Illustration of Splitting Polyhedron in a Bounding Box 94
Figure 4.23: The Resulting of Splitting Polyhedra 96

Figure 5.1: (a) an OPP, (b) Partitioning of the OPP 101
Figure 5.2: Algorithm rectangPrism for decomposing P into rectangular prisms 106
Figure 5.3: Algorithm for Splitting an OPP into Two Halves 107
Figure 5.4: Corner Points on an Orthogonal Pseudo-Polyhedron 108
Figure 5.5: Algorithm for Constructing Visibility Subsets 109
Figure 5.6: Function IsViewBlocked for Blocking Determination 110
Figure 5.7: The Guards Position after Deploying Integer Linear Programming 116
Figure 5.8: Partitioning in Pieces that are Visible by Sections 120

Figure 6.1: Dominant Pieces Shared by the V31 Vertex 123
Figure 6.2: Around Pieces and Remote Pieces 124
Figure 6.3: Around Pieces of Vertices of Orthogonal Polyhedra 125
Figure 6.4: Illustration of a Partially Visible Piece  Position in 3D (a) and 2D (b) 129
Figure 6.5: The Partially Visible Pieces 1 and 2 Share Three Dents d1, d2 and d3 131
Figure 6.6 : Illustration of Adjacent Pieces among Several Formats 131
Figure 6.7: Cube of m where m = 27 132

xiii

LIST OF TABLES

Table 3.1: Constructing OPPs Using at most Eight Cubes 43
Table 3.2: Grouping of OPPs 45
Table 3.3: Joining Operation on an OPP 49
Table 3.4: Relationship among the Vertex Configurations on Simpler OPPs 54
Table 3.5: Operations and their R Value 58
Table 3.6: Vertex Configurations and Their Duality 60

Table 5.1: Corner Point and their Visibility Regions 112
Table 5.2: Corner Points and their Visibility Region 120

1

CHAPTER 1

INTRODUCTION

1.1 The Classical Art Gallery Problem

Guarding the works of famous painters in art galleries is not an easy task as a work of art is

desired by art lovers and coveted by criminals. Art galleries must constantly monitor their

collections of art to guard against any unexpected actions by visitors, such as theft,

vandalism, and destruction. Art works can be monitored by video cameras, which are usually

hung from the ceiling. Images from these cameras are sent to TV screens in the security

offices either located at the gallery or some remote management centers.

It is intuitive to think that the number of cameras used to monitor the art gallery should be

kept as small as possible. The reason for this is not solely due to financial issues, but also

because it is easier to monitor art gallery areas using fewer TV screens than many. On the

other hand, art galleries cannot have too few cameras, because they may not cover all of the

art gallery’s interior. This raises an interesting question in computational geometry, which is

usually referred to as the Art Gallery Problem: How many cameras do we need to guard a

given gallery and how do we decide where to place them? This problem was first posed by

Victor Klee to his students in 1973[1].

Although the art gallery problem was motivated by the needs of monitoring the art gallery,

the problem posed by Victor Klee is a computational geometry problem that has much wide

application than guarding an art gallery, such as computer graphic, databases, image

processing, VLSI layout, and artwork analysis [2].

2

A gallery is, of course, in a three-dimensional space, but its floor plan may give us a lot of

information to place the cameras. Therefore, traditionally, an art gallery is modelled as a

simple polygon  that is, regions enclosed by a single closed polygonal chain that does not

intersect itself [3]. A camera position in the gallery corresponds to a point in the polygon. A

camera sees a point as long as the line of sight to the point lies totally inside of the polygon.

Much research has been done to solve the original art gallery problem and its many variations

[4-6]. The first solution of the art gallery problem came in 1975 from Chavatal, who proved

that n/3 guards are occasionally necessary and always sufficient to cover an n-gon [1].

Three years later, Fisk gave an elegant proof of Chavatal’s theorem by using the concept of

triangulation and a three-colouring scheme [7]. Avis and Toussaint developed the O(n log n)

algorithm for placing these n/3 stationary guards [8]. This algorithm is bounded by two

other O(n log n) algorithms: the triangulation of a simple polygon [9] and three-colouring of

the triangulated polygon [8]. The time complexity of Avis and Toussaint’s algorithm was

further improved by Chazelle, who obtained a linear time triangulation algorithm [10], and by

Kooshesh and Moret, who obtained a linear time three-colouring algorithm [11].

In the classic art gallery problem, an art gallery is represented by a simple polygon. Recently

more attention was given to an important variation of the classic art gallery problem by

restricting the simple polygon to be orthogonal. This is perhaps because most real buildings

are largely orthogonal, and thus orthogonal polygons are better models for potential

applications. Due to its simplicity, modelling an art gallery with a simple orthogonal polygon

allow us to obtain more efficient algorithms and aesthetic results. An orthogonal polygon is a

simple polygon whose edges are either horizontal or vertical. Khan, Klawe, and Kleitman

showed that n/4 guards are sufficient and sometimes necessary to cover any simple

orthogonal polygon with n vertices [12]. O’Rourke later gave a completely different but

3

somewhat simpler proof of this result [13]. Edelsbrunner, O’Rourke, and Welzl devised an

O(n log n) algorithm for placing these n/4 guards [14]. The first O(n) algorithm for

placement of the vertex guards for monitoring the inside of an orthogonal polygon was

obtained by Sack [15].

The floor plan of any art gallery may be modelled as a simple polygon. However, in a real-

world art gallery, there may be obstructions inside the gallery. These obstructions are called

holes. In 1995, Bjorling-Sachs and Souvaine established that (n+h)/3 vertex guards are

always sufficient and sometimes necessary to guard a polygon with n vertices and h holes

[16].

There are several ways to place guards. The first type is the vertex guard where the position

of any guard is restricted to a vertex of the polygon. The problem of determining the

minimum number of vertex guards that can see an n-wall simply connected art gallery is

shown to be NP-hard [17]. Meanwhile, Schuchardt and Hecker proved that the problem of

determining the minimum number of vertex guards that see a simple orthogonal polygon is

also NP-hard [18].

The second type of guard is the point guard where each guard can be placed anywhere in the

polygon. Hoffmann, Kaufmann, and Kriegel proved that any polygon, possibly with holes,

can be monitored by at most (n+h)/3 point guards where n is the total number of vertices

and h the number of its holes. Lee and Lin showed that the problem of determining the

minimum number of point guards that can see the inside of a simple polygon is NP-hard [17].

Furthermore, they proved that n/4 point guards are the exact bound for monitoring the

inside of an orthogonal polygon with n vertices.

4

The third type of guard is the edge guard, where a guard is allowed to move along the edge of

a polygon. O’Rourke showed that n/4 edge guards are always sufficient and sometimes

necessary to cover the polygon with n vertices [19]. The problem of determining the

minimum number of edge guards in a simple polygon is also NP-hard [17]. Meanwhile,

Bjorling-Sach showed that (3n+4)/16 edge guards are always sufficient to guard any simple

orthogonal polygon with n vertices. [20].

The fourth type is the mobile guard where a guard for a simple polygon is allowed to move

along a sequence of closed line segments totally contained in the simple polygon [19].

O’Rourke showed that if the guards are permitted to patrol fixed interior line segments of a

simple polygon with n vertices, then n/4 guards are always sufficient and sometimes

necessary for n ≥ 4 [19]. Aggarwal in [21] proved that (3n+4)/16 mobile guards are always

sufficient and occasionally necessary to cover any simple orthogonal polygon with n vertices,

and (3n+4h+4)/16 mobile guards are always sufficient and occasionally necessary to guard

the polygon with n vertices and h holes.

Since most of the minimum guard problems are NP-hard, the focus of the research

community has been on developing heuristics and approximation methods for the problem.

For example, Ghosh proposed an O(n5 log n) time approximation algorithm to find a vertex

guard set that is at most O(log n) times the minimum number of vertex guards needed to

cover a polygon with or without holes and with n vertices [22].

Tomas, Bajuelos, and Marques proposed an approximation algorithm to find a vertex guard

set, in which the main idea in their approach is that each interior piece of an orthogonal

polygon must be totally visible by at least one guard. They proved that the difference between

the minimum number of guards and their approximation is quite small, namely (log n) times,

where n is the number of vertices of the polygon [23].

5

Amit, Mitchell, and Parker reported heuristics for computing a small set of point guards to

cover a given polygon. They recommended three heuristics: guarding quality, space and

time. The sets of guards obtained using heuristic approach were very satisfactory, and they

were always either optimal or close to optimal [24]. A genetic algorithm was applied as an

approximation algorithm, in which the average of the minimal number of vertex-guards

needed to cover a simple polygon with n vertices was observed to be n/6.48 [25].

Recent studies have considered a number of variations of the original art gallery problem.

Saleh proposed k-vertex guarding simple polygon, in which a polygon is called k-vertex

guardable if there is a subset of vertices of the polygon such that each point in the polygon is

see by at least k-vertices in the subset of vertices [26]. He proved that 2n/3 is needed for k=2

to see the inside of a simple polygon with n vertices. Fragoudakis addressed the problem of

efficiently placing guards and paintings in an art gallery by introducing the finest visibility

segmentation concept whose goal is to place paintings and guards in an art gallery in such a

way that the total value of the guarded paintings is maximised [27]. Bajuelos estimated the

maximum hidden vertex set in a polygon [28]. Rana proposed a technique to identify the

minimal number of CCTV cameras with the most visual coverage of open spaces [29].

Carevelas considered the problem of monitoring a polygon where the edges of which are arcs

of curves [30]. Epstein considered the problem of placing a small number of angle guards

inside a polygon [31], and Toth studied the art gallery problem with guards whose range of

vision is 180 [32].

1.2 Three-Dimensional Art Gallery Problems

Early studies of the art gallery problem used a polygonal region in the plane as the model of

the art gallery. The plane polygon only models the floor outline of the art gallery. It does not

always provide adequate information about the complex spatial structure of the building. In

6

many applications, knowledge of the spatial structure of the building is essential for deciding

how the building should be monitored.

Therefore, it is necessary to consider the 3D structure of a building to determine the number

of guards required to cover it as well as the placement of these guards. This thesis focused on

the three-dimensional art gallery problem (3D-AGP), a version of the art gallery problem in

which the art gallery is modelled by a pseudo-polyhedron. Hence, in this thesis the classical

art gallery problem in which the art gallery is modelled by a polygon is called the two-

dimensional art gallery problem (2D-AGP) to distinguish it from the 3D-AGP. Furthermore,

as this thesis exclusively focuses on the version of the 3D-AGP in which the art gallery is

modelled by an orthogonal pseudo-polyhedron instead of a pseudo-polyhedron, the term 3D-

AGP is used to imply the three-dimensional art gallery problem in which the art gallery is

modelled by an orthogonal pseudo-polyhedron, unless it is specially pointed out otherwise.

An orthogonal pseudo-polyhedron provides a simple yet effective model for an art gallery

because of the fact that most real-life buildings and art galleries are largely orthogonal in

shape. In addition, most applications are in a 3D environment (e.g., art galleries,

supermarkets, banks, sensor network areas, and robot motion planning); therefore, using an

orthogonal pseudo-polyhedron to model the art gallery/building/structure is more desirable

than using a plane polygon.

Work on the 3D-AGP is much less extensive than those on the 2D-AGP. In the last two

decades, only a small number of studies were reported on some aspects of the 3D-AGP. For

instance, Bose, Shermer, Taussaint, and Zhu considered using vertex guards to monitor the

surface of a polyhedron. They proved that n/2 vertex guards are always sufficient and some

time necessary to see the surface of the polyhedron having n vertices. They also reported that

(4n-4)/13 edges guards, which are mobile moving guards along the edges, are some time

7

necessary to guard the surface of a polyhedron having n vertices [33]. Grunbaum and

O’Rourke used vertex guards to see the exterior of a simple polyhedron, and stated that (2f-

4)/3 vertex guards are sometimes necessary and always sufficient to monitor the exterior of a

convex polyhedron with f faces, for f 10 [4].

One may assume that placing a guard at each and every vertex of a polyhedron would cover

the interior of the polyhedron. This was proved not be the case by Seidel. He gave an

example of a simple orthogonal polyhedron in which guards placed at every vertex of that

polyhedron do not fully cover the interior of the polyhedron. He also noted that (n3/2)

guards are sufficient to monitor that special type of simple orthogonal polyhedron, where n is

the number of vertices [4]. Based on the example given by Seidel, it can be concluded that

vertex guards are not suitable for the 3D-AGP. The reason for this is that there could be some

areas or points inside an orthogonal polyhedron that are not visible from any vertex.

Souvaine, Veroy, and Winslow recently introduced the face guard, which is a guard that

roam over an entire interior face of a simple polyhedron. They used face guards to monitor

the interior of a simple polyhedron and a simple orthogonal polyhedron. They also proved

that f /6 face guards are sufficient to monitor any simple orthogonal polyhedron with f

faces. They also reported that f /2 face guards are sufficient to guard any simple polyhedron

with f faces [34]. However, there is no procedure to place these face guards on the interior of

the simple orthogonal polyhedron was given by them.

Based on the above discussion, the 2D-AGP is well known, but very little is known about the

3D-AGP. Progress in 3D-AGP has been difficult because the 3D-AGP does not have a set of

established tools such as a triangulation, the main tool used in the 2D-AGP. Although there is

a large difference between the problems in two and three dimensions, the 3D-AGP is being

actively studied, and researchers have proposed vertex guards and mobile guards for solving

8

the 3D-AGP. However, these types of guards have shortcomings: (i) guards posted at every

vertex of a polyhedron can obviously cover the inside if any polyhedron were

tetrahedralizable such that every tetrahedron can be monitored by one guard in the corner;

however, not every polyhedron is tetrahedralizable. Hence, vertex guards cannot be applied

to fully cover the interior of a polyhedron. (ii) Mobile guards such as an edge guard and a

face guard can overcome the limitation of vertex guards; however, in real life a mobile guard

is not always suitable. Most real-life guards need to be stationary and remain at fixed

positions at all times. For example, in many supermarkets, banks, art galleries, and even in

many public places, surveillance cameras are widely deployed to monitor an area. It is

impractical and also too expensive to require these cameras to move around in order to cover

an area.

Therefore, stationary guards are more suitable than mobile guards in these applications.

Because of the limitation of the vertex guards, in this thesis, only stationary point guards will

be considered. A stationary point guard is also called a point guard, or a fixed-point guard. It

can be placed anywhere inside a pseudo-polyhedron including on the interior of a face, or an

edge, or a vertex of the pseudo-polyhedron. Once placed inside a polyhedron, it will remain

in the allocated point and will never change its position.

1.3 Aims and Significance of this Research

The primary aim of this thesis is to develop a guard placement algorithm to monitor the entire

interior of an orthogonal pseudo-polyhedron using only fixed-point guards and to determine

an upper bound for the number of fixed-point guards required to cover the interior of an

orthogonal polyhedron.

9

Current work on the 3D-AGP faces some challenges such as the fact that vertex guards are

not suitable to any simple orthogonal polyhedron and mobile guards are not adequate in many

real-world applications. This thesis attempts to address these limitations.

First, in this thesis, only fixed-point guards will be used. This formulation of the 3D art

gallery problem is much closer to that of the original art gallery problem, which only

considered stationary point guards. The use of fixed-point guards also means that any

solution we develop will have wider applications. Second, existing work focused on guard

placement for a simple orthogonal polyhedron. Unfortunately, many real-world objects

cannot be modelled by a simple orthogonal polyhedron. In our work, a broader class of 3D

geometric model, i.e., orthogonal pseudo-polyhedron, will be used. The simple orthogonal

polyhedron is only a small subset of orthogonal pseudo-polyhedron. Therefore, our solution

based on orthogonal pseudo-polyhedron is expected to have more real-world applications

than those based on simple orthogonal polyhedron. Third, we believe our method based on

orthogonal pseudo-polyhedron is more amenable to orthogonal pseudo-polyhedron with

multiple boundaries.

1.4 Research Objectives

The main goal of this thesis is to develop a method for computing a small set of guards and

their placement to cover any orthogonal pseudo-polyhedron. To achieve the goal, detailed

study of the nature of orthogonal pseudo-polyhedron must be carried. A number of basic

operations involving an orthogonal pseudo-polyhedron need to be developed. The following

is a list of work we are proposing to carry out during this study:

1. To investigate various properties of an orthogonal pseudo-polyhedron to see whether

there are any intrinsic rules governing it. More specifically, we will investigate

10

different type of vertex configurations and their relationships in an orthogonal

pseudo-polyhedron.

2. To investigate an effective way to split an orthogonal polygon, as well as an

orthogonal polyhedron, and a polyhedron. The work on polygon splitting may lend us

ideas for splitting polyhedron.

3. To investigate the ways to decompose an orthogonal pseudo-polyhedron into a set of

simple and primitive 3D shapes, such as rectangular prisms. An effective method for

decomposition of orthogonal pseudo-polyhedron will be critical in determining the

guard placement.

4. To investigate the way to compute the set of rectangular prisms, or other primitive 3D

shapes, that are visible from a given point inside an orthogonal pseudo-polyhedron.

This procedure would be useful for the reduction of the number of guards required.

5. To develop methods for determining the number of fixed-point guards needed for

monitoring an orthogonal pseudo-polyhedron and the procedures for placement of

these fixed-point guards in the orthogonal pseudo-polyhedron.

6. To determine a non-trivial upper bound for the number of fixed-point guards required

for monitoring an orthogonal polyhedron. Such an upper bound will have theoretical

significance since no non-trivial upper bound is known for a general orthogonal

polyhedron at the present.

1.5 Outcomes of the Research

1. A general solution to the guard placement problem for 3D-AGP on any orthogonal

pseudo-polyhedron will be developed. To our knowledge, this method will be the first

solutions to fixed-point guard placement for orthogonal pseudo-polyhedron.

11

2. An upper bound for the number of fixed-point guards required for covering any

orthogonal polyhedron.

3. A new way to represent a vertex configuration in orthogonal pseudo-polyhedra and a

conjecture a quantitative relationship between the numbers of vertices in different

vertex configurations in any orthogonal pseudo-polyhedra. This innovative approach

will be useful for representing related geometry objects and their computational

aspects.

4. A new method for splitting orthogonal polygon using a polyline and a new method for

splitting an orthogonal polyhedron using a polyplane. These algorithms will be useful

in applications such as metal fabrication.

1.6 Structure of Thesis

This thesis consists of seven chapters and two appendixes.

Chapter 2 provides definitions and terminology for concepts and operations involving

polygons and polyhedra. It also discusses the data structures for representing orthogonal

polygons, and polyhedra in computer memory.

Chapter 3 introduces the concept of vertex configurations of orthogonal pseudo-polyhedra. It

then shows that there are up to 16 different vertex configurations in any orthogonal pseudo-

polyhedron. The chapter also discusses the quantitative relationship between different types

of vertex configurations in an orthogonal pseudo-polyhedron, and proposes a conjecture

called the Vertex Configuration Conjecture. A number of related topics are also discussed in

the chapter. They include reconstructing the orthogonal pseudo-polyhedron after it has been

decomposed. Finally, it discusses the duality of each vertex configuration.

12

Chapter 4 proposes procedures for splitting different geometry models. Splitting operations

are used to separate an object into two halves. The chapter starts with a new splitting

procedure for an orthogonal polygon using a polyline. Then, it presents a new algorithm for

splitting an orthogonal polyhedron using a polyplane. Finally, it introduces a procedure for

splitting polyhedra using a splitting plane that passes through a given view point. This

procedure is used in Chapter 5.

Chapter 5 develops a new method for determining the number of fixed-point guards needed

to monitor an orthogonal pseudo-polyhedron, as well as where to place these guards. After

introducing the related terminology and the existing work, the chapter describes a new

algorithm for calculating the positions of a set of fixed-point guard. This algorithm makes use

of several basic operations such as partitioning an orthogonal pseudo-polyhedron, computing

visibility subsets, and mapping the 3D-AGP into the minimum set cover (MSC) problem,

each of which is explained separately in this chapter. Finally, a new method is proposed to

reduce the number of guards required to cover the interior of an orthogonal pseudo-

polyhedron.

Chapter 6 refines the algorithm presented in Chapter 5 for determining and placement of

fixed-point guards for monitoring an orthogonal pseudo-polyhedron. In the refined algorithm,

only orthogonal polyhedron, rather than orthogonal pseudo-polyhedron, is considered. The

refined algorithm relies on a definition to determine the dominant pieces such that the number

of data inputs for the MSC problem which is a component of that algorithm can be reduced.

In this chapter, the dominant pieces around various types of vertex configurations in any

orthogonal polyhedra are identified. Based of the identification of dominant pieces, a new,

non-trivial, upper bound for the number of fixed-point guards required for monitoring the

interior of an orthogonal polyhedron is derived.

13

 Chapter 7 presents the conclusions of this thesis and discusses the future research directions.

14

CHAPTER 2

CONCEPTS AND TERMINOLOGY FOR POLYGONS AND
POLYHEDRA

This chapter provides some basic concepts and terminology for polygons and polyhedra.

They will be used for developing new concepts and procedures in later chapters. Some issues

and related research on polygons and polyhedra are also discussed in this chapter.

2.1 Polygon

In elementary geometry, a polytope is a geometric object with flat sides, which exists in any

general number of dimensions. For example, a polygon is a polytope in two dimensions,

while a polyhedron is a polytope in three dimensions. Polygons and polyhedra are the most

popular polytopes because they are widely used models for many real world objects.

2.1.1 Definitions and terminology

A polygon is one of the basic concepts in computational geometry. A polygon is defined

using its boundary, which is called a polygonal curve. A polygonal curve consists of a series

of line segments, s1, s2,..., sn. Each line segment si has two end points known as the starting

point and the end point. These line segments are connected in the following way: for any two

consecutive line segments si and s(i+1), the end point of si is connected to the starting point of

s(i+1) for 1  i < n. A polygonal curve is said to be simple if, apart from the aforementioned

intersections between consecutive line segments, there are no other intersections between the

line segments of the polygonal curve. A polygonal curve is closed if the end point of its last

line segment sn is connected to the starting point of its first line segment s1. A simple closed

polygonal curve is a polygonal curve that is both simple and closed. A polygon is defined as a

15

closed and bounded region of a plane whose boundary is a simple closed polygonal curve.

[3].

From these definitions, there are clearly two basic components in a polygon. They are the

vertex and the edge. A vertex of a polygon is a point on its boundary in which the boundary

changes its slope, and an edge is a line segment on the polygon’s boundary that connects two

vertices. Two vertices p and q are adjacent to each other if they are connected by an edge e.

In such a case, e is incident to vertex p and vertex q, and p and q are incident to e.

A polygon divides the 2-dimensional plane into two disjoint regions: the interior region

which is finite and exterior region which is infinite. The simple closed polygonal curve forms

the boundary that separates the two regions. A point is said to be inside a polygon if that

point is located in the interior region of the polygon, or on its boundary. A point is said to be

outside of a polygon if it is not located inside polygon. An area is said to be inside a polygon

if all of its points are located inside the polygon [35].

A polygon with holes is defined as a shape that consists of one large polygon and one or more

smaller polygons that are located completely inside the large polygon (but they do not

intersect with the boundary of the large polygon), and these smaller polygons neither intersect

with each other nor overlap with each other [3]. For a polygon with holes, there are two

boundaries. The inner boundary is the polygonal curves of the smaller polygons, while the

outer boundary is the polygonal curve of the large polygon in a polygon with holes. The

following figures depict a polygon and a polygon with holes.

16

Figure 2.1: (a) A Polygon and (b) a Polygon with Holes

Every polygon has as many corners as it has sides, and each corner has several kinds of

angles. The two most important types of angles are the interior angle and the exterior angle.

An interior angle is the angle between two sides on the interior of a polygon. The exterior

angle is the complementary angle to an interior angle, so the sum of the interior and exterior

angles at any vertex must be 360o. A corner is said to be convex if its interior angle is less

than 180o
 [36].

Convexity is an important concept in a polygon. A subset S of the plane is convex if and only

if for any pair of points p,q  S, the line segment ݍ݌ is completely contained in S. A convex

polygon is a polygon with a convex interior. A polygon is convex if each corner is convex. A

polygon that is not convex is called a concave polygon which has at least one interior angle

greater than 180o [3].

Many real-world objects, such as books, tables, and rooms, have a rectangular shape. In many

applications, these objects can be modelled as orthogonal polygons. An orthogonal polygon

is a polygon with boundary sides parallel to the axes of the 2-dimensional Cartesian

coordinate system. Clearly, the interior angle of any corner of an orthogonal polygon is either

90o (convex) or 270o (concave) [37]. If all angles of a polygon are either 90o or 270, but the

edges are not parallel to any axis, then it is called a rotated orthogonal polygon [38].

a b

17

Orthogonal polygons are also known as rectilinear polygons. An orthogonal polygon with

holes is defined as a shape that consists of one large orthogonal polygon and one or more

smaller orthogonal polygons that are located completely inside the large orthogonal polygon

in which the smaller orthogonal polygons neither intersect with the large orthogonal polygon,

nor intersect with each other, nor overlap with each other. The following figures depict an

orthogonal polygon and an orthogonal polygon with holes.

Figure 2.2: (a) An Orthogonal Polygon and (b) an Orthogonal Polygon with Holes

An inflection vertex of an orthogonal polygon is a concave vertex where the interior angle is

270. For any orthogonal polygon having n vertices, the number of inflection vertices i is:

݅ = (௡ିସ)
ଶ

 [39].

The only orthogonal polygon that is also convex is a rectangle; all other orthogonal polygons

are concave. Therefore, the term “convexity” has a slightly different meaning when it is used

to describe an orthogonal polygon. One way to define the convexity of an orthogonal polygon

is by restricting the points when testing the convexity. In the context of an orthogonal

polygon, a line is called orthogonal if it is parallel to one of the coordinate axes. A line

segment is orthogonal if its two end points lie on an orthogonal line.

An orthogonal polygon is called horizontally (vertically) convex if its intersection with every

horizontal (vertical) line is no more than one line segment. Meanwhile, an orthogonal

a b

18

polygon is called orthogonally convex if it is both horizontally and vertically convex [40].

For examples, see Figure 2.3

a) horizontally convex orthogonal polygon, b) vertically convex orthogonal polygon,
and c) orthogonally convex orthogonal polygon

Figure 2.3: Three Different Convexity on Orthogonal Polygons

The relationship between vertices is well known for orthogonal polygons. For an orthogonal

polygon, the relationship between the number of convex vertices (HC) and the number of

inflection vertices (HR) is: HC  HR = 4 [39]. Meanwhile, Voss classified the orthogonal

polygon with holes boundary into the inner or outer boundary based on the relationship

between the concave and convex vertices in the 2D digital image [41].

2.1.2 Decomposition of polygons

The task of polygon decomposition is to represent a polygon as the union of a number of

simpler component parts. Polygon decomposition has many theoretical and practical

applications. For examples, Taussaint employs polygon decomposition as tool for pattern

recognition [42]; polygon decomposition is also useful for VLSI design, in which the layout

is represented by a polygon, and one preparation approach for electron-beam lithography is

by decomposing the polygon region into basic figures [43]. In computational geometry,

algorithms for problems in general polygons are often more complex than those for restricted

a b c

X

Y

19

types of polygon, such as the rectangle, star shape, or convex polygon. An example of

polygon decomposition is partitioning an orthogonal polygon into fat rectangles [44].

Polygon decompositions are classified according to how the component parts interrelate. A

decomposition is called a partition if it divides a polygon into a set of simpler polygons that

do not intersect with each other, except on their boundaries. Meanwhile, if overlapping pieces

are allowed, then the decomposition is called a cover.

Triangulation is a decomposition operation that decomposes a polygon into a set of non-

overlapping triangles. The triangulation of a polygon results in a set of the diagonals of the

polygon that divides the polygon into non-overlapping triangles (a polygon with three sides).

A diagonal is a line segment that connects two vertices of a polygon and lies in the interior of

the polygon. In a triangulation, diagonals do not intersect with each other, except at their end-

points. The sides of triangles produced by a triangulation are either diagonals, or sides, of the

triangulation or sides of the original polygon. Every triangulation of an n-vertex convex

polygon has n-3 diagonals [45]. Furthermore, Berg et al. [3] stated that every polygon admits

a triangulation, and any triangulation of a polygon with n vertices consists of exactly n-2

triangles.

An orthogonal polygon can be partitioned in several ways such as with quadraliteralisation

and rectangularisation. Quadraliteralisation is the partitioning of a given orthogonal polygon

into a set of non-overlapping quadrilaterals. The number of quadrilaterals is (n-2)/2, where n

is the number of vertices on an orthogonal polygon [12]. Meanwhile, rectangularisation is the

partitioning of an orthogonal polygon into the minimum number of rectangles.

In some applications, such as in VLSI design, an orthogonal polygon has to be partitioned

into rectangles. O’Rourke and Tewari proposed a polynomial-time algorithm for partitioning

20

an orthogonal polygon into fat rectangles, so that the shortest rectangle side is maximised

over all rectangles [44].

2.1.3 Optimization issues in the decomposition of polygon

Many problems in computational geometry are related to the optimisation of some aspect of

polygons and orthogonal polygons. In most applications, a polygon is decomposed that is

minimal in some sense. Some applications seek to decompose a polygon into the minimum

number of some basic components, and other applications seek to decompose a polygon into

a minimal total length of internal edges. This section will focus on the partitioning problems

for orthogonal polygons. These issues are relevant in the following chapters of this thesis.

Rectangle is the most important basic shape to consider in relation to the partitioning of

orthogonal polygons. One of such issues concerns the partitioning of an orthogonal polygon

into the minimum number of rectangles.

The minimum rectangular partition problem, defined for an orthogonal polygon, can be stated

as follows: given an orthogonal polygon on the plane, find a minimally sized set of non-

overlapping rectangles, such that every rectangle is contained in the orthogonal polygon and

the union of all rectangles is equal to the original orthogonal polygon.

Ku and Leong provided a solution for the minimum rectangular partition problem [46].

However, their formula and its proof are very complicated. Nguyen simplified the formula

for a minimum rectangular partition in which a given orthogonal polygon can be minimally

partitioned into i  c  k +1 rectangles, where i is the number of inflection vertices, c is the

number of chords and k is the number of holes. A chord is a cutting line that has a reflection

vertex at its two endpoints [47].

21

Liou, Tan and Lee proposed an O(n log log n) algorithm for minimal rectangular partition of

an orthogonal polygon, where n is the number of vertices in the polygon [48]. Lopez and

Mehta proposed an algorithm for decomposing a polygon into a set of non-overlapping L-

shapes and rectangles by using only horizontal cuts. They reported that the algorithm

has O(n + h log h) time, where n is the number of vertices in the polygon and h is the number

of H-pairs. Because the parameter h is small in VLSI design, this algorithm is close to linear

in n in practice [49].

2.2 Polyhedron

2.2.1 Definitions and terminology

Polyhedron is an extension of the polygon into the three dimensional space. A polyhedron is

used to represent a solid object. Using a similar approach to the one for defining polygon, our

definition of polyhedron also starts by defining polyhedron’s boundary known as polyhedral

surface.

A polyhedral surface is defined as a finite, connected set of flat polygons or polygons with

holes, such that every edge of each polygon or polygons with holes belongs also to just one

other polygon or polygons with holes, with the proviso that the polygons or polygons with

holes surrounding each vertex form a single circuit (to exclude anomalies such as two

pyramids with a common apex) [50]. An edge that belongs to exactly two polygons or

polygons with holes is called two-manifold edge, and a vertex that is the apex of only one

cone of polygons or polygons with holes is called a two manifold vertex [51]. A cone is

defined as a three-dimensional geometric shape that tapers smoothly from a base to a point

called the apex. Hence, a polyhedral surface contains a set of connected polygons or polygons

with holes that have only two-manifold edges and two-manifold vertices. This kind of surface

22

is called a two-manifold surface.

The polygons in a polyhedral surface are called faces, and these faces do not cross each other.

A polyhedron is defined as a subset of the 3-dimensional Euclidean space whose boundary is

a polyhedral surface [50].

In addition to faces, a polyhedral surface also contains edges and vertices. In a polyhedral

surface an edge is a line segment where two or more faces meet, while a vertex is a point

where three or more edges meet.

The boundary of a polyhedron divides the space into two regions, one of which, called the

interior region, is finite, and the other one, which is called the exterior region, is infinite. A

point is said to be inside a polyhedron if that point is located in the interior region of the

polyhedron, or on its boundary. A point is said to be outside of a polyhedron if it is not

located inside the polyhedron. An area is said to be inside a polyhedron if all of its points are

located inside the polyhedron [50].

Figure 2.4: A Multi-shell Polyhedron

The polyhedral surface in a polyhedron is also called the shell of that polyhedron [36]. A

multi-shell polyhedron is a solid shape that consists of one large polyhedron and one or more

smaller polyhedra that are located completely inside the large polyhedron in which these

smaller polyhedra neither intersect with the large polyhedron, nor intersect with each other,

nor overlap with each other. Two kinds of boundary exist in a multi-shell polyhedron: the

The large polyhedron

The smaller polyhedron

23

inner boundary and the outer boundary. The inner boundary of the multi-shell polyhedron is

the polyhedral surfaces of all the smaller polyhedra, while the outer boundary is the

polyhedral surface of the large polyhedron [39]. Figure 2.4 depicts a multi-shell polyhedron.

It is possible for a solid object to have a surface with edges that are shared by at least two

faces or with vertices that are the apex of more than one cone of faces. An edge that belongs

to more than two faces is called a non-manifold edge, and a vertex that is the apex of more

than one cone of polygons is called a two manifold vertex [51].

The existence of the non-manifold edges and non-manifold vertices gives rise to another type

of surface, which is called pseudo-polyhedral surface, that is similar to the polyhedral

surface, but with some differences. A pseudo-polyhedral surface that is a finite, connected set

of flat polygons or polygons with holes, such that (a) every edge belongs to at least two

polygons or polygons with holes, and (b) if any two polygons or polygons with holes meet,

they meet at a common edge [52]. However, there is a possibility that two polygons or

polygons with holes meet at a common vertex rather than a common edge. To include this

scenario, in this thesis, the definition of the pseudo-polyhedral surface is extended by

modifying condition (b) in the above definition: if two polygons or polygons with holes meet,

they meet either at a common edge or at a common vertex. With this extended definition, a

pseudo-polyhedral surface may have non-manifold edges, as well as non-manifold vertices. A

pseudo-polyhedron is a subset of the 3-dimensional Euclidean space whose boundary is a

pseudo-polyhedral surface.

A simple polyhedron is a polyhedron that can be deformed into a solid sphere; that is, a

polyhedron that, unlike a torus, has no holes [53]. The polyhedron in Figure 2.5 cannot be

deformed into a solid sphere, therefore it is not a simple polyhedron. A simple polyhedron is

also called as a polyhedron with genus 0, and it must satisfy Euler’s formula, in which the

24

relationship among the number of vertices v, edges e and faces f must satisfy the following

equation: v – e + f = 2 [36].

Figure 2.5: A Polyhedron has a Hole

There are two kinds of angles in a polyhedron: facial angles and dihedral angles. Two edges

incident to a common vertex may be on the same face. In such case, the angle between the

two edges on the same face is referred to as the facial angle of the face. The dihedral angle is

the interior angle between two faces meeting at a common edge [54]. Furthermore,

Wenninger defined that a polyhedron is convex if no dihedral angle is greater than 180 [55],

otherwise the polyhedron is concave.

To conclude this sub-section, the following Venn diagram shows the relationship among the

pseudo-polyhedron class and the other classes in which SP  P  PP and PP  MSP = .

Figure 2.6: Relationship between the Pseudo-Polyhedron Class and the other Classes

The meaning of symbols:
PP : pseudo-polyhedron
P : polyhedron
SP: simple polyhedron
MSP: multi-shell
polyhedron

PP

P

SP

MSP

25

2.2.2 Orthogonal polyhedron

The focus of this thesis is orthogonal polyhedron and orthogonal pseudo-polyhedron, which

are used to represent art galleries.

An orthogonal pseudo-polyhedron is a pseudo-polyhedron in which every edge is parallel to

one of the three orthogonal directions. In an orthogonal pseudo-polyhedron, a non-manifold

edge is adjacent to exactly four faces and a non-manifold vertex is the apex of exactly two

corners [56].

One of the most widely studied classes of pseudo-polyhedra is the orthogonal polyhedron.

Tang defined an orthogonal polyhedron as a polyhedron in which every edge is parallel to

one of the three orthogonal directions [52]. An orthogonal polyhedron is also called isothetic

polyhedron. All facial and dihedral angles in an orthogonal polyhedron are either 90 or

270.

The following figures show an orthogonal polyhedron and an orthogonal pseudo-polyhedron.

The shape in Figure 2.7(a) satisfies the definition of a polyhedron, but the shape in Figure

2.7(b) does not satisfy the condition that every edge is shared by exactly two faces, and this

shape only satisfies the definition of an orthogonal pseudo-polyhedron.

 a b

Figure 2.7: (a) An Orthogonal Polyhedron, and (b) an Orthogonal Pseudo-Polyhedron

A multi-shell orthogonal polyhedron is a solid shape that consists of one large orthogonal

polyhedron and one or more smaller orthogonal polyhedra that are located completely inside

26

the large orthogonal polyhedron in which these smaller orthogonal polyhedra neither intersect

with the large orthogonal polyhedron, nor intersect with each other, nor overlap over each

other.

The degree of a vertex is the number of edges that meet at a vertex of an orthogonal

polyhedron. If all the vertices have the same degree, the orthogonal polyhedron is regular. A

rectangular prism is an example of a regular orthogonal polyhedron because each vertex has a

degree of three. The degree of vertex is useful in determining the label type of each vertex on

an orthogonal polyhedron.

As stated above, the edges and faces of an orthogonal polyhedron are oriented in three

orthogonal directions. Juan-Arinyo noted that the number of incident edges for any vertex in

an orthogonal polyhedron is either three, four or six [57]. He also gave two possible

configurations of three edges meeting at a vertex, as well as one configuration for each of

four and six edges meeting at a vertex as depicted in Figure 2.8. Vertex v has three edges in

Figure 2.8 (a) and (b), four edges in Figure 2.8(c), and six edges in Figure 2.8(d).

Figure 2.8: Number of Faces around a Vertex

In addition to the above four configurations, Yip and Klette found another two

configurations for three edges meeting at a vertex as shown in Figure 2.9 [39], where Figure

2.9(a) has one 270o and two 90o interior dihedral angles, and Figure 2.9(b) has three 270o

interior dihedral angles. Therefore, there are six vertex configurations on orthogonal

polyhedra.

a

v
f1 f2

f3

b

v f1

f2
f3

d

v
f1 f2

f3

f4 f5 f6

c

v
f1 f2

f3

f4

27

Figure 2.9: Different Dihedral Angles around a Vertex v

Orthogonal polyhedra can be grouped based on their degree of vertex. There is a kind of

orthogonal polyhedra in which every vertex has degree of three and has exactly three

mutually-perpendicular axis-parallel edges meeting at each vertex [58]. Figure 2.10(a) shows

an example of an orthogonal polyhedron in which the vertices do not all have a degree of

three (e.g., vertex v has four edges). Figure 2.10(b) is an orthogonal polyhedron that has the

degree of three for all its vertices.

 a b

Figure 2.10: A Degree-Three and a Non-Degree-Three Orthogonal Polyhedron

An orthogonal polyhedron is called a simple orthogonal polyhedron if the polyhedron is both

orthogonal and simple. As with a simple polyhedron, a simple orthogonal polyhedron

satisfies Euler’s formula, which states that the relationship among the number of vertices v,

edges e and faces f satisfies the equation: v – e + f = 2. For the f count in the Euler formula, a

flat polygon in a polyhedral surface can be counted as one face. When dealing with a polygon

a b

v v

v

28

with holes in a polyhedral surface, the polygon with holes requires triangulation. The number

of triangles in the polygon with holes is counted as the number of faces for the f count in the

Euler formula. [36]. The following are examples for the f count in the Euler formula for two

different types of polygon in a polyhedral surface.

a) A flat polygon does not require triangulation, therefore f =1

b) A polygon with a hole requires triangulation, therefore f= 8

Figure 2.11: The f Count in Euler Formula

The concept of orthogonal convexity is not only applicable to orthogonal polygons, but it can

also be extended to orthogonal polyhedra. A simple orthogonal polyhedron is called

horizontally (vertically, frontally) convex if its intersection with every horizontal (vertical,

frontal plane is either empty or a single orthogonally convex polygon. Meanwhile, a simple

orthogonal polyhedron is called orthogonally convex polyhedron if it is horizontally,

vertically and frontally convex. [59].

To conclude this sub-section, the following Venn diagram shows the relationship among the

orthogonal pseudo-polyhedron class with the other classes in which OCP  SOP  OP 

OPP and OPP  OPMS = 

False True

29

Figure 2.12: Relationship among the Orthogonal Pseudo-Polyhedron Class and other Classes

2.2.3 Decomposition of polyhedron

Polyhedron decomposition is a problem of dividing a polyhedron into a set of simpler forms

of polyhedra, such as tetrahedron (i.e., a pyramid based on a triangle). Sometimes, only

vertices from the original polyhedron may be used as vertices of the sub-polyhedra. The

problem of partitioning a polyhedron into a number of tetrahedra is called the

tetrahedralisation of the polyhedron. Two neighbouring tetrahedra share a face, which is the

triangle defined by the three shared vertices of the two polyhedra [60].

Research on tetrahedralisation began in the early twentieth century. It is now known that all

convex polyhedra are tetrahedralisable, but not all non-convex polyhedra can be

tetrahedralised [61]. The problem of optimal tetrahedralisation is finding a tetrahedralisation

of a polyhedron with the minimum number of tetrahedra. Ruppert and Seidel showed that the

three-dimensional tetrahedralisation problem is significantly more difficult than the two-

dimensional triangulation problem. [62]. They also reported that one difference between the

two problems lies in the size of the resulting partitions: triangulating every n-sided polygon

The meaning of symbols:
OPP : orthogonal pseudo-polyhedron
OP : orthogonal polyhedron
OSP: simple orthogonal polyhedron
OCP: orthogonally convex polyhedron
MSOP: multi-shell orthogonal
polyhedron

MSOP

OPP

OP
SOP

OCP

30

produces exactly n-2 triangles, but the number of tetrahedra in a tetrahedralisation of a given

polyhedron varies.

For example, a bi-pyramid may be partitioned into two groups A and B, in which each group

has either two or three tetrahedra (see Figure 2.13 below).

Figure. 2.13: Number of Tetrahedra in Different Tetrahedralisations

The problem of finding the minimum tetrahedralisation of a convex polyhedron is known to

be NP-complete, and the number of tetrahedra from the tetrahedralisation of a convex

polyhedron can be decreased if Steiner points are allowed [63]. Chen, Hsich and Wang

presented a genetic algorithm for finding the minimum tetrahedralisation of a convex

polyhedron. The result showed that the genetic approach obtains the optimum solution for

point sets for which the optimum is known [64].

An orthogonal polyhedron can be partitioned into rectangular prisms. However, the problem

of finding the minimum rectangular partition of an orthogonal polyhedron where the number

of resultant rectangular prism is minimal is NP-complete [65], and Stolee reported that the

scheme used for finding the minimum rectangular partition for an orthogonal polygon cannot

be applied to solving the minimum rectangular partition problem for an orthogonal

polyhedron. [66].

A

a

b c

d e a

b c

e
a

a

c

d

b

c b

e

c
d

e

b

a

d

B

e d

31

2.3 Data Representation for Polygons and Polyhedra

In computational geometry, raw data from a geometric model needs to be stored in computer

memory in such a way as to make the subsequent computation more efficient. The way data

are stored is called the data structure [67]. One way to represent an orthogonal polygon or

orthogonal polyhedron in computer memory is by storing the coordinates of each of its

vertices.

2.3.1 Data representation for an orthogonal polygon

This section will discuss how to represent an orthogonal polygon in computer memory.

O’Rourke described a method for representing an orthogonal polygon [68] by using the

vertices of the polygon. This method is discussed below.

In an orthogonal polygon, each edge has two end vertices, and each vertex is incident to

exactly one horizontal edge and one vertical edge. For an orthogonal polygon with n vertices,

the horizontal edges and vertical edges can be constructed as follows. Let v1, v2,..., vm be the

group of vertices that have the same y-coordinate and are sorted increasingly by the x-

coordinates, then for this group of vertices, a set of edges can be constructed by connecting

the vertices vi and vi+1, where i is an odd number. Repeat this process for every set of vertices

with the same y-coordinate until all horizontal edges are obtained.

To get all vertical edges, repeat the above process by grouping the vertices that have the same

x-coordinate and sorted them in increasing order by their y-coordinates. By applying this

method, only one orthogonal polygon can be constructed out of any given set of vertices. For

example, the vertices v1, v2, v3, v4, v5, and v6 in Figure 2.14 are a group of vertices that have

the same y-coordinate and are sorted increasingly by x-coordinates. The edges v1v2, v3v4, v5v6

are constructed by connecting the vertex vi and vi+1 where i ={1,3,5},

32

Figure 2.13: Reconstruction of an Orthogonal Polygon

2.3.2 Data representation for an orthogonal polyhedron

Generally speaking, there are two types of data structure for polyhedra, an edge-based and a

vertex-based data structure. The edge-based data structure uses the edges of a polyhedron as

the input to construct the polyhedron. The following methods use the edge-based data

structure: winged-edge [69], half-edge [70], and quad-edge [71]. Preparata and Shamos

introduced a standard representation of polyhedra by using doubly-connected edge list and

vertex coordinates [37] as a variant of the winged-edge method, but this representation

contains a lot of redundancy when applied to an orthogonal polyhedron. Bournez, Maler and

Pnueli showed that this representation is ambiguous [72].

Aquilera and Ayala represented an orthogonal polyhedron by using only extreme vertices

[73]. Their method requires a lower number of vertices compared with other methods that

involve all the vertices. An overview of this method is given below.

As stated by Juan-Arinyo [57], the number of incident edges at any vertex on an orthogonal

polyhedron can be three, four, or six. Such a vertex is called V3, V4 or V6 type of vertex,

respectively. V3 means three edges meet at the vertex; the meaning of V4 and V6 are similar.

X

Y

v1 v2 v3 v4 v5 v6

33

A brink is the longest uninterrupted line segment, built out of a sequence of collinear and

contiguous edges from an orthogonal polyhedron. In an orthogonal polyhedron, every edge

belongs to a brink and each brink contains at least one edge. A vertex in a brink can be V3,

V4 or V6 type, but the two ending vertices of a brink is always V3 type. V4 and V6 types of

vertices may only appear as interior vertices of a brink. An ending vertex of a brink in an

orthogonal polyhedron is called extreme vertex.

The extreme vertices model (EVM), which was proposed by Aquilera and Ayala [73]

represents an orthogonal polyhedron only using its extreme vertices. The extreme vertex is

stored in array data structure known as the EVM array. Each element of the EVM array

contains coordinates of a single extreme vertex. The array elements in an EVM array can be

sorted lexicographically with the order <a,b,c>, where x is the coordinated in Axis A, y is the

coordinate in Axis B, and z is the coordinate in Axis C. The resulting array is called ABC-

sorted EVM array.

For example, let va = (xa, ya, za) and vb = (xb, yb, zb) be two vertices, the YZX-sorting use the

following rule:

 va<vb if and only if
 Either va < vb
 Or va = vb and za < zb
 Or va = vb and za = zb and xa < xb

The resulting array is called YZX-sorted EVM array.

Depending on the order of the three Cartesian coordinates in the sorting, an EVM array can

be sorted into the following six orders. They are XYZ-sorted, XZY-sorted, YXZ-sorted,

YZX-sorted, ZXY-sorted and ZYX.

A plane of vertices of an orthogonal polyhedron is the set of extreme vertices lying on a plane

perpendicular to one of the three axes. There are three directions of plane of vertices. They

34

are XY-plane, XZ-plane and YZ-plane of vertices. For generality, they are written as AB-

plane of vertices where A and B represent two axes. An AB-plane of vertices consists of all

vertices of the orthogonal polyhedron lying on the same plane that is parallel to both axis A

and axis B. These vertices have the same coordinate in the C-axis (the axis other than A or

B). For example, an XY-plane of vertices consists of all vertices of the orthogonal

polyhedron with the same Z coordinate.

In an ABC-sorted EVM array, the sequence of vertices can be viewed as a list of pairs of

vertices starting from the first vertex in the array. The two vertices in each pair have the same

coordinate values in the A-axis and the B-axis, but different coordinate values in the C-axis.

These two vertices are actually the two end vertices of the same brink that parallel to the C-

axis. Furthermore, the set of pairs of vertices in this ABC-sorted EVM array represents all

brinks in the orthogonal polyhedron that are parallel to the C-axis.

The above method can be used to find all brinks that are parallel to Z-axis by sorting the

EVM array into XYZ-sorted. The set of brinks parallel to Y-axis can be obtained by sorting

the EVM array into XZY-sorted. Similarly the set of brinks parallel to the X-axis can be

obtained by sorting the EVM array into YZX-sorted.

As the size of any ABC-sorted EVM array is same as that of the original EVM array, it is

obvious that the number of brinks in an orthogonal polyhedron that are parallel to each of the

three axes is the same, i.e., it is always a half of the extreme vertices.

Figure 2.15(a) is an example of a solid orthogonal polyhedron object. This object is

represented by coordinates of its extreme vertices that may be inputted in any order, and the

object can be reconstructed perfectly by the above EVM method. Figure 2.15(b) shows the

order of the XYZ-sorted extreme vertices that were sorted by the x-coordinate first, followed

by y-coordinate, and then followed by z-coordinate. By connecting the two extreme vertices

35

in each pair, all vertical brinks (hence all vertical edges) would be reconstructed. The same

procedure can be used to reconstruct all horizontal edges (parallel to the X-axis) and all back-

front edges (parallel to Y-axis).

Figure 2.15: Reconstruction of Orthogonal Polyhedron

The concept of extreme vertices model in orthogonal polyhedron can be extended to

orthogonal pseudo-polyhedron [56].

Representing an orthogonal polyhedron by its extreme vertices is better than representing it

with all vertices. First, the number extreme vertices is smaller than the number of vertices for

any orthogonal polyhedron, hence the EVM method requires less input data and therefore less

memory requirement. Second, the coordinates of non-extreme vertices can be obtained from

the intersection points of brinks.

2.3.3 Data structure for a polyhedron

A polyhedron can be represented by a collection of vertices, edges and facets, and this data

structure is called star-edge representation [74], where a facet is a terminology for a face.

Bajaj and Dey proposed the similar data structure to the star-edge representation [75]. The

star-edge representation uses the following four components.

X

Y

Z

a b

1

2

3

4
5

6

7

8
9

10

11

12

13

15 14

16

17

18

19

21

20
22

36

a. Vertex

A vertex is the corner of a polyhedron in which three or more faces intersect at the

corner. Each vertex will be represented by two fields: the coordinates of the vertex,

which is the position of the vertex in the three-dimensional Cartesians system; and the

adjacent edges, which contain pointers to the edges incident to the vertex.

b. Edge

An edge is a line segment that connects two vertices and has two adjacent faces. Each

edge is represented by fields: adjacent vertices, which contain pointers to the two end

vertices, and edge orientation, which contains pointers to the structure that is called

Orientededges.

c. Orientededges

The orientation of an edge on a facet f is such that a traversal of the oriented edge has

facet f to its right. The orientation of an edge is recognized by several fields: edge;

facet, which contains pointer to the facet on which the orientededge is incident;

orientation, which contains information of the orientation of the edge on the facet;

and nextorientededge, which contains pointer to the next orientededge on the oriented

edge cycle of a facet as described below.

d. Facet

A facet is a polygon in a polyhedron surface. Each facet has two fields. They are the

facet equation, which contains the equation of the plane on which the facet lies, and

the facet cycle, which contains the oriented cycle bounding the facet. The traversal of

the oriented edge cycle always has the facet to the right.

Polyhedron in Figure 2.16 consists of six vertices, nine edges, and five facets. The facet f1 has

the oriented edge cycle as e2, e5, e6, and e7. The edge e2 has v2 and v3 as its ending vertices

and f1 as one of its incident facets.

37

Figure 2.16: Facet f1 is in the Right Side Oriented Edge Cycle

v4

v1

v6

v5

v3

v2

e6
e7

e2

e5

f1

38

CHAPTER 3

VERTEX CONFIGURATIONS OF ORTHOGONAL
PSEUDO-POLYHEDRA

3.1 Introduction

This chapter focused on vertex configuration in orthogonal pseudo-polyhedra (OPP). The

chapter will present the following results: first, it will be shown that there are no more than

16 different vertex configurations for any orthogonal pseudo-polyhedra. Second, a method

for decomposing an orthogonal pseudo-polyhedron into a set of rectangular prism is

described, and it will be proved that for any OPP, there exists a set of rectangular prisms such

that the OPP can be constructed by combining these rectangular prisms together. Finally, a

conjecture is presented that describe a quantitative relationship between the numbers of

vertices of different vertex configurations in any OPP.

The main contributions of this chapter are: a new way to represent a vertex configuration in

orthogonal pseudo-polyhedra and a vertex configuration conjecture. Understanding the vertex

configurations in OPP and their relationship among each other could provide insight into the

structure of an OPP and be useful when designing algorithms for many 3-dimensional (3D)

geometrical problems.

This chapter is organized into several sections. Section 3.2 gives definitions and terminology

that are useful for discussing the topic of vertex configurations. Section 3.3 shows a proof

that there are no more than 16 vertex configurations for any OPP. Section 3.4 provide an

overview a technique for decomposing an OPP into a set of rectangular prisms. This section

also demonstrates joining operations between various OPPs with a rectangular prism. Section

39

3.5 presents a formula to show the relationship among the number of each type of vertices in

any OPP and gives some evidences for this formula. Finally, the last section will identify the

dual vertex of each vertex configuration in multi-shell OPPs.

3.2 Vertex Configuration

Recall that an orthogonal pseudo-polyhedron (OPP) is a pseudo polyhedron in which every

edge is parallel to one of the three orthogonal directions. In many practical applications, an

OPP provides a simple yet effective approximation to many important geometrical objects.

The use of an OPP arises frequently in practice, such as creating models of buildings that are

largely orthogonal shaped. Even though it was stated in the previous chapter that orthogonal

polyhedra are used to represent art galleries, in fact, not all galleries can be represented by

orthogonal polyhedra, such as a gallery that has edges from four walls. Therefore, an

orthogonal pseudo-polyhedron (OPP) is often required for such situation.

Like its sub-class, orthogonal polyhedron, an OPP has many applications in such areas as

connected component labeling [76] and pattern analysis in digital images and VLSI layout

[39]. Often they are studied with respect to partitioning problems [56] and visibility problem

[77].

In an orthogonal polyhedron, any two adjacent faces form an interior dihedral angle and there

are only two possible values for such a dihedral angle. Recall that either the angle is 90,

which is called the convex dihedral angle, or the angle is 270, which is called concave

dihedral angle. However, in an OPP, two adjacent faces may not always be capable of

forming a dihedral angle due to the presence of a non-manifold edge or non-manifold vertex.

The vertex configuration of a vertex is defined by the number of adjacent edges, concave

dihedral angles, and non-manifold components meeting at that vertex. Each type of vertex

40

configuration is represented by a unique label. For example, the vertex configuration, which has

five edges, four concave dihedral angles, one non-manifold edge, and which is not non-

manifold vertex, is labelled V54-10. For any manifold vertex, its label can be shortened to

three digits. For instance, the aforementioned vertex can also be labelled as V54-1 instead of

V54-10.

As examples, vertex v1 in Figure 3.1(a) has four edges meet at the vertex, one concave

dihedral angle, and two non-manifold edges; hence, the vertex configuration of v1 is labelled

V41-2. Vertex v2 in Figure 3.1(b) has six edges meet at the vertex, three concave dihedral

angles, and zero non-manifold edges; hence, the vertex configuration of v2 is labelled V63-0

or V63.

Figure 3.1: Two Different Vertex Configurations

Special for orthogonal polyhedra, Yip and Klette reported that there are only six different

types of vertex configurations [39]. They also stated and proved a formula about count of

these types of vertex in orthogonal polyhedra. However, very little is known about vertex

configurations in OPP and their relationship with each other.

3.3 The Number of Different Vertex Configurations in any OPP

In this section it will be proved that there are no more than 16 different vertex configurations

for any OPP. In order to prove the theorem, some terms and concepts need to be introduced

first. A cube is the simplest OPP. Two OPPs are said to be congruent if both OPPs can be

v1 v2

a b

41

oriented in such a way that they have the same shape and the same size. Imagine that a cube

is divided into eight congruent cubes c1, c2, ..., c8. The following are terminology for

relationship among cubes: (i) A cube c1 is adjacent to another cube c2, if c1 and c2 share one

face (see Figure 3.2 (a)). (ii) c1 is diagonally adjacent to c2 if they share one edge (see Figure

3.2 (b)). (iii) Two cubes are said to be an interstitial cubes if they only share one vertex (see

Figure 3.2 (c)). (iv) Three cubes c1, c2, c3 are said to be 3-consecutive cubes if a cube is

adjacent to two other cubes and all three cubes share one common edge (see Figure 3.2 (d)).

(v) Four cubes c1, c2, c3, c4 are said to be 4-consecutive cubes if each cube is adjacent to two

other cubes and all four cubes share one common edge (see Figure 3.2 (e)).

Figure 3.2: Relative Position of Cubes: Adjacent (a), Diagonally Adjacent (b),

 Interstitial Cubes (c), 3-Consecutive Cubes (d), and 4-Consecutive Cubes (e)

Several premises, PR1, PR2, PR3, PR4, and PR5 are made to describe similarities between

two OPPs. The premises and their proof are listed as follows:

Premise PR1: Two adjacent cubes are congruent with any two other adjacent cubes.

Premise PR2: Two diagonally adjacent cubes are congruent with any two other diagonally

adjacent cubes.

Premise PR3: Two interstitial cubes are congruent with any other two interstitial cubes.

Premise PR4: 3-consecutive cubes are congruent with any other 3-consecutive cubes.

Premise PR5: 4-consecutive cubes are congruent with any other 4-consecutive cubes.

The validity of the above five premises are obvious. For example, given any two 3-

consecutive cubes, P1 and P2, no matter how they are positioned in the 3D space initially, no

a b c d e

c1
c2 c2

c1 c2
c1 c1

c3 c2
c1

c2 c3 c4

42

matter how they are positioned in the 3D space initially, one can always re-orient one of the

two, so that both look the same (and also have the same size).

In an OPP, each edge is parallel to one of the three orthogonal directions. Therefore, for each

vertex in an OPP, there are at most six distinct incident edges. At the same time, there must

be at least three incident edges for each vertex to be 3D. Hence the number of incident edges

of any OPP vertex ranges from three to six. In this thesis, an OPP vertex with n incident

edges is denoted as Vn (n = 3, 4, 5, 6), and from now on, these vertices are referred to as V3,

V4, V5, and V6, respectively.

For a given number of edges, a vertex in an OPP vertex may have one of several possible

vertex configurations depending on the way the faces are formed by edges incident to the

vertex. However, we will show that the number of different vertex configurations in any OPP

is no more than 16.

Imagine that a cubical frame is divided into eight congruent smaller cubical frames and an

OPP can be constructed by occupying the cubical frames with, at most, eight congruent cubes

that are also congruent with the smaller cubical frames. The number of ways that the cubes

occupy the cubical frames is 255, which is counted by the formula: 28- 1, where 8 is the

number of cubical frames that will be occupied by the cubes, 2 is the number of possibility of

each frame to be occupied, and 1 is a the number of possibility for the frame having null

cubes.

Each resulting OPP at the cubical frame has a number of vertices. A different vertex

configuration is counted from the most shared vertex in an OPP. The total number of

different vertex configurations is stated in the following theorem.

Theorem 3.1: There are no more than 16 vertex configurations in any OPP

43

Proof :Let B be a cubical frame that can be composed of eight smaller cubical frames of the

same size, f1, f2, …, f8, and let c1, c2, ..., c8 be a set of cubes that will occupy the frames in B.

Those smaller frames are grouped into a bottom layer and top layer. The members of the

layer group are f1, f2, f3, and f4; meanwhile, the members of the top layer are f5, f6, f7, f8. An

OPP is constructed by putting a number of cubes ranges from one to eight into B.

By using the above definitions and premises, then the total number of possible shapes of OPP

can be detected without missing possible shapes. The possible shapes of OPP are listed in

Table 3.1. Two OPPs are of similar shape and satisfy one of the above premises.

Table 3.1: Constructing OPPs Using at most Eight Cubes

N Illustrations Description NSS

1.

All frames are empty 1

2. A frame is occupied by a cube. 8

3. Two frames are occupied by two adjacent cubes. 12

4. Two frames are occupied by two diagonally adjacent cubes 12

5. Two frames are occupied by two interstitial cubes 4

6. Three frames are occupied by 3-consecutive cubes. 24

7. Two adjacent cubes share an edge with a cube. 24

8. Two edges of two diagonally cubes meet with an edge of a
cube.

8

9 The middle cube of 3-consecutive cubes shares a face with a
cube.

8

10 An end cube of 3-consecutive cubes shares a face with a cube. 24

11. A shared vertex of 3-consecutive cubes shares a vertex of
another cube.

24

12. Two diagonally adjacent cubes share vertices and edges. 2

f5 f6
f7 f8

f1 f2
f3 f4

f1 f2
f3 f4

f5 f6
f7 f8

f1 f2
f3 f4

f5 f6
f7 f8

f5 f6
f7 f8

f1 f2
f3 f4

f5 f6
f7 f8

f1 f2
f3 f4

f1 f2
f3 f4

f5 f6
f7 f8

f1 f2
f3 f4

f5 f6
f7 f8

f1 f2
f3 f4

f5 f6
f7 f8

f5 f6
f7 f8

f1 f2
f3 f4

f1 f2
f3 f4

f5 f6
f7 f8

f5 f6
f7 f8

f1 f2
f3 f4

f1 f2
f3 f4

f5 f6
f7 f8

44

NOTE : N ROW NUMBER; NSS NUMBER OF SIMILAR SHAPES

Table 3.1 shows how all possibilities of, at most, eight cubes occupy a cubical frame that is

divided into eight cubical frames; the total number of shapes is 255, and they are distributed

in 22 different shapes and sizes of OPP. The simplification is made by grouping them based

on their similarity, in which two similar OPPs are grouped together, and they represent one

kind of OPP. Two OPPs are called similar shapes if both of them have the same number of

vertices and a similar vertex configuration. For example, the OPPs at rows 2, 3, 13, and 22 in

Table 3.1 have the same number of vertices and the same vertex configuration; hence, they

are grouped together as the same shape. The total possible shapes of OPPs are grouped in

Table 3.2.

13. 4-consecutive cubes occupy four frames. 6

14. Two diagonally adjacent cubes share faces 6

15. 3-consecutive cubes share a face with diagonally adjacent
cubes

8

16. An ending face of 3-consecutive cubes shares a face with an
adjacent cubes

24

17. 4-consecutive cubes share a face with a cube 24

18. 4-consecutive cubes share two face with 2-adjacent cubes. 12

19. 3-consecutive cubes share a face with 2-diagonally adjacent
cubes

12

20. 3-consecutive cubes share a vertex with another 3-consecuteve
cubes

4

21. 3-consecutive cubes are combined with 4-consecutive cubes. 8

22. Two 4-consecutive cubes occupy the whole frame. 1

 Total number of possible shapes 255

f1 f2
f3 f4

f5 f6
f7 f8

f1 f2
f3 f4

f5 f6
f7 f8

f1 f2
f3 f4

f5 f6
f7 f8

f1 f2
f3 f4

f5 f6
f7 f8

f1 f2
f3 f4

f5 f6
f7 f8

f1 f2
f3 f4

f5 f6
f7 f8

f1 f2
f3 f4

f5 f6
f7 f8

f1 f2
f3 f4

f5 f6
f7 f8

f5 f6
f7 f8

f1 f2
f3 f4

f1 f2
f3 f4

f5 f6
f7 f8

45

Table 3.2: Grouping of OPPs

Group
Number

OPPs’ Row in
Table 3.1

Group
Number

OPPs’
Row in
Table
3.1

Group
Number

OPPs’
Row in
Table
3.1

Group
Number

OPPs’
Row in
Table
3.1

1. 2,3,13,22 5. 8 9. 4,5,15 13. 10

2. 7,19 6. 12 10. 20 14. 16

3. 18 7. 11 11. 9 15. 21

4. 22 8. 17 12. 14 16. 6

To conclude, there are no more than 16 different shapes of OPP that can be constructed by

arranging up to eight identical cubes in the way described above. Each OPP is counted

having as one unique type of vertex configuration that is determined by the vertices that have

the most shared vertex by edges in the OPP. Each the most shared vertex has a unique vertex

configuration; therefore, there are no more than16 kinds of vertex configuration in any

orthogonal polyhedra. �

The 16 kinds of vertex configurations can be organized based on their degree of vertices.

There are four groups of vertices namely V3, V4, V5, and V6. Each vertex configuration

belongs to a group of vertices.

An OPP vertex with three edges (V3) has four possible configurations. Every vertex is two-

manifold vertex and every edge is two-manifold edge. The four vertex configurations of V3

are illustrated in Figure 3.3.

46

Figure 3.3: Four Possible Vertex Configuration for V3

An OPP vertex with four edges (V4) has four possible configurations, only one of which has

no non-manifold edges. The four vertex configurations of V4 are illustrated in Figure 3.4.

Figure 3.4: Four Possible Vertex Configurations for V4

Meanwhile, an OPP vertex with five edges (V5) has two possible vertex configurations, and

both of them have non-manifold edges. The two vertex configurations for V5 are illustrated

in Figure 3.5.

Figure 3.5: Two Possible Vertex Configurations for V5

Any OPP vertex with six edges (V6) has six possible configurations. One of them has no

non-manifold edges or non-manifold vertices. Three of them have non-manifold edges but

not non-manifold vertex. Two of them have a non-manifold vertex but not a non-manifold

edge. All vertex configurations for V6 are shown in Figure 3.6.

V40-1
V41-2

V42-0 V43-1

V50-1 V54-1

V30

V32 V33

V31

47

Figure 3.6: Six Possible Vertex Configurations for V6

3.4 Constructing Orthogonal Pseudo-Polyhedra

Is there any relationship among the vertex configurations of an OPP? This question may arise

after identifying all the vertex configurations. The relationship can be shown with a formula,

which is satisfied by different shapes of OPPs. To show a relationship among the vertex

configuration of an OPP, it is initially based on a hypothesis that each OPP can be

constructed from a set of rectangular prisms.

To verify the hypothesis, it is started with a statement that any OPP can be decomposed into a

set of rectangular prism. This statement come from a work of Ayala and Rodriquez in which

they proposed an algorithm to decompose an OPP that is represented by its extreme vertices

into a particular set of disjoint boxes [76]. There are two steps to obtain the disjoint boxes

from an OPP. First, split the data at every plane of vertices perpendicular to a main axis

obtaining a set of slices. Second, split each slice at every plane of vertices perpendicular to

another main axis obtaining a set of boxes for each slice. An OPP can be decomposed into six

different set of boxes depending on the axes that is chosen to split the OPP. They are XY,

YX, YZ, ZY, XZ, and ZX. The meaning of XY decomposition is OPP is split into a set of

boxes by slicing on the plane of vertices that perpendicular to x-axis first, and split each slice

on the plane of vertices that perpendicular to y-axis. Therefore, the number of boxes may not

be unique. Figure 3.7 is an example of decomposition an OPP.

V63-3 V60-01

V60-3 V60-6 V63-0

V66-0

48

Figure 3.7: (a) An OPP. (b) XY Decomposition (4 boxes). (c) YX Decomposition (5 boxes)

Logically, if an object can be decomposed into a set of smaller objects then the object should

be able to be constructed by the set of smaller objects. This section will show how to

construct an OPP from a set of rectangular prisms.

3.4.1 Joining operations

A joining operation is an operation to construct an OPP from a smaller OPP and a rectangular

prism. A smaller OPP is an OPP in which its volume is less than another OPP. Therefore,

each operation contains two operands, namely a smaller OPP and a rectangular prism. The

location of the smaller OPP and the location of the rectangular prism are significant in joining

operations.

Both of an OPP and a rectangular prism are joined at their properties. The properties of them

are vertices, edges, and faces. After joining properties of an OPP and a rectangular prism,

then the two joined properties will form a new format, or both of them are lost. Table 3.3

shows examples of how an OPP P and a rectangular prism R are joined.

X
Y

Z

a) b) c)

49

Table 3.3: Joining Operation on an OPP

Operation
Number

Description Illustration

1. Only a V30 vertex on P is joined with a V30
vertex on R. They gain a new V60-0 vertex.

2. A V30 vertex on P is joined with a V30 vertex R,
in the way shown in diagram on the right. The
two vertices are combined to form one V50-1.

3. A V30 vertex, two edges and one face on P are
joined with a V30 vertex, two edges and one face
on R. After joining, both V30 vertices are lost.

5. A V50-1 vertex on P is joined with a V30 vertex
on R. They gain a new V60-3 vertex.

To produce the complete possible results of joining two properties, a procedure is introduced.

The inputs of this procedure are a set of properties of an OPP and a set of properties of a

rectangular prism. The properties of the orthogonal polyhedron are 16 kinds of vertex

configurations, edge, point in edge, face, and point in face. Meanwhile, the properties of the

rectangular prism are identified as the V30 vertex, edge, and face.

To get the complete possible result of joining two properties, the joining operation is

performed in a tree diagram. The tree contains root and children. The root of the tree is a

rectangular prism, and the rectangular prism is regarded as an OPP. Some children become

roots of a sub-tree, and some of them become leaves. The OPP in a root of a sub-tree contains

at least two rectangular prisms and at most seven rectangular prisms. A child of a root is

created by joining the OPP in a root with a rectangular prism, and the joining process is

continued until the whole rectangular frames in B are occupied by rectangular prisms. Once

the OPP contains eight rectangular prisms, then the OPP becomes a leaf. If all leaves are

found then the tree diagram construction is finished.

50

As shown in Figure 3.8, each node contains an OPP. The nodes also show the part of OPPs

that are joined with the properties of a rectangular prism. If the joining process creates a new

vertex configuration, then the new OPP is labeled with the new created vertex configuration.

Each label of the node has two parts, the joining process number and vertex configuration on

the joined part. To avoid repetition, some nodes are provided with a pointer to the appropriate

node. However, if the joining process does not form any kind of vertex configuration, then

the new orthogonal polyhedron is labeled as follows:

(i) F-V30

The OPP is labeled as F-V30 if each vertex is a V30 vertex.

(ii) F-V31

The OPP is labeled as F-V31 if two vertices are V31 vertices, and the rest are V30

vertices.

(iii) F-V501

The OPP is labeled as F-V501 if two vertices are V50-1 vertices, and the rest are

V30 vertices.

51

Figure 3.8: A tree Diagram of Vertex Configurations

1: V60-10

4: V40-1 8: V40-1 : 4

11: V41-2

12: F-V501

13: V42
14: V41-2

.

-

-

15: V60-6
16: V63

2: V50-1

10: V32 : 21
7: V31

6: V40-1 : 4

9: V31 : 7

17: V42 :13

18: F-V30 :3 19: V63 : 16
20: V41-2 : 11

21: V32

22: V43-1

23: V63-3

24: V43-1 : 22

5: V60-3

25: V43-1 : 22

26: V43-1 : 22 27: V32 : 39

28: V32

29: V63-3 : 23

30: V32 : 21

31: F- V31

32: V54-1 33: F-V31

34: V66-0

35: V54-1 : 32

36: V54-1: 32

37: V54-1 : 32

38: V54-1 : 32

39: V33

3: F-V31

Rectangular Prism

42: F-V30

40: V33 : 42

41: V33 : 39

52

Theorem 3.2: For any OPP, there exists a set of rectangular prisms such that the OPP can be

constructed by combining these rectangular prisms together.

Proof: Ayala and Rodriquez has shown that any OPP P can be decomposed into a set of

rectangular prisms [76], so we can compose reversely all rectangular prisms to construct P.

The task to compose P from a set of rectangular prisms comes from the definition that two

rectangular prisms are joined if they share at least one corner point and that two corner points

are a share point if they have the same coordinate. Therefore, an OPP is obtained by joining a

rectangular prism with a smaller OPP that has at least one shared corner points. This task is

carried out repeatedly until P is achieved. �

3.5 The Vertex Configuration Conjecture

Recall that Voss classified the orthogonal polygon boundary into the inner or outer boundary

based on the relationship between concave and convex vertices in a two-dimensional digital

image [41]. Yip and Klette mentioned that an orthogonal polyhedron may also have an outer

boundary as well as an inner boundary [39] if the orthogonal polyhedron has a hole inside.

For a simple orthogonal polyhedron where there is only an outer boundary, Yip and Klette

[39] established a formula that the relationship among the different vertex configurations in

an orthogonal polyhedron can be characterized by the following formula: (HA+HG) –

(HC+HE) – 2(HD1+HD2) =8, where HA, HG, HC, HE, HD1, and HD2 denote the number

of V30, V33, V31, V32, V42-0, and V63-0 types of vertices in the orthogonal polyhedron

respectively. They also proved that for an orthogonal polygon, the relationship between the

number convex vertex (HC) and reflect vertices (HR) is: HC  HR = 4.

The first formula is useful for analyzing the boundaries of simple orthogonal polyhedra. The

second formula can be used to analyze polygonal boundary. Yep and Klette suggested that

the first formula can be used in 3D pattern analysis by providing a necessary condition for

53

having traced a complete 3D surface of a simple orthogonal polyhedron [39].

A digital image on 3D may have an OPP representation. After introducing the vertex

configurations, it is time now to conjecture the vertex configurations relationship of an OPP.

Vertex Configuration Conjecture : Let NV30, NV31, NV32, NV33 PV401, NV412, NV420, NV431, NV501,

NV541, NV600, NV603, NV606, NV630, NV633, and NV660 denote the number of vertex V30, V31, V32,

V33, V40-1, V41-2, V42-0,V43-1, V50 and V54-1, V60 -01, V60-3, V60-6, V63-0, V63-3,

and V66-0 respectively in an OPP. The relationship among the number of each type of

vertices is:

(NV30 + NV33 + 0NV412 + NV431+ 2NV541+ 6NV606 + 3NV633 + 2NV660) – (NV31+ NV32 + 3NV401 +

2NV420 + 2NV501 + NV603 + 6NV600 + 2NV630) = 8

The following is a number of evidences to show that there is a good chance the conjecture is

right.

1. It is proven in Theorem 3.2 that for any OPP, there exists a set of rectangular prisms such

that the OPP can be constructed by combining these rectangular prisms together. The

process starts with marking the first rectangular prism in the sequence as the OPP. It has

exactly eight V30 vertices, and no others kind of vertices. In the next step, a next

rectangular prism is added to the OPP. Assume that the OPP is congruent with the

rectangular prism. After combining the OPP and the rectangular prism at their face  the

whole of a face of the OPP replaces the whole of a face of the rectangular prism  then a

new rectangular prism is formed. The new OPP is not congruent with the previous OPP

or rectangular prism; however, the new OPP still has eight vertices, and all of them are

V30-vertex. Therefore, for this case the conjecture is valid.

54

2. The conjecture is also true for some OPPs, as shown in Table 3.4. Each OPP only

contains several types of vertex configurations, and the number of the other vertex

configurations is null. The vertex configuration relationship for each OPP is obtained by

determining the relationship between the number of each vertex type at n-term of the

arithmetic sequence. For example, OPP at Row 1 has two kinds of vertices, the V30

vertex and the V60-1 vertex. The n-term of the arithmetic sequence for the V30 vertex is

given by Sn = 6n + 2; meanwhile, the arithmetic sequence for the V60-1 vertex is given

by Sn = a + (n 1)b ,where a is the first term value and b is the different value between

two contiguous terms [78]. The relationship between these kinds of vertices can be

written as 6n+2 = 6(n-1) + 8, or in terms of number of each vertex, it can be written as

NV30  6NV60-1 = 8. Therefore, the conjecture is valid.

Table 3.4: Relationship among the Vertex Configurations on Simpler OPPs

No Involved
Vertices

Illustrations Variable
Number
Vertex

Number of Vertex
Configurations in
Sequence

Vertex Configuration
Relationship

S1 S2 S3 ... Sn

1 V30,

NV30 8 14 20 ... 6n+2 6n+2 -6(n-1) = 8

NV30- 6NV60-01 = 8

V60-01 NV60-01 0 1 2 ... n-1

2 V30

NV30 8 12 16 ... 4n + 4 4n+4 – 2(2n-2)=8 
NV30 – 2NV50-1 = 8 V50-1 NV50-1 0 2 4 ... 2n-2

3 V30

NV30 8 8 8 ... 8 8=8 
NV30 = 8

4 V30 NV30 8 13 18 ... 5n+3 5n+3 -3(n-1)-2(n-1)

=8 
NV30 – 3NV40-1 – 2NV50-

1 = 8

V40-1 NV40-1 0 1 2 ... n-1

V50-1 NV50-1 0 1 2 ... n-1

5 V30 NV30 12 15 18 ... 3n + 9 3n+9 -2(n+1)-(n-1)=8

...

...

...

...

55

...

...

V50-1 NV50-1 2 3 4 ... n+1 
NV30 – 2NV50-1 – NV60-3
= 8

V60-3 NV60-3 0 1 2 ... n-1

9 V30

NV30 8 10 12 ... 2n+6 2n+6 –(2n-2) = 8
NV30-NV31=8

 V31 NV31 0 2 4 ... 2n-2

10 V30 NV30 8 11 14 … 3n+5 3n+5 –(2n-2) – (n-1)

= 8
NV30-NV31-2NV3=8

 V31 NV31 0 2 4 … 2n-2
 V32 NV32 0 1 2 ... n-1

11 V30 NV30 13 20 27 ... 8n+5 8n+5 – 1 – 2(4n-2) =8


NV30 + 0NV41-2 – NV31 –
2NV50-1 = 8

 V31 NV31 1 1 1 ... 1
 V50-1 NV50-1 2 6 10 ... 4n -2
 V41-2 NV41-2 1 3 5 ... 2n-1

13 V30 NV30 8 12 16 … 4n+4 4n+4 –(2n-2) –2(n-

1)=8 
NV30 - NV31 – NV42 = 8

V31 NV31 0 2 4 ... 2n-2
V42 NV42 0 1 2 ... n-1

15 V30 NV30 12 14 16 … 2n+10 2n+10 +6(n-1) -2(4n-

2) = 8 NV30 + 6NV60-6
– 2NV50-1 = 8

V50-1 NV50-1 2 6 10 ... 4n-2
V60-6 NV60-6 0 1 2 ... n-1

16 V30 NV30 13 21 29 ... 8n+5 8n+5 - (4n-1) -2(2n-1)

=8 
NV30 – NV31 – 2NV63 =
8

 V31 NV31 3 7 11 ... 4n-1
 V63 NV63 1 3 5 ... 2n-1

22 V30 NV30 12 18 24 ... 6n+6 6n+6 + (2n-1) –(4n-1)

2(2n-1) = 8 
NV30 + NV43-1 – NV31 –
2NV50-1

 V50-1 NV50-1 1 3 5 ... 2n-1
 V31 NV31 3 7 11 ... 4n-1
 V43-1 NV43-1 1 3 5 ... 2n-1

23 V30 NV30 14 19 24 ... 5n+9 5n+9+(2n-1) -3n –

2(4n-1) = 8 
NV30 + 3NV63-3 – NV31 –
2NV50-1 = 8

 V31 NV31 3 6 11 ... 3n
 V50-1 NV50-1 3 7 9 ... 4n-1
 V63-3 NV63-3 1 3 5 ... 2n-1

32 V30 NV30 10 12 14 ... 2n+8 2n+8 + 2(n-1) -2n -

2(n-1) = 8 
NV30 + 2NV54-1 – NV31 –
2NV50-1 = 8

 V31 NV31 2 4 6 ... 2n
 V50-1 NV50-1 0 1 2 ... n-1
 V54-1 NV54-1 0 1 2 ... n-1

...

...

...

...

...

...

...

...

56

34 V30 NV30 10 12 14 ... 2n+8 2n+8 + 2(n-1) –(4n-
2)=8  NV30 + 2NV66-0
- NV31=8

 V31 NV31 2 6 10 ... 4n-2
 V66-0 NV66-0 0 1 2 ... n-1

39 V30 NV30 10 12 14 … 2n+8 2n+8 + (2n-1) –(4n-1)


NV30 + NV33- NV31 = 8

 V31 NV31 3 7 11 … 4n-1
 V33 NV33 1 3 5 … 2n-1

3. There exists a consistent way to show the validity of the conjecture in the joining process

of OPPs with a rectangular prism in the tree diagram in Figure 3.8.

Let P1 be an OPP and P2 be a rectangular prism in Figure 3.8, and let R = (NV30 + NV33 +

0NV412 + NV431+ 2NV541+ 6NV606 + 3NV633 + 2NV660) – (NV31+ NV32 + 3NV401 + 2NV420 +

2NV501 + NV603 + 6NV600 + 2NV630). Before a joining operation, R has a value of 16. The

rest of this section will show that after the joining operation, R will have value of 8.

In a joining process, a set property of P1 meets correspondently a set property of P2.

Because of the meeting, some properties will be lost, and others will change type.

Therefore, the value of R will change. For example, if the V30 vertex and two of its

incident edges of P1 meet with the V30 vertex and two incident edges of P2, then the

two V30 vertices will be lost, and the value of R will decrease by 2. Another example is

if the V30 vertex meets with a point on a line and each adjacent surface of each property

coincides with each other, then the V30 vertex will be lost. Instead, they are replaced by

a V31 vertex, and the value of R will decrease by 2. The difference between the R value

and its value after increasing or decreasing due to the joining of two properties of P1 and

P2 is symbolized with R.

...

...

57

To calculate R, the nodes in the tree diagram in Figure 3.8 are used. All kinds of R

may be founded based on the tree diagram. However, this thesis does not prove that

there are no more properties found. The value of R is calculated with the following

steps:

(1) Select a node in the tree diagram in Figure 3.8, which contains an OPP and a

rectangular prism. The total value R of both the OPP and the rectangular prim is 16.

(2) Determine the list of joined properties in the node.

(3) R of a pair of properties can be counted if R of the other pairs of properties are

known.

(4) Find the relationship among the vertex configuration of the new OPP in Table 3.4

(5) R of a pair of properties is counted based on the difference between the R value of

the OPP in Step (4) and with the R value in Step (1). After substituting the R of

each known pair of properties, then the R of the unknown pair of properties is

obtained.

Here is an example to calculate R from the given two OPPs. Let P1 and P2 be two

rectangular joined at four corners. Due to rectangular form, P1 and P2 only have V30

vertices. The value of vertex configuration on both P1 and P2 is 16 as shown in Figure

3.8. Meanwhile, if P1 is joined with P2, then they will form a new OPP in which all

corners are the V30 vertex, and the value of its vertex configuration is 8. Therefore, the

different value of the vertex configurations between the two original P1 and P2 with the

joined P1 and P2 is 8. It means that the two joined vertices decrease the total value by 2.

58

Figure 3.9: P is a Result of Joining P1 and P2

P1 and P2 are joined by operator () such that sets of properties of P1 coincide with sets

of properties of P2. The relationship that involves those kinds of set properties is shown

in Table3.5 Number 3.

By using the same way, the decreasing or increasing value of R for each set of properties

as summarized in Table 3.5.

Table 3.5: Operations and their R Value

Ordered
Number

Involved properties R-Value New Property
Increase Decrease

1. P1: V30; P2: V30 8 V60-01
2. P1: (V30,1E); P2: (V30, 1E) 4 V50-1
3. P1: (V30, 2E,1F); P2: (V30,2E,1F) 2 Nothing
4. P1: (V60-01,2E,1F); P2: (V30,2E,1F) 2 V40-1
5. P1: (V50-1, 2E); P2: (V30, 2E) 0 0 V60-3
6. P1: (V50-1, 2E,1F); P2: (V30, 2E, 1F) 2 V40-1
7. P1: (V50-1, 3E, 2F); P2: (V30, 3E, 2F) 0 0 V31
8. P1: (Point IN E, 1E); P2: (V30, 1E) 4 V40-1
9. P1: (Point IN E, 1E, 1F); P2: (V30, 1E, 1F) 2
10. P1: (Point IN F, 1F); P2: (V30, 1F) 2 V31
11. P1: (V40-1, 2E, 1F); P2: (V30, 2E, 1F) 2 V41-2
12. P1: (V40-1, 2E, 1F); P2: (V30, 2E, 1F) 2 Nothing
13. P1: (V40-1, 1E, 2F); P2: (V30, 1E, 2F) 2 V42
14. P1: (V60-3, 3E, 2F); P2: (V30, 3E, 2F) 2 V41-2
15. P1: (V60-3, 3E); P2: (V30, 3E) 4
16. P1: (V60-3, 3E, 3F); P2: (V30, 3E,3F) 4 V63
17. P1: (V31, 1E, 1F); P2: (V30, 1E, 1F) 2 V42
18. P1: (V31, 3E, 2F); P2: (V30, 3E, 2F) 0 0 Nothing
19. P1: (V31, 1F); P2: (V30, 1F) 2 V63
20. P1: (V32, 2E); P2: (V30, 2E, 2F) 0 0 V41-2
21. P1: (V41-2, 3E, 3F); P2: (V30, 3E, 3F) 2 V32
22. P1: (V41-2, 1E, 2F); P2: (V30, 1E, 2F) 0 0 V43-1
23. P1: (V41-2, 1E,1F); P2: (V30, 1E, 1F) 2 V63-3

P1 P2 P1 + P2 P1  P2

59

24. P1: (V41-2, 2E, 2F); P2: (V30, 2E, 2F) 0 0 V43-1
25. P1: (Point in NE, 1E, 2F); P2: (V30, 1E, 2F) 4 V43-1
26. P1: (V42, 2E, 1F); P2: (V30, 2E, 1F) 2 V43-1
27. P1: (V42, 2E, 2F); P2: (V30, 2E, 2F) 0 0 V32
28. P1: (V41-2, 3E, 3F); P2: (V30, 3E, 3F) 2 V32
29. P1: (V60-6, 3E, 3F); P2: (V30, 3E, 3F) 2 V63-3
30. P1: (V63, 3E,2F); P2: (V30, 3E, 2F) 0 0 V32
31. P1: (V32, 2E, 2F); P2: (V30, 2E,2F) 0 0 Nothing
32. P1: (V32, 1E, 1F); P2: (V30, 1E, 1F) 2 V54-1
33. P1: (V43-1, 3E, 3F); P2: (V30, 3E, 3F) 2 Nothing
34. P1: (V43-1, 1E, 2F); P2: (V30, 1E, 2F) 0 0 V66-0
35. P1: (V43-1, 1E, 2F); P2: (V30, 1E, 2F) 0 0 V54-1
36. P1: (V63-3, 3E, 3F); P2: (V30, 3E, 3F) 2 V54-1
37. P1: (V63-3, 3E, 3F); P2: (V30, 3E, 3F) 2 V54-1
38. P1: (V63-3, 3E, 3F); P2: (V30, 3E, 3F) 2 V54-1
39. P1: (Point in ME, 1E, 2F); P2: (V30, 1E, 2F) 0 0 V33
41 P1: (V54-1, 3E, 3F); P2: (V30, 3E, 3F) 2 V33
42 P1: (V66-0, 3E, 3F); P2: (V30, 3E, 3F) 2 V33

By applying the suitable R for each joined properties during joining P1 and P2 to form the

new OPP, then the R value changes from 16 to 8 after joining. �

3.6 Duality of Vertex Configurations

Recall that the polyhedral surface in a polyhedron is also called the shell of that polyhedron,

and a multi-shell polyhedron is a solid shape that consists of one large polyhedron and one or

more smaller polyhedra that are located completely inside the large polyhedron in which

these smaller polyhedra neither intersect with the large polyhedron, nor intersect with each

other, nor overlap with each other. The Euler formula for a multi-shell polyhedron is v e + f

= 2(s  g), where v, e, f, s, and g is denoted as the number of vertices, edges, faces, shell, and

genus [36].

 Figure 3.10 is a multi-shell orthogonal polyhedron. The small polyhedron in the multi-shell

orthogonal polyhedron is bounded by an inner boundary. The small polyhedron in the larger

orthogonal polyhedron is also an orthogonal polyhedron. Therefore, a vertex on an inner

boundary has a duality. Figure 3.10 shows that vertex A has configuration V33 as an inner

60

boundary of a simple orthogonal polyhedron, and vertex A is also V30 vertex as an outer

boundary of an empty space inside the simple orthogonal polyhedron.

 Figure 3.10: A is a Vertex on the Inner Boundary of P1 and Outer Boundary of P2

By observation, the dualities of vertex configurations of OPP are listed in Table 3.6.

Table 3.6: Vertex Configurations and Their Duality

No. Vertex Configuration Duality

1. V30 V33

2. V31 V32

3. V32 V31

4. V33 V30

5. V40-1 V43-1

6. V41-2 V41-2

7. V42-0 V42-0

8. V43-1 V40-1

9. V50-1 V54-1

10. V54-1 V50-1

11. V60-3 V63-3

12. V60-6 V60-6

13. V63-0 V63-0

14. V63-3 V60-3

15. V66-0 V60-01

16. V60-01 V66-0

A P1 P2

61

3.7 Summary

This chapter has proven that there are no more than 16 vertex configurations for any

orthogonal pseudo-polyhedra. It is also proven that for any OPP, there exists a set of

rectangular prisms such that the OPP can be constructed by combining these rectangular

prisms together. This chapter also conjectured a formula to show the relationship among the

number of each type of vertex in any orthogonal pseudo-polyhedra. This chapter has provided

some evidences to support the conjecture. The last section in this chapter has identified the

dual vertex configuration of each type of vertex configuration for any OPP having inner and

outer boundaries.

The next chapter covers splitting techniques for several models of geometry objects in both

2D and 3D.

62

CHAPTER 4

SPLITTING OPERATIONS

4.1 Introduction

This chapter focuses on developing algorithms to split orthogonal polygon and polyhedra.

The chapter will develop algorithms: splitting an orthogonal polygon with polyline, splitting

an orthogonal polyhedron with a polyplane, and splitting polyhedra in a bounding box. The

main contribution of this chapter is to provide effective method to do splitting on orthogonal

polygon, orthogonal polyhedron, and polyhedra. The procedure of splitting orthogonal

polygon and an orthogonal polyhedron using polyline and polyplane, respectively can be

applied to a real work activity, such splitting metal in a metal fabrication.

The task of orthogonal polyhedron decomposition is to represent an orthogonal polyhedron as

the union of a number of simpler component parts. Orthogonal polyhedron decomposition

has many theoretical and practical applications. For example, decomposition of an orthogonal

pseudo-polyhedron into a set of rectangular prisms is a useful step for successful guard

placement in the 3D-AGP.

Generally, decomposition of an object into a set of smaller objects can be achieved by a set of

splitting operations. A splitting operation is an operation to split an object into two parts,

with each part containing one or more smaller objects. The object is split by a splitting tool

that crosses the object until it hits its boundary. For example, Ayala and Rodriquez [76]

proposed a procedure to decompose an OPP into a set of rectangular prisms. In this

procedure, the splitting process is applied many times, and each splitting plane contains a

63

single plane that divides the OPP into two parts, each consisting of one or more smaller

OPPs.

Imagine that an L-shape piece of metal will be taken from a rectangular piece of metal in a

metal fabrication. To get the piece, a splitting method that uses a single splitting plane for

each process, such as proposed by Ayala and Rodriguez [76], can be deployed. The steps are

pictured in Figure 4.1, as follows: First, a thick metal, represented by a rectangle (Figure

4.1(a)), is split in a horizontal direction from the left boundary until it hits the right boundary

and the resulting pieces are split again from each piece in the vertical direction (see Figure

4.1(b)). Finally, three of four pieces (Figure 4.1(c)) are combined in their boundary to get the

L-shape piece metal.

Figure 4.1: Steps to Get an L-Shape Piece

The above description shows that the splitting operation is applied twice and then followed

by combining some parts to get the L-shape. This method seems inefficient. It is reasonable

to ask the process in order to not involve only one splitting operation such that the combining

step is no longer necessary. This question is a motivation of some of the works in this

chapter.

In the practical situation illustrated in Figure 4.1, an orthogonal polyhedron needs to be split

into exactly two simpler orthogonal polyhedra. Therefore, another kind of splitting technique

is required. One possible splitting technique is to introduce a splitting plane that contains one

a b c d

64

or more connecting planes. By using this kind of splitting plane, an orthogonal polyhedron

can be split into two smaller orthogonal polyhedra within a single splitting operation.

A splitting tool for a polygon is a line or a set of connected lines, and a splitting tool for a

polyhedron is a plane or a set of connected planes. A set of connected lines is called a

polyline, and a set of connected planes is called polyplane. Each segment in a polyline or

polyplane parallels to one of the axes in a Cartesian coordinate system.

In this chapter, a number of splitting algorithms are developed for different object models,

orthogonal polygons and orthogonal polyhedra. Section 4.2 will develop an algorithm for

splitting an orthogonal polygon with a polyline. In Section 4.3, an algorithm is developed for

splitting an orthogonal polyhedron with a polyplane.

A splitting plane that contains only a single plane (not parallel to one of the three axes) can be

used to split a bounding box that is a rectangular prism that contains one or more polyhedra.

The splitting plane will divide the bounding box into two halves, in which each half consists

of one or more polyhedra. In Section 4.4, an algorithm is provided for splitting a set of

convex polyhedra in a bounding box using a splitting plane.

4.2 Splitting an Orthogonal Polygon Using Polyline

Splitting a polygon into two halves using a single splitting line is a well known-problem, and

numerous methods have been proposed such as by Daniels et al. [79]. However, less method

is known to split an orthogonal polygon using a polyline. In this section, a procedure of

splitting an orthogonal polygon using a polyline is established. For that purpose, definitions

and terminology are introduced first.

4.2.1 Definitions and terminology

65

Polyline is the term for a polygonal chain in a computer graphic. It is a connected series of

line segments connecting the consecutive vertices that are treated as a single entity [80]. An

orthogonal polyline is a polyline in which each segment of the polyline is parallel to one of

the two axes. Henceforth, the term polyline is used to refer an orthogonal polyline.

In this thesis, a polyline is restricted by three conditions. First, the whole segment of a

polyline must lie inside of an orthogonal polygon. Second, a segment of a polyline cannot lie

on edges of an orthogonal polygon. Third, a polyline intersects the boundary of an orthogonal

polygon only at two points. The point in which a polyline intersects the boundary of an

orthogonal polygon is an intersection vertex. In Figure 4.1, a connected segment lines passes

through vs1, vs2, and vs3. The connected lines lie totally in an orthogonal polygon, and the

connected lines intersect the boundary in two points; therefore, the connected line can be

considered as a polyline.

Figure 4.2: An Orthogonal Polygon with a Polyline

In Figure 4.2, v1,..,.v8 are vertices of an orthogonal polygon. Each vertex has a coordinate to

represent its position in the 2D Cartesian coordinate system. vs1, vs2, and vs3 are vertices of a

polyline, in which vs1 and vs3 are intersection vertices obtained from intersection between the

orthogonal polygon with the polyline, and they are a starting vertex and an ending vertex of

the polyline, respectively.

Y

X
v1 v2

v5

v3 v4

v6

v7 v8

vs2

vs1

vs3

66

The data representation for an orthogonal polygon has been studied by O’Rourke [68], and

this data structure has been reviewed in Chapter 2. In this data structure, an orthogonal

polygon is presented as in AB-sorted vertices. An AB-sorted vertices is a sequence of vertices

where their coordinate are sorted first by coordinate A, and then by coordinate B. The vertices

can be sorted in two different ways: XY-sorted vertices or YX-sorted vertices. Accessing

vertices based on sorted-vertices is standard in computational geometry. Wu, Tian, and Xie

also used sorted vertices as input for splitting arbitrary polygons [81]

Meanwhile, a polyline can be easily represented by an ordered sequence of vertices, v1, v2, …,

vn where each vertex is represented by its Cartesian coordinate. Because the proposed

polyline is an orthogonal polyline, any two consecutive vertices will share one coordinate

value. v1 and vn are vertices of a polyline that also lie on the boundary of an orthogonal

polygon, and both are intersection vertices.

A polyline may contain a single line that is perpendicular to the x-axis or y-axis. Figure 4.3

shows two orthogonal polygons with different polylines. Figure 4.3(a) is an orthogonal

polygon with a single line segment as a splitting line, and Figure 4.3(b) is an orthogonal

polygon with a polyline as a splitting line.

(a) (b)

 Figure 4.3: Polylines on orthogonal polygons

Each of the above figures is explained as follow:

X

Y

x=x1

v4 v5

v6 v7

v8 v1

v2
v3

vs1(x1,y1)

vs2(x1,y2)

X

Y

x=x1, y= y2

v4 v5

v6 v7

v8 v1

v2
v3

vs1(x1,y1)

vs3(x2,y2)
Vs2(x1,y2)

67

(i) In Figure 4.3(a), an orthogonal polygon is split by a polyline that consists of vertices vs1

and vs2. This polyline has only one segment line. After splitting, vertices of the

orthogonal polygon and the polyline will be grouped into two orthogonal polygons: Q =

{ vs1,v1,v2,v3,v4,vs2} and R = {vs1, v8,v7,v6,v5, vs2}.

(ii) In Figure 4.3(b), the orthogonal polygon is split by a polyline that consists of vertices vs1,

vs2, vs3. This polyline has two connected line segments. The result of splitting is Q = {

vs1,v1,v2,v3,v4, v5,vs3,vs2} and R={ vs1,v8,v7,v6, vs3,vs2 }.

4.2.2 An algorithm for splitting an orthogonal polygon using a polyline

In this section, an algorithm on how to split an orthogonal polygon by polyline will be

described. The inputs of the algorithm are vertices of an orthogonal polygon and vertices of a

polyline. The following steps are used to split an orthogonal polygon into two smaller

orthogonal polygons:

1. Combine the vertices of an orthogonal polygon and a polyline into a set of combined

vertices.

2. Group the set of combined vertices into two groups of vertices in which each group

represents a smaller orthogonal polygon.

Based on the above steps, two procedures are needed. The first is a procedure for combining

the vertices of an orthogonal polygon and a polyline, which will be discussed in Subsection

4.2.3. The second is a procedure for grouping the combined vertices into two groups of

smaller orthogonal polygons; this procedure will be discussed in Subsection 4.2.4.

68

4.2.3 Combining the vertices of an orthogonal polygon and a polyline

Combining vertices is a process to combine the vertices of an orthogonal polygon and a

polyline into a set of combined vertices that contains two smaller orthogonal polygons. The

procedure to get a set of combined vertices is based on the following observations: i) each

vertex of an orthogonal polygon is a vertex of a smaller orthogonal polygon; therefore, all

vertices of an orthogonal polygon are added to a set of combined vertices. ii) A polyline will

become the boundary of each orthogonal polygon in the new set of vertices; therefore, each

vertex of a polyline is added in such a way as to the set of combined vertices. There are two

types of polyline vertices: non-ending vertices and ending vertices. A non-ending vertex

belongs to two smaller orthogonal polygons; hence, a non-ending vertex is added twice to the

combined vertices. Meanwhile, an ending vertex of a polyline lies on the edge or vertex of

the orthogonal polygon, and the ending vertex is called as an intersection vertex. If an ending

vertex lies on an edge, then add twice this intersection vertex to the set of combined vertices;

if it lies on a vertex, then update the vertex and an adjacent vertex as in the set of combined

vertices as intersection vertex (see Figure 4.4). Figure 4.4(a) shows an orthogonal polygon

and a polyline before splitting. Meanwhile, Figure 4.4(b) shows the set of combined vertices

after splitting.

Figure 4.4: One of the Two Intersection Vertices Lies on the Vertex of an Orthogonal
Polygon

Y

X
v1 v2

v5

v3 v4

v6

v7 v8

vp

vs1

vs2

a

Y

X
v1

v2

v4

v7 v8

vs1

vs2
vp

v3

vs1

vp

vs2

b

69

Based on the observation, the source of vertices in a set of combined vertices are the vertices

the orthogonal polygon, non-ending vertices of a polyline, and intersection vertices.

Figure 4.5 is a procedure for combining, which is called CombiningVertices. The

procedure has two kinds of input: vertices of an orthogonal polyhedron and vertices of a

polyline. The output is a set of combined vertices. The procedure contains a function,

ReadPolyline, which has a function to read one by one the vertices in a polyline, and a

procedure, ReadVertexAdjacent, which has a purpose to determine the adjacent vertex

of an intersection vertex in an orthogonal polygon.

An adjacent vertex is found as follows. Let vs and vr be two end vertices of a segment line in

a polyline, then if vsvr is perpendicular to x-axis, sort the vertices of the orthogonal polygon in

xy-sorted to read the pair of vs as adjacent vertex vs’ in the orthogonal polygon; or if vsvr is

perpendicular to y-axis then sort the vertices of the orthogonal polygon in yx-sorted to read

the pair of vs. After finding vs’, update the source of vertex vs and vs’ in the set of combined

vertices as intersection vertex.

Figure 4.5: Procedure CombiningVertices for Combining Vertices

Procedure CombiningVertices(INPUT P: an orthogonal polygon, PL: a polyline ;
OUTPUT cv: a set of combined vertices)

var vs, vr : a vertex of PL; v: a vertex of P ; m: number of vertices in PL
cv=;
cv = cv + P; // add all vertices of P into the set of combined vertices cv
for (i = 1 to m) {

vs = ReadPolyline(PL)
if vs = non-ending vertex {

cv = cv + vs + vs
 else

 If (vs = ending vertices and lies on edge) {
cv = cv + vs + vs

 else // vs = ending vertices and lies on vertex of P
 ReadVertexAdjacent(vs,vr ; vs’)// procedure to determine vs’

update v s and vs’ in cv as intersection vertex;
 }
 }}

70

4.2.4 Grouping vertices

The new set of vertices of the orthogonal polygon after adding all vertices of a polyline

represents two orthogonal polygons, in which each orthogonal polygon has a group of

vertices. However, the vertices record has not yet given any information about the group of a

vertex. Therefore, a procedure is needed to group the vertices.

Grouping the vertices into two smaller orthogonal polygons is based on the following

observations: (i) each vertex of the original orthogonal polygon belongs to one of the smaller

orthogonal polygons; (ii) each non-ending vertex in the polyline belongs to the two

orthogonal polygons; (iii) An intersection vertex belongs to a smaller orthogonal polygon.

An orthogonal polygon has one boundary. This means that there is a path that passes through

all the vertices and edges of the orthogonal polygon. The boundary of a smaller orthogonal

polygon consists of a part of boundary of the original orthogonal polygon and a polyline. A

polyline starts with an intersection vertex and finishes at another intersection vertex with

different coordinate. Each smaller polygon has the same polyline; hence, the remaining path

for a smaller orthogonal polygon is a path that starts with an intersection vertex and then

continues to walk until meet the other intersection vertex.

Figure 4.6 shows the algorithm to group vertices into two orthogonal polygons. The

procedure starts by running a sub-procedure ReadNonEndingVertices, which reads all

non-ending vertices in the set of combined vertices cv. All different non-ending vertices vne

become the vertices of a smaller orthogonal polygon Q, while the other group of smaller

orthogonal polygon R contains the set of combined vertices minus vne. See Figure 4.6 for

detail.

71

Figure 4.6: Algorithm for Grouping Vertices

4.2.5 Implementation of the algorithm

In the implementation of the algorithm, the vertices of an orthogonal polygon are inputted

randomly and saved in a file.

Figure 4.7: The Vertices of Orthogonal Polygon and a Polyline

Procedure GroupingVertices (INPUT cv: a set of combined vertices, cvxy: cv in xy-sorted, cvyx :
cv in yx-sorted; OUTPUT Q, R : two orthogonal polygons)

var vne : non-ending vertices in cv

vs1, vs2 : intersection vertices
 vi, vt : vertices of NP
 direction: Boolean variable
 PL : vertices of a polyline

ReadNonEndingVertices(cv; vne) // a procedure to read the set of non vertices in cv
Q= vne ; R=cv-vne
direction= FALSE;

vi = ReadPairVertex(cvxy, vs1) // read a pair of vs1 from cvxy;
If (vi  PL){

vi = vs1;
Else

vt = vi; Q = Q + vi; R = R - vi
}
While vt  vs2 {
 direction= Not direction
 If (direction = TRUE){
 vt = ReadPairVertex(cvyx, vi);
 Else
 vt = ReadPairVertex(cvxy,vi);
 }

vi = vt ; Q = Q + vi; R = R - vi
}

v1 (1,1) v2 (6,1)

v5 (1,3)

v3 (5,2)
v4 (6,2)

v6 (3,3)

v7 (3,5) v8 (5,5)

vs5 (5,4)
vs4 (4,5)

vs3 (4,5) vs2 (4,5)

vs1

72

(1) Add all vertices of the orthogonal polygon and non-ending vertices of the polyline

into a set of combined vertices cv. Therefore cv = {v1,v2,v3,v4,v5,v6,v7,v8, vs2, vs3, vs4}.

(2) The set of intersection vertices is vs = {vs1, v7, vs5, vs5}. Each vertex in vs is added to

cv, and if the vertex already exist in cv then replace it by vertex in vs.

(3) Group the vertices into two groups by using the procedure GroupingVertices.

The results are Q = {vs1, v5, v1, v2, v3, v4, vs5, vs4, vs3, vs2} and R = {v8, vs5, vs4, vs3, vs2, , v7}.

4.2.6 Time complexity analysis and discussion

The time cost is calculated for each of the following activities. Firstly, the time complexity

for combining an orthogonal polygon and a polyline can be constructed in O(n) where n is

total number of vertices of an orthogonal polygon and a polyline. The last part of the

algorithm, grouping vertices into two orthogonal polygons, cost a time complexity in O(n).

The sorting, which has O(n log n) in an average case, is not included to determine the

complexity of these algorithms, because sorting is considered as inputs of the algorithm.

Meanwhile, splitting an orthogonal polygon with a line also takes a linear time, and the

splitting still takes a linear time for k number of splitting lines. However, this method is not

effective because there should be operations to combine some part of orthogonal polygon.

4.3 Splitting an Orthogonal Polyhedron Using a Polyplane

Orthogonal polyhedra are the 3D analogue of 2D orthogonal polygons. They are used in

computational geometry as a well-known model to represent many real 3-dimensional

objects.

Many different operations can be defined for an orthogonal polyhedron, for example:

partitioning [82], splitting [56], and Boolean operations on arbitrary orthogonal polyhedra of

any dimension [72], etc.

73

Splitting is one of operations in an orthogonal polyhedron, and a splitting has the purpose of

splitting an orthogonal polyhedron into two halves. One of the splitting techniques has been

introduced by Ayala by using a splitting plane that contains a single plane [56]. This splitting

technique splits an orthogonal polyhedron into two halves, and each half consists of one or

more orthogonal polyhedra.

Suppose a smaller orthogonal polyhedron will be taken out from a large orthogonal

polyhedron. Of course, the Ayala technique can be used to get the smaller orthogonal

polyhedron by applying this operation many times until the smaller orthogonal polyhedron is

achieved. However, this technique seems ineffective, since it may be applied many times, and

compound operation is probably needed to get the smaller orthogonal polyhedron. In the

present section, a new method is established in which one splitting operation is sufficient to

get the smaller orthogonal polyhedron from a large orthogonal polyhedron. The splitting

operation uses a polyplane instead of single plane. This splitting method split an orthogonal

polyhedron into two halves, and each half only contains one orthogonal polyhedron.

4.3.1 Definitions and terminology

Two orthogonal polygons are said to be connected if edges with the same length from each

orthogonal polygon meet. An edge that belongs to two orthogonal polygons is called a shared

edge; meanwhile, the ending point of a shared edge is called a shared vertex. Recall that a

degree of vertex is the number of edges that meets at a vertex. Because each orthogonal

polygon is parallel to one of three planes in Cartesian space, then the dihedral angle between

two connected orthogonal polygons at a shared edge is either 90 or 270. An orthogonal

polyplane is a connected orthogonal polygon, but it is not a closed polygonal surface. The

present study is restricted to an orthogonal polyplane that has the same length edges for each

74

shared edges. Henceforth, the term polyplane is used as shorthand for the orthogonal

polyplane defined above.

As mentioned above, for any two orthogonal polygons with a shared vertex, the dihedral

angle at the vertex is either 90 or 270. Thus, the shared vertex has degree of three.

As an example, Figure 4.8 is a polyplane that contain three orthogonal polygons p1, p2, and

p3. e1 is a shared edge, shared by p1 and p2. v1 is a shared vertices that is shared by three

edges e1, e2, and e3. Meanwhile, Figure 4.8(b) is not a polyplane. This is because the

orthogonal polygon does not meet at the same length edges.

Figure 4.8: Valid (a) and not Valid (b) Instances of Polyplane

Figure 4.9 shows an orthogonal polyhedron having a polyplane. Numbers 1, 2 ... 28 in the

figure are labels for vertices of the orthogonal polyhedron. Each vertex has a coordinate that

represent its position in the 3D coordinate system. The gray planes represent a polyplane

having three contiguous planes.

v1

e2 e1

e3

p1

p2

p3

a b

e2

75

Figure 4.9: An Orthogonal Polyhedron with a Polyplane

Splitting an orthogonal polyhedron with a polyplane is defined as dividing the orthogonal

polyhedron into two smaller orthogonal polyhedra by splitting the orthogonal polyhedron

along the polyplane. For the splitting operation, conditions include:

1. A polyplane lies entirely in an orthogonal polyhedron.

2. A vertex of a polyplane intersects the boundary of an orthogonal polyhedron at a

vertex, an edge, or a face of the orthogonal polyhedron. If a vertex of a polyplane

intersects at a face of an orthogonal polyhedron, then the vertex has a degree of three.

3. Any shared edge of a polyplane cannot coincide with any edge or face of an

orthogonal polyhedron.

From the above conditions, it can be identified that there are two kinds of vertex in a

polyplane: coalition vertex that is a vertex of a polyplane that lies on a vertex of an

orthogonal polyhedron, and non-coalition vertex that is a vertex of a polyplane that lies on

edge, on a surface, or in the interior of an orthogonal polyhedron. Figure 4.10 shows some

valid polyplanes and a not valid polyplane in orthogonal polyhedra.

X

Y

Z

3

28
28

1

2

4

5

6

7

8

9

10

11

12

13

14 15

16

18

17

19

20

21

22

23

24

25

26

27

28
A polyplane

76

Figure 4.10: Valid (a,b,c) and not Valid (d) Polyplanes in Orthogonal Polyhedra

(i). The polyplane in Figure 4.10(a) is a valid polyplane that consists of an orthogonal

polygon, and all the vertices of polyplane intersect (coincide) with the edges of the

orthogonal polyhedron.

(ii) Figure 4.10(b) has one rectangle as a splitting polyplane that intersects with four edges of

the orthogonal polyhedron and creates four intersection vertices.

(iii) The polyplane in Figure 4.10(c) is a valid polyplane that has two contiguous rectangles

that intersect four edges, and the polyplane has two shared vertices.

(iv) The splitting plane in Figure 4.10(d) is not a valid polyplane, because a shared edge in

the polyplane coincides with an edge of the orthogonal polyhedron; hence, it does not satisfy

the rule of a polyplane intersecting an orthogonal polyhedron.

An orthogonal polyhedron is represented by its extreme vertices as discussed in Chapter 2.

Recall that extreme vertices are the ending vertices of brinks in an orthogonal polyhedron,

and a brink is defined as the longest uninterrupted line segment, built out of a sequence of

collinear and contiguous two-manifold edges of an orthogonal polyhedron.

Meanwhile, a polyplane is represented by an open connected of planes, p1,p2,...,pn, in which

each plane is an orthogonal polygon. Representing an orthogonal polygon has been described

in Chapter 2.

d

b

c

a

77

4.3.2 An algorithm of splitting an orthogonal polyhedron using a polyplane

This section will present an algorithm for splitting an orthogonal polyhedron by using a

polyplane. The inputs of the algorithm are the extreme vertices of an orthogonal polyhedron

and the vertices of a polyplane. The algorithm works in two main steps:

1. Combine the vertices of an orthogonal polyhedron and a polyplane into a set of

combined vertices.

2. Group the set of combined vertices into two groups in which each group represents an

orthogonal polyhedron.

Based on the above steps, there are two main procedures for splitting an orthogonal

polyhedron using a polyplane. The first is a procedure for combining the vertices of an

orthogonal polyhedron, which will be discussed in Subsection 4.3.3. The second is a

procedure for grouping the combined vertices into two groups that represent two orthogonal

polyhedra; this procedure will be discussed in Subsection 4.3.4.

4.3.3 Combining vertices

Combining vertices is a process to combine the vertices of an orthogonal polyhedron and a

polyplane into a set of combined vertices. Properties of each vertex in a set of combined

vertices are a vertex name, the vertex coordinate, and source of the vertex. The procedure to

get a set of combined vertices rests on the following observations: i) each vertex of an

orthogonal polyhedron is a vertex of one of the two smaller orthogonal polyhedra. Therefore,

all the vertices of an orthogonal polyhedron are added to a set of combined vertices. ii) A

polyplane will become the boundary of each orthogonal polyhedron after splitting; therefore,

each vertex of a polyplane is added twice in such a way to the set of combined vertices. iii) A

non-coalition vertex lies inside of an orthogonal polyhedron and it becomes a vertex in the

78

boundary of smaller orthogonal polyhedra. Hence, the vertex is added twice directly to the

combined vertices. Meanwhile, if a coalition vertex exists, then update the vertex and its

adjacent vertex as the same vertex in the combined vertices as the coalition vertex.

Based on the observation, the source of vertices in a set of combined vertices are orthogonal

polyhedron vertices, coalition vertices, and non-coalition vertices.

Figure 4.11(a) shows an orthogonal polyhedron and a polyplane before splitting. Meanwhile,

Figure 4.11(b) shows the set of combined vertices after splitting.

Figure 4.11: Splitting an Orthogonal Polyhedron with a Polyplane

The procedure CVOPolyhedronPolyplane, which is shown in Figure 4.12, is used to

combine an orthogonal polyhedron and a polyplane. The inputs of this procedure are vertices

of the orthogonal polyhedron and the vertices of the polyplane, and the output is a set of

combined vertices. This procedure contains the function ReadVertexPolyplane(),

which has the task of reading vertices in a polyplane.

a

v1

v2

v3

v4

v5

v6

v7

v10

v9

v8

v11

v12
i1

i2

i3
i4

i5

i6

b

v1

v2

v3

v4

v5
i1

i1

v6 v10
v8

v7

i2

i2

i5

i5

i6
i6

v11

v12

v9

i4
i4 i3

i3

79

Figure 4.12: Procedure CVOPolyhedronPolyplane for Combining Vertices

4.3.4 Grouping vertices

After combining the vertices, the next task is to separate the set of combined vertices into two

groups of vertices in which each group represents an orthogonal polyhedron. To group the

vertices into two orthogonal polyhedra rests on the following observations: (i) each vertex

having source orthogonal polyhedron vertices in the set of combined vertices belongs to one

of the two smaller orthogonal polyhedra. (ii) Each vertex having source non-coalition vertex

in the set of combined vertices becomes a vertex in the boundary of each smaller orthogonal

polyhedron, so each the same vertices is distributed to each smaller orthogonal polyhedron.

Therefore, each shared vertex is added directly to each smaller orthogonal polyhedron

without a separating process. (iii) Each vertex having source coalition vertex belongs to one

of the two smaller orthogonal polyhedra.

A smaller orthogonal polyhedron has a polygonal surface, and the vertices on the polygonal

surface come from the three sources of vertex in a set of combined vertices. Because the

surface of an orthogonal polyhedron is a set of connected polygons, a closed walk can be

Procedure CVOPolyhedronPolyplane(INPUT P: the extreme vertices of an
orthogonal polyhedron, PL: a polyplane; OUTPUT cv: a set of combined vertices)

var vpi : ith polyplane vertex
 v : a vertex in cv
 m : number of vertices in a polyplane
cv=
cv = cv + P

For (i=1 to m){ // a polyplane has m vertices
 vpi = ReadVertexPolyplane(PL) // function to read a vertex of PL
 If vpi is a coalition vertex
 cv=cv + vpi + vpi
 else // vpi is non-coalition vertex and v pi  cv
 ReadVertexAdjacent(vpi,cv,v,v’)// function to read vpi in cv

replace v and its an adjacent vertex v’ in cv with vpi;
}

80

made from a vertex and back to the vertex after visiting all vertices in a smaller orthogonal

polyhedron. There are two non-coalition vertices that have the same position, and each of

them belongs to different orthogonal polyhedra. Thus, the non-coalition vertex is obviously a

vertex of each smaller orthogonal polyhedron, and it is not necessary to be explored in a

closed walk. Some non-coalition vertices and coalition vertices are adjacent to orthogonal

polyhedron vertices, and some of them are surrounded by other non-coalition and coalition

vertices. Therefore, the closed walk moves backwards when meeting these kinds of vertices.

The closed walk needs to visit vertices of the vertices having source orthogonal polyhedron,

and move backwards when meets the coalition and non-coalition vertices. A closed walk

starts from a starting vertex and terminates at the vertex. A coalition vertex and a non-

coalition vertex that lies on edge of the original orthogonal polyhedron are also known as a

separating vertex. A starting vertex is a vertex that is selected from any separating vertex. All

the vertices in a closed walk and non-coalition are the complete vertices of a smaller

orthogonal polyhedron.

The procedure for grouping vertices is based on by the following assumptions: i) each vertex

having source orthogonal polyhedron vertices is visited three times, due to the vertices being

extreme vertices related to three other vertices. ii) After visiting a separating vertex, the walk

backwards to the previous visited vertex. iii) A vertex is visited in priority order, pair in a

brink, pair on the same plane, and pair on the next plane.

Figure 4.13 is the procedure GroupingVertices3D for grouping the vertices in a set of

combined vertices into two groups of orthogonal polyhedra. Inputs of this procedure are the

set of combined vertices vc. Meanwhile, the outputs are Q and R, respectively an orthogonal

polyhedron.

81

A closed walk starts with any separating vertex vs1 that is achieved using a function

ReadSeparatingVertex(). The next step is determining the pair of vs1, vi, from the

sorted of a set of combined vertices using a function ReadPairVertex(). Let vt be the

pair vertex of vi, then repeat the function ReadPairVertex()until vt is equal with the

starting vertex vs1. Once it exists, the two groups of vertices are achieved, and each group of

vertices represents a small orthogonal polyhedron.

Figure 4.13: Procedure GroupingVertices3D for Grouping the Combined Vertices

Procedure GroupingVertices3D(INPUT: cv combined vertices, cvxyz: cv in xyz-sorted, cvyxz : cv in yxz-
sorted, cvzxy: cv in zxy-sorted; Q,R: orthogonal polyhedra)

var vs1 : a separating vertex
 vi , vt , vnc : vertex in combined vertices cv
 dir,i : integer
 staorthopoly : a Boolean variable { TRUE if the source vertex is orthogonal polyhedron}
 visited : a Boolean variable { TRUE a vertex is visited}

staorthopoly = false; visited= false; i=0
file(0) = cvxyz; file(1) = cvyzx; file(2) = cvzxy;

vnc = ReadNonCoalitionVertex(cv) // a function to read non-coalition vertices from cv
Q = vnc; R = cv – vnc;

// making a closed walk
vs1 = ReadSeparatingVertex(cv) // a function to read a separating vertex
if (vs1  null) {
 while (staorthopoly = false) {

vi = ReadPairVertex (file((i), vs1) // read a pair of vs1 from file(i)
if (vi  orthogonal polyhedron vertex){
 dir = direction(vs1,vi) // a function to determine the direction the brink (vs1,vi)
 staorthopoly = true
 if (vs1 non-coalition vertices){
 Q = Q + vs1; R = R – vs1;
 }
else
 i=i+1;

 }
 While (vi  vs1){
 dir = ChangeDirection(dir) //change direction of brink in the walk
 vt = ReadPairVertex(file(dir),vi)
 if (visited = false and vt non-coalition vertices){
 Q = Q + vt; R = R-vt; vi = vt;
 }
 }
}

82

4.3.5 Implementation of the orthogonal polyhedron splitting algorithm

The following example illustrates the implementation of the algorithm for splitting an

orthogonal polyhedron with a polyplane. Figure 4.14 is an orthogonal polyhedron having

twelve vertices, and a polyplane splits the orthogonal polyhedron into two smaller orthogonal

polyhedra.

Figure 4.14: The Vertices of an Orthogonal Polyhedron after Splitting

(1) Add all vertices of the orthogonal polygon and non-ending vertices of the polyline

into a set of combined vertices cv by using the procedure CVOPolyhedronPolyplane.

Therefore cv = {v2,v4,v1,v3,v6,i4,i4,v8,v5,i3,i3, v7,i2,i2,p2,p2,i1,i1,p1,p1, v10, v12,v9,v11}.

(2) The set of non-coalition vertices vnc = {i3,i4, p1,p2,i1,i2}, and the set of coalition

vertices is empty.

(3) Apply the procedure GroupingVertices to group the vertices into two group

vertices. Each of them represents an orthogonal polyhedron. i4 is a separating vertex, and let

it be a starting vertex in the closed walk. v8 is a pair of i4 in xyz-sorted, because i4v8 is a brink

that is parallel to the Z-axis. The resulting closed walk is i4,v8,v7,i3,v11,v9,v10,v12,i2, and i1 as

shown in Figure 4.15.

X

Y

Z

v11(7,4,5)

v1(1,4,1)

v2(1,1,1)

v3(1,4,3)

v4(1,1,3)
v5(4,4,3)

v6(4,1,3)

v7(4,4,5)

v8(4,1,5)

v9(7,4,1)

v10(7,1,1)

v12(7,1,5)

i1

i2

i3

i4

p1

p2

83

Figure 4.15: A Walk for Grouping Vertices

The closed walk vertices without non-coalition are v8,v7,v11,v9,v10, and v12. After combining

the non-coalition vertices and the closed walk vertices without non-coalition vertices, a

smaller orthogonal polyhedron vertices is Q = {i4,v8,i3,v7, i2,p2,i1,p1,v10,v12,v9,v11}, and they

are presented in XYZ-sorted order. The remaining of vertices are allocated to R.

4.3.6 The Time complexity analyisis and discussion

Let n be the number of vertices of a given orthogonal polyhedron and a polyplane, then the

time cost for splitting the orthogonal polyhedron using the polyplane is calculated as the

following activities:

 ABC-sorted vertices in the set of combined vertices has the time complexity O(n log

n) in which the ABC-sorted applies Quick-sort method [83].

 The time complexity for combining vertices of an orthogonal polyhedron and a

polyplane is O(n).

 Grouping the set of combined vertices into two smaller orthogonal polyhedra needs: i)

O(n) to put each non-coalition vertex to each orthogonal polyhedron, ii) O(n) time to

read the first separating vertex, iii) O(n) for making a closed walk from the first

separating vertex and back to the first separating vertex, in which each vertex in the

walk is visited three times.

v8 i4 v7 i3

v11 v9 v10 v12

i2 i1

Separating vertex
Brink
Edges
Planes connecting

84

From the above list, sorting the set of combined vertices in ABC-sorted is the most time

consuming operation. Therefore, the time complexity for splitting them using a polyplane

is O(n log n).

4.4 Splitting Polyhedra in a Bounding Box

A complex shape of a polyhedron is often a reason for dividing the polyhedron into simpler

shapes to better facilitate representing and performing a variety of operations on the shape.

There could be a variety of different operations to do this task. For example: decomposition

[84], or splitting [85]. Decomposition is an operation to divide a polyhedron into a set of

simpler polyhedra. One of the possible problems in decomposition operation is how to

decompose a given polyhedron into a minimum number of tetrahedra. Splitting is another

kind of operation to split a polyhedron into two partitions.

Instead of dividing a complex-shape polyhedron, dividing a polyhedron based on a view

point often happens in the real life, but not much study has been focused on it. The purpose

of this kind of operation is to separate a visible and an invisible area of a polyhedron from a

view point outside of the polyhedron. It is a quite interesting operation, because a set of

polyhedra bounded by a bounding box can be split simultaneously into two groups: visible

and not visible polyhedra.

Given a set of convex polyhedra Pi in a bounding box B and a view point v that sees partially

B in an orthogonal direction, what is the efficient procedure to split Pi in B from v? The

algorithm has two main steps; compute the splitting plane derived from a view vertex, and if

the splitting plane intersects with a polyhedron then split each of the affected polyhedra into

two polyhedra.

85

4.4.1 Definitions and terminology

A bounding box is an orthogonal prism, and it is composed by one or more polyhedra. Thus,

if there is only a polyhedron in a bounding box then the polyhedron is an orthogonal

polyhedron (a polyhedron in which each edge is parallel to any orthogonal direction). The

bounding box definition implies that all properties of polyhedra lie entirely in the bounding

box.

The boundary of bounding box consists of six facets that can be divided into a solid facet and

an arbitrary facet. A facet is called a solid facet if any two points at each side of the facet

cannot see each other. Meanwhile, a facet is called arbitrary facet if any two points at each

side of the facet can see each other. In this thesis, it is assumed that, for any bounding box, at

least one facet is a solid facet; meanwhile, at most five facets are arbitrary facets. A point v

cannot see another point p inside a bounding box if a solid facet intersects the segment line

pv, and v can see p if they intersect with an arbitrary facet.

A view point is a vertex outside of a bounding box that has the task of seeing an area in the

bounding box. Due to the existence of at least one solid facet on the bounding box then a

view point sees the bounding box partially. A bounding box is visible from one view point if

at least a point in the interior of an arbitrary facet is visible from the view vertex. A view

point v, as shown in Figure 4.16 will create an arbitrary plane in a bounding box if v sees at

least four different points on one of the bounding box facets, and v is not in the same plane

horizontally or vertically with the visible vertices.

An orthogonally view point is a view point in which the segment line to the closet point in

bounding box is parallel to one of the three orthogonal directions. A closet point is a

bounding box vertex that has the smallest distance to a view point. If a view point sees a

bounding box partially then the bounding box will be separated into regions in terms of v,

86

namely visible area and invisible area. The visible area is separated by a cutting plane from

the invisible area, and a cutting plane is also known as a splitting plane. The planes that

contain s0,s1, and q in Figure 4.16 are examples of splitting planes.

The splitting plane S splits a bounding box B into two partitions, and it intersects four edges

of B. There are three possibilities of a view point to cut a polyhedron from an orthogonal

view point as shown in Figure 4.16. The possibility is dependent on the existence and

position of a gate point that is a point in segment line that lies between the view vertex and a

closet vertex in B. If a closet vertex is visible from a view point, then gate point does not

exist; otherwise, a gate point exists. Point g in Figure 4.16(b) is a gate point. If a gate point

does not exist, then a splitting plane starts from the closet vertex to v; otherwise, a splitting

plane starts from the intersection of line vg with an edge of the closet facet to v.

Figure 4.16 also gives the three possible ways of a splitting plane to cut a bounding box.

Figure 4.16(a) is a bounding box having a splitting plane that derived from the view point v.

The splitting plane in the bounding box in Figure 4.16(b) has two planes that derived from

view point v. v sees the bottom partially because the line vq is blocked by another object.

Figure 4.16 One Edge of B is Shared by S in (a);
There is no Edge of B Shared by S in (b) or (c)

v

q
s 0

s 1

g

c

v

q

s 0

s 1

g

b

v

s 0

s 1

q

a

87

A non-convex polyhedron can be decomposed into convex polyhedra. For a polyhedron P

with n edges and r notches (features causing non-convexity in polyhedra), the algorithm

produces a worst case optimal O(r2) polyhedra in O(nr2 + r7/2) [86].

Bajaj and Pascucci proposed a locality-based algorithm for splitting a complex polyhedron

with a hyperplane h. The algorithm is divided into three phases: (i) in the first phase, primary

numerical computations are performed to classify vertex positions with respect to h; (ii) in the

second phase, symbolic manipulations return the topological structure of the result; (iii) in the

final phase, secondary numerical computations are used to detail the geometric structure of

the result. [87].

4.4.2 The algorithm

The algorithm to split a polyhedron P in a bounding box B by a splitting plane S that is

derived from a view point v contains two main steps:

1. Compute points that form the splitting plane equation.

2. Split each polyhedron that is intersected by a splitting plane into two polyhedra.

In the subsequent sections, some theories to support this algorithm are reviewed such as data

structure for a polyhedron, primitive operations, and the theory of intersection line and plane.

Finally, procedures are developed for performing some tasks, such as: forming a splitting

plane from a view point, calculating the intersection between a plane and line segments, and

splitting a polyhedron.

Let P be a simple polyhedron having n vertices: {v1, v2, ..., vn}, m edges: {e1, e2, ..., em}, and

q facets: {f1, f2, ..., fq}. P is represented by a collection of vertices, edges and facets. The list

of vertices, edges, and facets of P are stored similarly to the star-edge representation of

polyhedra as discussed in Chapter 2. To create some main procedures, it is better to have an

88

insight about some preliminary procedures that are known as primitive operations. Figure

4.17 shows the definitions of some primitive operations.

Figure 4.17: Primitive Procedures and Functions for Splitting in a Bounding Box

4.4.3 Intersection line and plane

A splitting plane is formed from three points, and has the general equation Ax + By + Cz + D

=0 [88]. Given three points  s0 (x1,y1,z1) s1(x2,y2,z2) and q(x3,y3,z3)  then the coefficients

of the splitting plane equation are formulated as Equations (4.1), (4.2), (4.3), and (4.4) as

follows:

A= y1(z2-z3) +y2(z3-z1)+ y3(z1-z2) (4.1)

B=z1(x2-x3) + z2(x3-x1) + z3(y1-y2) (4.2)

C= x1(y2-y3) + x2(y3-y1)+x3(y1-y2) (4.3)

-D= x1(y2*z3-y3*z2) + x2(y3*z1-y1*z3) + x3(y1*z2-y2*z1) (4.4)

An edge of an orthogonal polyhedron has two ending points. Let P1(x1,y1,z1) and P2(x2,y2,z2)

be the edge-ending points. So, by using a parameter u, a line equation for the edge P1P2 is P

= P1+ u(P2-P1) where P1 and P2 are vectors in R3 [88]. The intersection points should lie on

FUNCTION InitPolyhedron() RETURN polyhedron
{Returns an empty polyhedron}
PROCEDURE ReadFacet(INPUT P: polyhedron; OUTPUT f : facet)
{Reads next facet from a polyhedron P}
PROCEDURE ReadEdge(INPUT f: facet; OUTPUT e : edge)
{Reads next edge (pair of vertices) from a facet f}
PROCEDURE PutEdge(INPUT vb,ve: ending vertices of an edge; OUTPUT P: polyhedron)
{Appends to a polyhedron P an edge having end vertices vb and ve)
PROCEDURE IsVisible(INPUT p,v: point in B and view point; OUTPUT status: Boolean
variable whether p is block by v.)
FUNCTION RltTo() RETURN group of polyhedron
{Return Q if the last read edge belong to Q, or R for the other case}
PROCEDURE ReadBoxPlane(INPUT B: bounding box; OUTPUT v1,v2,v3: vertices of B)
{Read three vertices from each plane of B}

89

the line and the splitting plane as well. Hence, to get the intersection point, substitute P to the

plane equation to get the following formula:

 ࢛ = ஺(௫ଵ)ା ஻(௬ଵ)ା ஼(௭ଵ)ା ஽
஺(௫ଵି௫ଶ)ା஻(௬ଵି௬ଶ)ା஼(௭ଵି௭ଶ)

 (4.5)

The coordinate of intersection points are:

x = x1+u(x2-x1); y = y1+u(y2-y1); z = z1+u(z2-z1) (4.6)

These concepts are very useful to find the intersection point in some relevant tasks in this

thesis, such as an intersection between a line segment from a view point and a plane on the

bounding box, and intersection between an edge of a polyhedron and a splitting plane.

Constants A, B, C and D are processed by a primitive operation DetermineConstantofPlane

procedure as follows:

PROCEDURE DetermineConstantofPlane(INPUT v1,v2,v3; OUTPUT A,B,C,D)

Meanwhile, the constant u is processed by a procedure that defines as:

PROCEDURE DetermineConstantofLine(INPUT v,so; OUTPUT u)

4.4.4 Computing a splitting plane

Instead of splitting a bounding box, splitting plane simultaneously splits an affected

polyhedron into two polyhedra. A splitting plane S is formed by three points that lie on a

bounding box, and three points are necessary to make a plane equation. Two points of S lie

on a segment line that is derived from a view point. If the closet point p0 of B is visible from v

then make a segment line from v through p0 until it intersects with another edge of B. But if

the closet point p0 is not visible from v then make a segment line from v through a gate point

90

g until it intersects with two edges of B at points p0 and p1, respectively. See Figure 4.16 to

have a precise understanding about the splitting plane and the supporting points.

The task to determine the closet vertex of bounding box to the view point is quite simple. Let

Bi(xb,yb,zb) be a vertex in B, and let V(xv,yv,zv) be a view point, then the distance between V

and B is determined by the following formula:

ܦ = ඥ(ݔ௩ − ௕)ଶݔ + ௩ݕ) − ௕)ଶݕ + ௩ݖ) − ௕)ଶమݖ (4.7)

A procedure to get the smallest D value is written as follows:

PROCEDURE theClosetVertex(INPUT Vi: vertices B; OUTPUT D: a vertex)

Thus, the splitting plane procedure is described as follows:

 Make a segment line s from the view point v to the shortest visible vertex s0 of a

bounding box B, and extend s until it hits the next edge of B at q. If the vertex s0 is not

visible from v, make the segment line through the gate point g until it intersects the

first edge at s0 and the next edge at q.

 Assign a point s1 such that the edge s0s1 is perpendicular to segment line vs0, and

establish the plane equation Ax + By + Cz + D =0 through s0,s1,q.

In detail, the procedure to compute the splitting plane is described in Figure 4.18.

91

Figure 4.18: Algorithm ComputingSplittingPlane for Computing a Splitting Plane

4.4.5 Calculating the intersection points on an edge of a polyhedron

An intersection point on a polyhedron is a point at which a splitting plane intersects with an

edge of a polyhedron. A set of intersection points forms a new facet that will split the

polyhedron into two polyhedra. To get the intersection point, determine a point that lies both

on the edge of the polyhedron and the splitting plane. The main steps are:

 Input points that will form a splitting plane.

 Input an edge of a facet of the polyhedron

 Calculate constants A, B ,C ,D and u to get the intersection value and intersection

status

 The corresponding Intersection algorithm can be stated as the following figure.

PROCEDURE: ComputingSplittingPlane (INPUT: v coordinate of a view point, eight coordinate of the
bounding box B, g coordinate of gate point; OUTPUT: list of splitting plane’s coordinates
VAR
 s0,s1,q v1,v2,v3 : points
 staVis, staIntsc : Boolean variable
 A,B,C,D,u : constants
ENDVAR
theClosetVertex(view point v, list of B coordinate, s0)
{read the visible vertices, determine the closet vertex s0}
IsVisible(v,s0, staVis) {s0 is visible from v if vs0 does not intersect with another boundary}
If staVis =FALSE THEN GatePoint(v,g,s0) ENDIF
ReadBoxPlane(B,v1,v2,v3)
WHILE BoxPlane NOT EOF DO

DetermineConstantaofPlane(v1,v2,v3,A,B,C,-D)
DetermineConstantaofLine(v,s0,u)
IntersectionPlaneLine(v,s0,u,q, staIntsc)
IF staIntsc =TRUE THEN EXIT WHILE
ReadBoxPlane(B,v1,v2,v3)

ENDWHILE
FindOtherPoint(s0,q,s1)

92

Figure 4.19: Algorithm IntersectionPoint for Determining Intersection Points

4.4.6 Splitting a polyhedron into two polyhedra

This section presents a procedure for splitting of a polyhedron P against a splitting plane S. It

computes two resulting polyhedra Q and R, respectively.

Splitting P along S is carried out by splitting facets which are intersected by S. Suppose fi is

such a facet which is to be split at v1
i, v2

i,..,vk
i that lie on the edges e1

i, e2
i,..., ek

i respectively

where k is the number of intersection point in facet i.

The splitting process is started by reading the first facet f1 of P, and then followed by reading

an edge e1
1 on f1. e1

1, which contains two end points vb and ve is evaluated by procedure

Intersection that has inputs vb and ve and the splitting plane S. The output of this procedure is

Boolean variable status and intersection point vm. If status = TRUE, then put vb and vm in Q

where vm is a new vertex that lies between vb and ve, and put vm and ve in R. If status =

FALSE, then there is no new point, and put vb and ve in Q.

Edges on a facet have a direction, because the facet has a cycle of edges. It means that the

second vertex (ve) on a previous edge becomes the first vertex (vb) on the next edge. Hence

PROCEDURE: Intersection
Input s0,s1,q: Splitting Plane points, ei

i: edge
Output vm : vertex, staIntsc: Boolean variable
Var

A,B,C,D : constants
 p1,p2 : points
ENDVAR
Readpoint(ei

i,p1,p2)
DetermineConstantaofPlane(s0,s1,q,A,B,C,-D)
DetermineConstantaofLine(so,s1,u)
Intersect(p1,p2,u,vm, staIntsc)

93

for the next edges, the group of polyhedra is determined by the group of vb in the previous

edges. A function RltTo() is used to determine the group of edges.

Figure 4.20 shows two facets f1 and f2 in the same polyhedron. f1 has a cycle of edges e1,e2,e3

and e4. e1 has two end points vb
1 and ve

1. vb
1 is written instead of vb just to clarify that the

vertex is the beginning point of e1; however, for a general case, it is shorten as vb only. f1 does

not intersect with a splitting plane, so all vertices, edges and face are grouped as Q.

Meanwhile f2 intersects with a splitting plane at p1 and p2, then edges that have at least one

ending point at Q are grouped as Q; otherwise, they are grouped as R.

Figure 4.20: Grouping Polyhedra

According to the above explanation, the corresponding splitting polyhedron procedure can

be stated as Figure 4.21.

f1

f2

Q

R

Q

Q Q Q

R
Q

R

Q
Q

R
p1=vm

p2=vm

vb
1

ve
1=vb

2

ve
2 e1

e2

e3 e4

94

Figure 4.21: Algorithm SplittingPolyhedron for splitting polyhedron

If a bounding box has p polyhedra, then apply splittingpolyhedron procedure p times.

4.4.7 Implementation of the algorithm

The example below would explain the implementation of the algorithm. Let B be a bounding

box, P1 and P2 are polyhedra in B, and v be a view vertex. See Figure 4.22(a) to describe B,

P, and Figure 4.22(b) to describe v.

Figure 4.22: Illustration of Splitting Polyhedron in a Bounding Box

1) There are two polyhedra in B. Polyhedron P1 contains list of vertex, edge E,

orientation O, and facet F as follows:

a

f1
f2

f3

f4
f5

v7

v2

v3

v1

v4

v5

v6

v8 v9

v10

v14

e1
e2

e3 e4

e5

e6

e7

e8
e9 p0

P1

q

v b

PROCEDURE SplittingPolyhedron (INPUT P: polyhedron, S: splitting plane; OUTPUT Q, R :
polyhedra
VAR Vb, Ve, Vm: point of polyhedron ENDVAR
Q:= InitPolyhedron(); R:=InitPolyhedron();
ReadFacet(P,fi)
WHILE fi NOT EOF DO
ReadEdge(fi,ej

i,vb,ve)
 WHILE ej

i NOT EOF DO
 Intersect(S,fi, ej

i,vb,ve,Vi,statusIntersect)
 IF statusIntersect = FALSE
 RltTo()
 PutEdge(Ve,Ve,Q,R)
 ELSE
 RltTo()
 PutEdge(Vb,Ve,Vm,Q,R)
 ENDIF
 ReadEdge(fi,ej

i,vb,ve)
 ENDWHLE
 ReadFacet(P,fi)
ENDWHILE

95

V={v1,(0,0,0),(e1,e4,e5),v9,(0,0,2)(e1,e2,e6),v3,(0,4,0),(e3,e4,e7),v10,(0,4,2),(e2,e3,e8),v5,(4,0,0),(e

5,e6,e9),v7,(4,4,0),(e7,e8,e9)}, E={e1,(v1,v9,o1),e2,(v9,v10,o2),e3,(v3,v12),e4,(v1,v3),e5,(v1,v5),

e6,(v5,v10),e7,(v3,v7),e8,(v7,v11},O={(o1,e1,f1,e2,v1,v9),(o2,e2,f1,e3,v9,v10), etc},

F={f1,(e1,e2,e3,e4), f2,(e1,e5,e6), f3,(e8,e2,e6,e9), (f4,(e3,e8,e7), f5,(e4,e7,e9,e5};

Polyhedron P2 contain V={v10,v2,v12,v4,v13,v6,v14,v8}.

2) Compute a splitting plane from the view point v that has coordinates (-0.5,4,-1) by

using ComputingSplittingPlane procedure. The closet point to v is v3, so relabel v3 as s0, and

the line equation trough v and s0 is L=(-0.5,4,-1) + u(0.5,0,1). The line vs0 intersects the edge

of bounding box B on the plane z=4 at coordinate q(2,4,4).

3) Find the third point on edge or point of B. It is quite simple to get this point. Let s1 be

the third point then segment line s0s1 must be perpendicular to s0q. This means s1 shares a

plane with s0, but not with q. The next step is making a plane through the points s0,q, and s1 (a

corner of B not having the same plane with s0 and q. By using Formula (1), the splitting plane

equation S is 2x-z=0.

4) Apply procedure SplittingPolyhedron to do splitting. Check all facets and determine

whether the facet fi is intersected by the S or not. For example: check edges on the facet f1

that has e1,e2,e3,e4 edges in cycle order. Use intersection procedure to get the status of

intersection. If status is TRUE then the program will proceed to calculate intersection points

p1 and p2. The return value of function RltTo is Q for the first facet; hence, the list of edges,

(e1,e2,e3,e4) belong to Q.

5) From the above algorithm, the next facet nf depends on a sharing edge with the

previous facet pf. The group of the first edge in nf is the same as that of the last edges in pf. If

the last edge in pf is visited then visit the last two edges. This method guarantees that each

edge belongs to the correct polyhedron.

96

6) Thus, the result of splitting polyhedra is shown in the Figure 4.23. Polyhedron is

partitioned into polyhedra Q and R, see Figure 4.23(b). There is a new facet f12, and it is a

property of Q and R.

Figure 4.23: The Resulting of Splitting Polyhedra

4.4.8 The time complexity analysis and discussion

The time cost is calculated for each of the following activities:

The points that form a splitting plane from a view point are computed as the following steps.

First, calculate the distance between each vertex in B and v; second, determine the closet

point to v. It takes O(1), because there are six vertices of B. Second, find the intersection

points between a plane of B and line that formed by v or g. This step has to proceed with an

iteration at the most six times, and the cost is O(1).

The time complexity of splitting polyhedron procedure is determined by the number of facets

and edges on the polyhedron. Let f be number of facets and m be the maximum edges in any

facet, then the time complexity for splitting polyhedron is O(fm). Overall, the time

complexity of the algorithm for splitting polyhedron in bounding box from a view vertex is

O(1) + O(fm) = O(fm).

a

e1

e2

e3

e4

e12

e11

e15 e14

e16 v1

v9

v3

v10 v11

v12
v1

v3

v11

v12

v5

v7

e4

e16

e11

e15
e10

e9
e13

e5

e7

b

Q R

97

The time complexity for splitting polyhedron and orthogonal polyhedron is linear, as shown

in [87] and [56], respectively. From the above algorithm, fm is the number of inputted facets.

Hence, the time complexity is linear as well. There is nothing improved in terms of time

complexity; however, the proposed algorithm is suitable for separating a visible and an

invisible area of a polyhedron from an outside view point of the polyhedron, and splitting

several polyhedra simultaneously in bounding a box area.

4.5 Summary

This chapter has developed an algorithm for splitting an orthogonal polygon with a polyline,

in which the algorithm works in two main steps: combining the vertices of an orthogonal

polygon and a polyline, and grouping vertices into two smaller orthogonal polygons.

This chapter has also developed an algorithm for splitting an orthogonal polyhedron with a

polyplane. The algorithm involves two main steps, combining the vertices of an orthogonal

polyhedron and a polyplane, and grouping vertices into two smaller orthogonal polyhedra.

Finally, this chapter has developed an algorithm for splitting polyhedra in a bounding box, in

which the splitting plane passes through a view point that partially sees the bounding box in

an orthogonal direction. The developed algorithm has two main steps: compute the splitting

plane derived from a view vertex, and if the splitting plane intersects with a polyhedron, then

split each of the effected polyhedra into two polyhedra.

The next chapter will develop an algorithm for guard placement for an orthogonal pseudo-

polyhedron.

98

CHAPTER 5

PLACEMENT OF FIXED-POINT GUARDS IN
AN ORTHOGONAL PSEUDO-POLYHEDRON

In this chapter, procedures are developed for point guard placement to monitor the interior of

an orthogonal pseudo-polyhedron (OPP).

As mentioned in Chapter 1, in the Art Gallery problem, given a polygonal gallery and the

goal is to guard the gallery’s interior with a number of guards that must be placed

strategically on edges, or on corners, or any point inside of the gallery. A gallery is in a 3-

dimensional space, but its floor outline usually has enough information to place the guards.

Therefore, the art gallery is modelled as a polygon.

Earlier work on the art gallery problem assumed that the floor outline of any building

provides the sufficient information for monitoring the building. However, such a floor outline

does not always give us adequate information about the complex spatial structure of the

building. In many applications, the knowledge of spatial structure of the building is essential

in deciding how the building should be monitored. Therefore, it is necessary to take into

account the spatial information on the environment to determine the guard placement. We

call this version of art gallery problem the 3-Dimensional Art Gallery Problem.

An art gallery is modelled by an OPP, because this shape arises frequently in practice and

deserves special attention due to the fact that most real life buildings and art galleries are

largely orthogonal shaped.

Work in 3D-AGP is less extensive. Bose et al. [33] and Urrutia [6] considered mobile guards

along the edges to monitor the exterior of a polyhedron. Recently, Souvaine et al. [34]

99

introduced face guards: guards that roam over an entire interior face of a simple polyhedron,

and they also established bounds for the number of face guards that are necessary and

sufficient to observe the interior of a simple polyhedron and a simple orthogonal polyhedron.

In contrast to work of Souvaine et al., this thesis consider guarding the interior of OPP using

fixed point guard, not using moving guards. A reason of using fixed guards is related to a

practical application in which most of cameras in buildings (e.g., art galleries, banks, and

supermarket) work in fixed point. In other words, using moving guards for applications are

not adequate, but fixed guard are fine. In this work, a procedure is developed for calculating

the guard placement in which the guards are placed in any point in an OPP.

Partitioning is a useful first step for successful guard placement. However, compared to

partitioning a polygon, partitioning a polyhedron is a lot more complex, e.g., not all non-

convex polyhedra can be tetrahedralized [61], and the number of tetrahedra in a

tetrahedralization of a given polyhedron is not unique [62]. Therefore, it is important to find a

partition scheme for orthogonal polyhedra in order to solve the 3D-AGP. One possible

scheme is by decomposing a given OPP into a number of rectangular prisms instead of

tetrahedralization.

Once an OPP is decomposed into a set of rectangular prisms, then a guard can be deployed to

monitor a rectangular prism. Of course, each guard also monitors several rectangular prisms.

To get a smaller number of guards, the 3D-AGP can be solved by transforming the problem

into the Minimum Set Cover (MSC) problem. The MSC problem is defined as follow: given

a universe U of elements and a collection S of (non-empty) subsets of U, and the goal is to

find the smallest of a subset S’  S which covers U [89].

100

In this chapter, a method is developed for point guard placement in an OPP. The key to this

method is the mapping of the 3D-AGP into a Minimum Set Cover (MSC) problem. The

method has three main steps: (1) decompose a given orthogonal polyhedron into a set of

rectangular prisms, (2) construct a visibility subset for each corner point, and (3) map the 3D-

AGP into a MSC problem. To implement this method, a number of definitions and

terminologies are required, and they will be introduced in Section 5.1.

A number of procedures are developed for support guard placement method, namely

procedure for decomposing an OPP and procedure for construction visibility subset. These

procedures will be discussed in Section 5.4 and 5.5. Section 5.6 shows how to convert the

3D-AGP into MSC problem.

After discussing the time complexity of algorithm for guard placement in Section 5.8, a new

algorithm for guard placement is developed in Section 5.9. This new algorithm has a purpose

to reduce the number of guards that is achieved by the previous guard placement’s algorithm.

5.1 Terminology and Related Research

The complex shape of a polyhedron is often the reason for dividing the polyhedron into

simpler shapes to make it easy to performing a variety of operations on the polyhedron. One

such operation is OPP partitioning, which is the process of decomposing an OPP into a set of

rectangular prisms that do not intersect each other except on their boundaries (see Chapter 3).

Each partition is called a piece of the original OPP. The symbol  is used to represent the

collection of all orthogonal prisms created from the partitioning of the OPP.

 For each rectangular prism, there are eight corner points. Each corner point either

corresponds to a vertex of the original OPP, or to an interior point of the original OPP. The

former is called a vertex and the latter is called a partition point. Figure 5.1 depicts an OPP

101

which is partitioned into nine rectangular prisms. After the partitioning, v1 is a vertex, and u1

is a partition point. Both v1 and u1 are also corner points of the same rectangular prism. In

addition, 1 and 2 are two pieces in the partition.

Figure 5.1: (a) an OPP, (b) Partitioning of the OPP

A guard can be placed at a certain point in an OPP to monitor the interior of the OPP. Each

guard is capable of monitoring some parts of the OPP. To facilitate discussion, the following

terms, some of which were introduced in [23], are defined.

Definition 5.1. Two points x and y in an OPP are said to be visible from each other if and

only if the segment xy does not intersect the boundary of the OPP.

Definition 5.2. Let c be a point of an OPP, the visibility region of c, denoted Vr(c), is the set

of points of P that are visible from c.

Definition 5.3. A piece  of an OPP is said to be totally visible from c if every point of  is

visible from c (i.e.,   Vr(c)).  is said to be partially visible from c if some, but

not all, points of  is visible from c.

In this thesis, point guards are used instead of vertex guards because Seidel has proved that

there exist orthogonal polyhedra which cannot be fully monitored even if a guard is placed at

each and every vertex of the orthogonal polyhedra [4].

a b

1

2

v1
v3

v4

v7

v8

u1
u2

3
4

5

6

7 8

9

v1

v2

v3

v4

v7

v8

v5

v6

102

One can expect that placing a guard at each and every vertex of a polyhedron would cover the

entire interior of the polyhedron. This would only be obvious if every polyhedron is

tetrahedralizable. For then, every tetrahedron would have a guard in a corner and the guards

in these tetrahedra would cover the whole interior of the polyhedron. In the absence of

tetrahedralization, however, it would be less clear whether the interior is still completely

covered by these vertex guards.

Seidel gave an example of an orthogonal polyhedron in which guards placed at every vertex

do not fully cover the interior, and he then provided an upper bound of the minimum number

of guards for monitoring that special type of orthogonal polyhedra and stated that (n3/2)

guards are necessary, where n is the number of vertices in the orthogonal polyhedron [4].

If each rectangle prism is allocated one point guard, the whole OPP will be fully monitored

by these point guards. However, placing a guard inside every rectangular prism seems an

overkill. A guard placed on a partition point, for example, will monitor at least two rectangle

prisms. This indicates that there is a method to reduce the number of such points for placing

guard so that all the rectangular prisms are totally covered.

Recall that in Minimum Set Cover problem, it is given a universe U of elements and a

collection S of (non-empty) subsets of U. The task is to find the minimum cardinality of a

subset S’  S which covers U [89].

The solution to the MSC problem, i.e., the subset S’ S with the minimum cardinality that

covers  gives us valid guard placements, and the cardinality of S’ can be interpreted as the

number of guards for guarding an orthogonal polyhedron.

The Minimum Set Cover problem has important application in areas such as rail way and air

line scheduling [90], logical analysis of data [91], and species differentiation [92]. Although

103

MSC problem is proven to be NP-hard [89], there are several practical solutions for that

problem such as linear programming approach, greedy algorithm and backtrack algorithm.

A trivial solution to the MSC problem required O(m2n) time where m is the number of

elements in U and n is the number of subsets in S. Another solution of MSC problem is by

disposing the problem into the Dominant Set Problem [89]. It is out of the scope of this thesis

to try to give a comprehensive list of all effective algorithms for MSC including both

heuristic approach and exact algorithm. Interested readers are referred to the survey by

Caprara et al [93] and Buezas [92].

5.2 The Point Guards Placement Algorithm

In this section, an algorithm on how to place guards in a given orthogonal polyhedron is

described. The following steps are used to generate a guards’ placement:

 Step 1. Partition the orthogonal polyhedron into a set of rectangular prisms.

 Step 2. Construct a visibility subset of each corner point of each rectangular prism.

 Step 3. Map the 3D-AGP into the MSC problem and find either an exact solution, or

an approximation solution to the MSC problem. The solution, whether exact or

approximate, would provide a valid guard placement for the 3D-AGP.

The guard placement algorithm relies on the following procedures. The first one is to

partition a given OPP into a set of rectangular prisms. This procedure will be discussed in

Section 5.3. The second procedure is to compute the visibility subsets for the corner points

from these rectangular prisms. This will be discussed in Section 5.4. The last one is to reduce

the number of guards by using the MSC problem as a means to calculate the minimum corner

points required to cover the entire all pieces, hence the entire original OPP is covered. The

conversion to the MSC problem will be described in Section 5.6. Section 5.7 provides a brief

104

introduction to the solution of the MSC problem. The input to the algorithm, which is also the

input to the partitioning procedure, is in the form of extreme vertices, as described in Chapter

2.

5.3 Partitioning of an Orthogonal Pseudo-Polyhedron

The purpose of partitioning an OPP is to decompose the OPP into a set of rectangular prisms

 = {i | i is rectangular prism where i=1,...,m}, and m is the number of rectangular prisms.

Figure 5.1 is an illustration of partitioning result of an OPP.

As mentioned in Chapter 3 that Ayala and Rodriquez have proposed a technique of

partitioning an OPP into a set of rectangular prisms [76]. In their partitioning technique, the

number of rectangular prisms of partitioning an OPP in different directions is not unique, in

which the number of rectangular prisms depends on the way to cut the OPP. Therefore, if

their technique is applied to get the number of rectangular to solve the 3D-AGP, then the

number of guards is not unique as well. Hence, it is better to develop a new technique of

partitioning such that this technique always gives a unique number of rectangular prisms for

partitioning an OPP.

In this new technique, decomposing an OPP into a set of rectangular prisms rests on the

following observations: i) each OPP has at least two planes of vertices that parallel to one of

the three planes (i.e., XY-plane, XZ-plane, and YZ-plane). An OPP is a rectangular prism if

the number of a plane of vertices that parallel to each plane of the three planes is exactly two;

otherwise, the OPP is not a rectangular prism. ii) An OPP can be decomposed into a set of

smaller objects by using a number of splitting planes, which split an OPP into two halves in

which each half may contain one or more OPPs. A splitting plane is perpendicular to one of

the three orthogonal directions and is represented by a plane equation. A splitting plane

equation is a plane equation that passes through a plane of vertices. iii) Vertices in a plane of

105

vertices have the same coordinate X, Y or Z.

The procedure of decomposition is called DecomposeOPP, and this procedure assumes: i)

An OPP is represented by its extreme vertices that are sorted depending on the splitting

plane’s perpendicularity. If an OPP is split by a splitting plane that is parallel to the x-axis,

then the OPP is YZX-sorted, and if an OPP is split by a splitting plane that is parallel to the y-

axis then the OPP is ZXY-sorted, and if an OPP is split by a splitting plane that is parallel to

the z-axis then the OPP is XYZ-sorted. To sort several OPPs, sort vertices based on each

group OPP before sorting in XYZ-sorted or another sorted (ii) A splitting plane passed

through vertices of planes of vertices that contain at least one non-V30 vertex (reflection

vertex); therefore, the number of splitting plane along each axis depends on the number of

planes of vertices.

The procedure DecomposeOPP has two kinds of inputs and one output. The inputs are

OPP and splitting plane equation, and the output is a set of rectangular prisms. The splitting

planes equations are derived from by the coordinate of each plane of vertices. For example, if

the vertices of a plane of vertices have the same coordinate X, say coordinate X = x1, then the

splitting plane equation is x = x1, where x1 is also called as the splitting plane value. To make

a convenient splitting process, the splitting is processed in XYZ-processed that has a

meaning: the OPP is split first along the x-axis, then along y-axis, and then along z-axis. The

detail procedure is given Figure 5.2.

106

Figure 5.2: Algorithm rectangPrism for Decomposing P into Rectangular Prisms

To split an OPP into two halves, cut the OPP using a plane of vertices until it hits the

boundary of the OPP, in which a splitting plane is perpendicular to the x-axis, then the

procedure SplittingOPP is applied (see Figure 5.3).

The procedure SplittingOPP has two kinds of inputs, namely a splitting plane equation

and the brinks of P that perpendicular to the splitting plane. This algorithm is considered to

those brinks that are parallel to the x-axis, and they appear as consecutive couples of vertices

in a YZX-sorted model. So, if the splitting plane equation is x = sx then the splitting plane will

cut all brinks that parallel to the x-axis.

To split an OPP at a splitting plane, the splitting plane value is compared with the coordinate

two end points of a brink, and then the vertices of P will be grouped into two groups, Q and R

respectively. The splitting continues until the last splitting equation on X-direction is applied.

Procedure RectangPrism (INPUT P: OPP, SP: splitting plane equations; OUTPUT RP: a set of
rectangular prisms)

var si : splitting plane value

dir : the direction of splitting plane equation movement
 (1 = x-direction, 2 = y-direction, 3 = z-direction)

Q,R,Q’ : OPP
kdir : number of splitting plane equations at dir direction

for (dir = 1 to 3){
 Q’= ;

if (dir = 1) { Sort P according its group of OPP and XYZ-order}
if (dir = 2) { Sort P according its group of OPP and YZX-order}
if (dir = 3) { Sort P according its group of OPP and ZXY-order}

 for (i = 1 to kdir){

ReadSplittingPlane(i,si) // read si, the ith splitting plane
 equation in direction dir
SplittingOPP(P,si,Q,R);
P = R;
Q’ = Q’ + Q;

 }
 P = Q’;
}
RP = P;

107

 If a splitting plane is perpendicular to other axis then a suitable ABC-sorted must be applied

to the model prior to this process. The procedure ReadBrink(P: OPP in YZX-

sorted model; vb,ve: a pair of vertices) reads as a next brink of the YZX-

sorted model. The procedure Intersect(end points of brinks,splitting

plane equation;intersection vertex) obtains vs as follows: Let the splitting

plane equation s = sx, and vb = (vbx,y,z) and ve = (vex,y,z) be the beginning and ending vertices

coordinate of a brink, then the coordinate of vs = (sx,y,z).

Figure 5.3: Algorithm for Splitting an OPP into Two Halves

Similar splitting processes are also applied to Y-axis and Z-axis, but keep the parts resulted

from the previous process together until all cut (x-cut, y-cut, or z-cut) are completed.

 As an illustration, Figure 5.4 is the OPP in Figure 5.1after partitioning. Each corner point in

the OPP is labelled.

Precedure SplittingOPP(INPUT P: OPP in YZX-sorted, s=sx : splitting plane; OUTPUT Q,R:
Orthogonal pseudo-polyhedron)
// partition P by a splitting plane

VAR: vb, ve : end points of a brink
 Vbx, vex : x-coordinate of the end points
 vsx : point in the middle of a brink
 k : number of brinks

Q = ; R = 
For (i=1 to k){

ReadBrink(P,vb,ve);
IF vbx < sx && vex <= sx THEN Q = Q + (vb,ve) ENDIF
IF vbx >= sx && vex > sx THEN R = R + (vb,ve) ENDIF
IF vbx < sx && vex > sx THEN

Intersect(vb,ve,sx,vs)
Q = Q + (vb,vs)
R = R + (vs,ve)

 ENDIF
ReadBrink(P,vb,ve);

}

108

Figure 5.4: Corner Points on an Orthogonal Pseudo-Polyhedron

5.4 Computing Visibility Subsets on an Orthogonal Pseudo-Polyhedron

The purpose of computing the visibility subsets is to construct a collection non empty sets S =

{ Sj | j=1,...,k }, where Sj = { |   and   Vr(cj)} is the visibility subset for corner point

cj.

The procedure of computing the visibility subsets from a corner point of a rectangular prism

rests on the following observation: i) each rectangular prism has six faces. These six faces

can be divided into two types  A Type I face is also a face of the original OPP, a Type II

face is completely made up of the interior points of the original OPP except possibly at the

edges of the face. If an edge of a face is also an edge on the original OPP, the edge is said to

be Type I edge. Otherwise the edge would consist of only interior points of the original OPP

and is called Type II edge. ii) for a given view point, a rectangular prism (the first rectangular

prism) is totally visible from the view point if and only if there exists no other rectangular

prism with a Type I face intersecting the line connecting the view point and a point in the first

rectangular prism.

The following algorithm assumes the availability of k corner points ci (i=1, 2, . . . , k) from m

rectangular prisms rpj (j=1, 2, …, m) which are resulted from the partition of an OPP. Note

that some corner points are shared by more than one rectangular prism, therefore k  8m. It

attempts to construct k visibility subsets Si (i=1, 2, . . . , k). For each corner point, it checks

1

2

3

4
 5

 6

c1

c3

c4

c6

c8

c9

 7  8

 9

c22
c5

c7

c10

c11

c12

c13

c14

c15

c16

c17

c18

c19

c20
c21

c22

c23

c24

c25

c26

c27

c28
c29

c30

c32

c33

c34

c35

c36

c37

c38

c39

c40
c31

109

each rectangular prism to see whether it is completely visible from that corner point. If every

point in the rectangular prism is visible from the corner point, the rectangular prism is said to

be completely visible from the corner point. Otherwise it is said to be (fully or partially)

blocked from the corner point. At the end of the outmost loop, Si would contain all

rectangular prisms that are completely visible from corner point ci. See Figure 5.5 for detail.

Figure 5.5: Algorithm for Constructing Visibility Subsets

The function IsViewBlocked takes a corner point ci, and two rectangular prisms, rpj and rpl. It

returns true if the view from ci to rpj is blocked in anyway by the presence of rpl. Otherwise it

returns false.

for (i = 1 to k) {
 Si = ;
 for (j = 1 to m) {
 If (ci is a corner point of rpj){
 Si = Si + { rpj };
 continue;
 }
 blocked = false;
 for (l = 1 to m) {
 if (l != j)
 blocked = IsViewBlocked (ci, rpj, rpl);
 if (blocked)
 break;
 }
 if (not blocked)
 Si = Si + { rpj };
 }
}

110

Figure 5.6: Function IsViewBlocked for Blocking Determination

For any given rectangular prism rpj and a point ci lying outside of rpj, there are between one

and three faces of rpj that are visible from ci, depending on the position of the point relative

to the rectangular prism. These visible faces and the corner point can form up to three

rectangular pyramids, with the visible face at the base and the corner point at its apex. If

another rectangular prism rpl blocks the view from ci to rpj, whether fully or partially, it must

contain at least one Type I face or Type I edge. Otherwise the rectangular prism would

consist of only interior points of the original OPP, hence it would be “transparent”.

Rectangular prism rpl blocks the view from ci to rpj if and only if rpl contains a Type I face or

Type I edge that intersects with one of the aforementioned rectangular pyramids. To see why

this is a necessary condition, let’s assume that rpl does block the view from ci to rpj. This

means that there exists at least one point s in rpj that is blocked by rpl. The line connecting ci

and s would intersect with one or more points of rpl. One of these intersection points must lie

on a Type I face or Type I edge, because otherwise all intersection points would be interior

points of the original orthogonal polyhedron which are transparent and would not block the

function IsViewBlocked (ci, rpj, rpl)
{
 var edge, base, rectangle, pyramid;
 for (base = each of the rectangular faces of rpj that are visible from point ci) {
 if (base is a Type I face)
 return true;
 pyramid = the rectangular pyramid formed by point ci and rectangle base;
 for (rectangle = each face of rp1) {
 if (rectangle is a Type I face)
 if (rectangle intersects with pyramid)
 return true;
 else
 return false;
 for (edge = each of rectangle’s Type I edges){
 if (edge intersects with pyramid)
 return true;
 }
 }
 }
 return false;
}

111

view. This proves that if rpl blocks the view from ci to rpj, then rpl must contain a Type I face

or Type I edge that intersects with one of the rectangular pyramids. To see that the condition

is also sufficient, we only need to take any intersection point s between the Type I face of rpl

and one of the rectangular pyramids. Since s lies in the pyramid, the line from ci to s can be

extended to the base of the pyramid, ending at point t. It is clear that point t on a face of rpj is

not visible from ci because the sight is blocked by point s which is on a Type I face or Type I

edge of rpl. This means that rpl blocks the view from ci to rpj.

To determine whether a rectangle and a rectangular pyramid intersect with each other, one

can check whether any of the four corner points of the rectangle lies in the pyramid. If one is

found to be inside the pyramid, the rectangle and pyramid intersect with each other. If none

of the corner points lies inside the pyramid, we still need to consider the case when the

rectangle cuts through the pyramid however all corner points are outside of the pyramid. This

can be easily verified by taking each of the eight edges of the pyramid and see whether any

one of the edge intersects with rectangle. If one edge is found be intersecting with the

rectangle, the pyramid and the rectangle intersect with each other. Otherwise they do not

intersect with each other.

It is relatively easy to determine whether an edge intersects with a rectangular pyramid.

Firstly one can check each of the two end points of the edge. If at least one of the end points

is inside the pyramid, the edge must intersect with the pyramid. If both end points of the edge

lie outside of the pyramid, there is still possibility that the edge intersects with the pyramid. It

is noticed that in such a scenario, the edge intersects with the pyramid if and only if the edge

intersects with one of the five faces of the pyramid. Hence the intersection can be determined

by checking whether the face of the pyramid intersects with the edge.

112

As an example of the visibility procedure result is presented in Table 5.1 that shows the

visibility region of each corner point of partitioned OPP in Figure 5.4. Each visibility subset

of a corner ci is kept in subset Si.

Table 5.1: Corner Point and their Visibility Regions
Subset Element of Subset Subset Element of Subset Subset Element of Subset
S1 1, 2, 3, 5, 7, 8 S15  5, 6 S29 1, 3, 5, 7, 8, 9
S2 1, 2, 3, 5, 7, 8 S16 1, 3, 4, 5, 6, 7, 8 S30 1, 3, 5, 7, 8, 9
S3 1, 2 S17 1, 3, 4, 5, 6, 7, 8, S31 8, 9
S4 1, 2, 3, 5, 7, 8 S18  5, 6 S32 1, 3, 5, 7, 8, 9
S5 1, 2, 3, 5, 7, 8 S19  4, 5 S33 1, 3, 5, 7, 8, 9
S6 1, 2 S20  4, 5 S34 8, 9
S7 1, 2, 3, 5, 7, 8 S21 1, 3, 4, 5, 6, 7, 8 S35 1, 3, 5, 7, 8, 9
S8 1, 2, 3, 5, 7, 8 S22 1, 3, 4, 5, 6, 7, 8 S36 1, 3, 5, 7, 8, 9
S9 1, 2 S23  5, 6 S37 8, 9
S10 1, 2, 3, 5, 7, 8 S24 1, 3, 4, 5, 6, 7, 8 S38 1, 3, 5, 7, 8, 9
S11 1, 2, 3, 5, 7, 8 S25 1, 3, 4, 5, 6, 7, 8, S39 1, 3, 5, 7, 8, 9
S12 1, 2 S26  5, 6 S40 8, 9
S13 1, 3, 4, 5, 6, 7, 8 S27  4, 5
S14 1, 3, 4, 5, 6, 7, 8 S28  4, β5

5.5 Mapping 3D-AGP into MSC Problem

Given an OPP, assume that it is partitioned into a set of m rectangular prism  = {i | i is

rectangular prism and i=1,...,m}. The partition results in corner points from these m

rectangular prisms. Section 5.5 described a procedure to construct k visibility subset Sj

(j=1,2,...,k), each of which contains those rectangular prisms that are completely visible from

a given corner point. A trivial guard placement can be obtained by placing one guard at each

corner point. This is because each guard would cover a number of rectangular prisms and the

k guards would cover all rectangular prisms hence the entire OPP, i.e., j=1 to k Sj =  = P.

However the number of guards in the above trivial placement scheme is far too excessive.

Many rectangular prisms are visible from multiple corner points. Furthermore some visibility

subsets may contain all rectangular prisms from another visibility subset. Hence the number

113

of guards can be greatly reduces if a minimum number of visibility subset can be found that

contain all rectangular prisms.

As each corner point cj has an associated Sj, the above task is equivalent to the Minimum Set

Cover (MSC) problem. Hence 3D-AGP problem can be mapped to the Minimum Set Cover

problem by imposing U =  and S = {S1,S2,...,Sk}.The solution to the MSC problem, i.e., the

subset S’ S with the minimum cardinality that covers  gives us a valid guards placement,

and the cardinality of S’ can be interpreted as the number of guards in an OPP.

Section 5.6 will show how the Integer Linear Programming gives a very close solution for the

MSC problem.

5.6 Solving the MSC Problem  An Example

As mentioned above, the 3D-AGP can be converted to the MSC problem: given a universe U

= {i | i is rectangular prism and i=1,...,m}, and a non-empty set S = {Sj | j=1,...,k} where Sj

= { |  U and  is totally visible from a corner point cj}, find a subset S’ of S with the

minimum cardinality that covers all elements in U.

There are a number of methods for solving the MSC problem, such as linear programming,

heuristic algorithms, and exact algorithms [93].

Linear programming is regarded a very important technique for the optimization of a linear

objective function, subject to linear equality and inequality constraints. This method is used

in many areas, one of it being business and economics due to the fact that problems like

maximizing outcome can be straightforwardly stated and efficiently solved.

114

Linear programming is the problem of optimizing (minimizing or maximizing) a linear

function subject to linear inequality constraint [94]. In their canonical form, linear programs

are expressed as:

Maximize / Minimize cTx

Subject to Ax  b,

where x is a vector of variables whose value must be determined, and c and b are vector of

known coefficients. The expression cTx is to be maximized / minimized within the limit

defined by Ax  b. Linear programming problems can be solved using different very well

known methods such as Simplex, Ellipsoid, and Interior Point.

If each value of a vector whose value must be determined is an integer number then the above

model is called integer linear programming. This is the problem of optimizing (minimizing or

maximizing) a linear function subject to linear inequality constraint in which the possible

value of each variable is restricted to be an integer number [94] .

Another approach to solve the MSC problem is by using heuristic approach. Heuristic

approach is used for algorithms which find solutions among all possible ones, but they do not

guarantee that the best will be found, therefore they may be considered as approximately and

not accurate algorithms [93]. A greedy algorithm for the MSC problem is an example of

heuristic approach [94]. This algorithm always selects a set which cover the maximum

number of yet uncovered elements, and it is a log M-approximation algorithm, where M is the

number of sets. The greedy approach does not guarantee that, upon termination, a minimum

cover will be found. However, this algorithm can be used in the minimization process to

establish a first upper bound for the size of the minimum cover.

115

The last approach in this discussion is the exact approach. The most effective exact approach

to MSC are branch and bound algorithm [93]. The main reason for this success is the fact that

it is apparently very difficult to get significantly stronger lower bound by alternative methods

which are computationally more expensive.

5.6.1 Integer Linear Programming formulation of the MSC problem

As an example of solving the MSC problem, this section will discuss the application of

integer linear programming approach. The problem of MSC is formulated in integer linear

programming model as follows:

Given a Boolean matrix A having size m x k. Let M = {1,...,m} and K ={1,...,k}, then column

j  K is said to cover a row iM if Aij = 1. The MSC problem calls for a minimum subset S

 K of columns such that each row i  M is covered by at least one column j  S.

The integer linear programming is defined as [95] :

∑ ݁ݖ݅݉݅݊݅ܯ ܿ௜௡
௝ୀଵ ௝ݔ

∑ ݋ݐ ݐ݆ܾܿ݁ݑܵ ܽ௜௝ݔ௝௡
௝ୀଵ ≥ ௜ܾ ݅ = 1, … ,݉

௝ݔ  {0,1} ݆ = 1, … ,݇

The integer linear programming can be solved by the dual simplex algorithm [95].

All subsets in Table 5.1 can be processed using the dual simplex algorithm by inputting the

component of vectors a, b and c as shown in Appendix 1. The component vector a consists of

two numbers only, namely 0 and 1. 1 is used if a piece  is an element of subset Si, and 0 for

the other case. Meanwhile, the number of component in vector b is equal with the number of

pieces in , and all components are 1.

116

After processing these inputs by using the dual simplex algorithm as shown in the Appendix

1 then a result is achieved as follows: the variables x1, x13 and x29 have value 1, and the other

variables have value 0. The objective value at the optimal point: z = 3. It implies that the

number of guard is 3, and their positions are at c1, c13 and c29 as shown in the following

Figure.

Figure 5.7: The Guards Position after Deploying Integer Linear Programming

5.7 Time Complexity of the Guard Placement Algorithm

The time cost of the guard placement algorithm is calculated as follows. Firstly, the time

complexity for decomposing an orthogonal polyhedron into a set of rectangular prisms is

determined by the number of splitting planes, and the whole partition can be complete in

polynomial time in n, the number of vertices in the orthogonal polyhedron. Secondly,

visibility subsets can be constructed in O(m3) time as shown in the previous section. It can be

establish that m < n3, hence the visibility subset can be constructed in polynomial time in n.

However, the final step requires the solution of an MSC problem, which is NP-hard.

Therefore, no matter how fast one can perform partitioning and construct visibility subsets,

the overall time complexity for the guard placement algorithm is still exponential in n.

Although finding the exact solution to the MSC problem will take exponential time, there are

heuristic and approximation algorithms for the MSC problem [92]. These algorithms can

produce solutions that are close to the true minimum in reasonable amount of time. As

1

2

3

4
 5

 6

c1

c3

c4

c6

c8

c9

 7  8

 9

c22
c5

c7

c10

c11

c12

c13

c14

c15

c16

c17

c18

c19

c20
c21

c22

c23

c24

c25

c26

c27

c28

c29

c30

c32

c33

c34

c35

c36

c37

c38

c39

c40
c31

117

discussed in Section 5.6 that even if a solution to the MSC is approximate, it still provides a

valid guards’ placement.

5.8 Reducing the Number of Guards

It is still possible to reduce the number of guards for covering an OPP that are determined by

guard placement algorithm. This possibility comes from a fact that some pieces could be

covered by two or more guards cooperatively despite of covered totally by a guard.

Therefore, the guard that covers totally a piece can be removed. For example: the piece 4 is

totally visible from c13, but 4 is also partially visible from corner points c1 and c29. If both of

corner points cover all the area of 4, then c13 can be deleted as a guard to achieve a smaller

number of guards.

In this section, a new guard placement procedure is proposed to reduce the number of guard.

Basically, the new guard placement algorithm is quite similar with the previous guard

placement algorithm. The only different is the new algorithm used the result of the previous

as inputs and a rectangular prism may be monitored cooperatively by several guards.

The input of new guard placement algorithm is the result of the previous guard placement

algorithm that is a collection of corner points that can cover all pieces in an OPP. Meanwhile,

the output is the smallest number of corner points for covering an OPP in which number of

corner points implies the number of guards.

The procedure of the new algorithm consists of several activities namely: (i) identify pieces

that are partially visible from at least two resulting guards, (ii) partitioning each piece in

rectangular prism which is called as a bounding box into polyhedra, (iii) determine the

minimum set of corner points for covering all pieces.

118

The following definitions are introduced to support the proposed the new guard placement

algorithm:

Definition 5.4. Rectangular prism partitioning is splitting a rectangular prism or polyhedron

in a bounding box into visible area and non-visible area from a view point. Both resulting

areas are polyhedra.

If a view point does not see the whole surface of an orthogonal prism , then  is said

partially visible from c. In another word,  is visible by section from c. It might happen

several view-points see cooperatively the whole surface of . This fact leads us to the

following definition.

Definition 5.7. A piece  is visible by sections if it is covered by several visibility sections

cooperatively.

Let C’ be a set of corner points in an OPP in which all guards are lain as a result of the

previous guard placement algorithm, then new guard placement algorithm has main steps as

follows:

 Step 1. Determine D that is partially visible pieces from at least two corner points of

element C’.

 Step 2. Decompose each element of D into polyhedra by using cutting planes that are

derived from all element of C’. Put each resulted polyhedron and undecomposed

orthogonal prisms into a new set of pieces  = {i | i is rectangular prism or

polyhedra, and i = 1,..., m}

 Step 3. Construct S’ = {Sj’ | j=1,...,k}, where Sj’ = { |    and  Vr(cj)}. m and k

are the number of pieces and corner points of a partitioned OPP respectively.

 Step 4. Determine the minimum subset Sj”  Sj’ that cover 

119

The first step of algorithm is determining a subset D that partially visible from at least two

corner points in C’. It is necessary to say that each element D must be partially visible from

at least two corner points, because at least two corner points may see a piece cooperatively,

and it cannot do by a single corner point. A function CountedVisibility is created to

retrieve D during counting the visibility subsets in a partitioned OPP.

The second step of algorithm is decomposing each piece of D into a number of polyhedra.

Each element of D is regarded as a bounding box which has a form as rectangular prism.

The purpose of this step is to decompose the original piece into several polyhedra. To achieve

a set of polyhedra in a bounding box, a number of splitting operations may be carried out, and

it depends on the number of cutting plane. The number of cutting planes is at most equal with

the number of dominant corner points. The algorithm for Splitting Polyhedra in a Bounding

Box from a view Point in Chapter 4 is recalled to do the task of partitioning. All polyhedra

and the rectangular prisms become elements of set of partition .

The third step is determining pieces that are totally visible from each corner point c C’, and

store it in Sj’.

Finally, the last step is determining the minimum subset Sj”  Sj’ that covers . This step is

similar with the last step of the previous guard placement algorithm by transferring the

problem into MSC problem. The inputs are U =  and S = Sj’, and the result is the minimum

set Sj” that covers all pieces in . The cardinal number of element of Sj” implies the number

of guards to cover the interior of P. By using the dual simplex method, the MSC problem as

mapping of 3D-AGP is solved.

As implementation, the new guard placement algorithm will be applied to reduce the number

of guards for example in Section 5.7. Initially, based on the result of the previous guard

120

placement algorithm,  = {1, 21, 22, 23 , 3, 41, 42, 43, 5, 61, 62, 63, 7, 8, 91, 92,

93} and S’ = { S1, S13, S29 } as shown in Figure 5.8.

Figure 5.8: Partitioning in Pieces that are Visible by Sections

In this figure, a corner point c1 see a set of pieces S1’ = {1, 21, 22, 23 , 3, 42, 43, 5, 62,

63, 7, 8, 91}. Each element of S’ has the visibility region listed in Table 5.2, which shows

the visibility region of each corner point that is kept in subset Si. To simplify the notation,

each element is relabeled, and they start from i = 1 to m, where m is the total number of

pieces in .

Table 5.2: Corner Points and their Visibility Region
Subset Relabelled of

Subset

Element of Subset Relabelled of element

S1’ S1’ 1, 21, 22, 23 , 3, 42, 43, 5, 62,

63, 7, 8, 91

1, 2, 3, 4 , 5, 7, 8, 9, 11, 12,

13, 14, 15

S13’ S2’ 1, 21, 22, 3, 41, 42, 43, 5, 61, 62,

63, 7, 8, 91, 92

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16

S29’ S3’ 1, 21, 3, 41, 42, 5, 61, 62, 7, 8,

91, 92, 93

1, 2, 5, 6, 7, 9, 10, 11, 13, 14,

15, 16, 17

After processing these inputs by using the dual simplex algorithm as shown in the Appendix

2 then a result is achieved as follows: the variables x1 and x3 have value 1, and variable x2

43

1 3  5

61

c1

v7

 8

62
63

41 42

23

22

21

c13 c29
 7

 91
 92

 93

121

have value 0. The objective value at the optimal point: z = 2. It implies that the number of

guard is 2, and their positions are at c1 and c29.

5.9 Summary

This chapter has discussed the procedure of the point guard placement for monitoring the

interior of an orthogonal pseudo-polyhedron. The main steps are: partitioning a given OPP

into a set of rectangular prisms, counting visibility subsets of each corner point, and transfer

the 3D-AGP into the MSC problems.

The procedure for partitioning OPP and counting visibility subsets can be constructed in

polynomial time in n. However, the final step requires the solution of an MSC problem,

which is NP-hard. Therefore, in overall, the point guard placement for solving the 3D-AGP is

NP-hard.

The contributions of this chapter are:

 The procedure of point guard placement in an OPP is proposed.

 A new technique of partitioning an OPP into set of rectangular prism has been

presented.

 The procedure for counting the visibility subset of each corner point in a partitioned

OPP is also proposed.

 A method has been proposed to reduce the number of point guards for monitoring the

interior of an OPP.

The upper bound number of guards for monitoring the interior of an orthogonal

polyhedron is dealt with in the next chapter.

122

CHAPTER 6

AN UPPER BOUND ON THE NUMBER OF FIXED-POINT GUARDS
FOR ORTHOGONAL POLYHEDRA

6.1 Introduction

In this chapter, the dominant pieces around various types of vertex configurations in any

orthogonal polyhedra are identified. A technique is also proposed to reduce the number of

data inputs for the minimum set cover (MSC) problem. The main contribution of this chapter

is in the establishment of an upper bound of fixed-point guards for any orthogonal polyhedra.

As discussed in Chapter 5, rectangular prisms produced by partitioning on an orthogonal

pseudo-polyhedron were used as input data for two procedures: calculating the visibility

subsets and the solution to the MSC problem. The rectangular prisms, which are also called

pieces in this chapter can be grouped as dominating pieces and dominated pieces. The

grouping of the pieces is based on the observation that is described below:

Let an orthogonal polyhedron be partitioned into three pieces, as depicted in Figure 6.1. The

piece 1 is totally visible from the corner points in the pieces 1 and 2, the piece 2 is totally

visible from the corner points in the pieces 1, 2 and 3. The piece 3 is totally visible from

the corner points in the pieces 3 and 2. All corner points that can see 1 can also see 2.

However, not all corner points that can see 2 can see 1. For example, the corner points in 3

can see 2, but not all corner points in 3 can see 2. In this situation, 1 is said to be

dominant over 2. Using the same observation for pieces 2 and 3, 3 can be seen to be

dominant over 2.

123

Figure 6.1: Dominant Pieces Shared by the V31 Vertex

Based on these observations, the set of all dominant pieces of an orthogonal polyhedron can

represent all the pieces in that orthogonal polyhedron. The number of dominant pieces in any

orthogonal polyhedron is used to determine the upper bound number of fixed-point guards for

monitoring the interior of an orthogonal polyhedron.

6.2 Determining the Dominant Pieces

Recall that the piece  of an orthogonal polyhedron is said to be totally visible from a point,

c, if every point of  is visible from c, and  is said to be partially visible from c if some, but

not all, points of  are visible from c. Note that if a piece  is totally visible from a point c,

then the point c is visible from every point of the piece . Hence in this case, the point c is

also said to be totally visible from the piece . The concept of a dominant piece is defined

below.

Definition 6.1: Let Gi and Gj be two set of corner points, which are derived from a

rectangular-prism decomposition of an orthogonal polyhedron, that are totally visible from

the piece i and j, respectively. Then, the piece i is said to be dominant over a piece, j, if

Gi  Gj. If Gi = Gj then i is said to be equivalent to j and vice versa.

As an example, the dominant pieces in Figure 6.1 are obtained by Definition 6.1 as follows.

G1 = {c1, c2, c3, c4, c5, c6, c8, c9, c11, c12, c14, c15}, G2 = { c1, c2, c3, c4, c5, c6, c7, c8, c9, c10,

1 2

3

c1

c2

c3

c4
c5

c6

c7

c8

c9

c10

c11

c12

c13

c14

c15

c16

V31

124

c11, c12, c13, c14, c15, c16}, and G3 = c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15, c16}. G1  G2

and G3  G1; therefore, 1 and 3 are the dominant pieces over 2.

A vertex on an orthogonal polyhedron is either be a reflex vertex or a convex vertex. An

arbitrary vertex is a corner point of any pieces in a partitioned orthogonal polyhedron that is

neither a reflex vertex nor a convex vertex. The pieces that are totally visible from any

vertices can be grouped as two groups of pieces: around pieces and remote pieces. An

around piece, , is a piece that is visible from at least one vertex, v, and v is a corner of . A

remote piece, , is a piece that is visible from at least one vertex but all corner points of  are

arbitrary vertices. The partitioned orthogonal polyhedron in Figure 6.2 has eight vertices: c1,

c2, c3, c4, c13, c14, c15 and c16. The pieces 1 and 3 are around pieces, and 2 is a remote piece.

Subsection 6.2.1 will identify dominant pieces at around pieces and remote pieces.

Figure 6.2: Around Pieces and Remote Pieces

6.2.1 Around pieces of various types of vertex

Vertices are differentiated by their vertex configurations. Chapter 3 defined six kinds of

vertex configurations on orthogonal polyhedra: V30, V31, V32, V33, V42, and V63. The first

digit of a vertex label represents the number of edges meeting at the vertex, and the second

digit represents the number of concave dihedral angles at the vertex.

Figure 6.3 depicts all six vertex configurations. Each orthogonal polyhedron is decomposed

into a set of rectangular prisms (pieces) by cutting them at the reflex vertices. Some vertex is

c1

c2

c3

c4
c5

c6

c7

c8
c9

c10

c11

c12

c13

c14

c15

c16

1
2 3

125

shared by between three, four, five, and seven different pieces. For example, the V32 vertex

is shared by five pieces, so there are five around pieces of the V32 vertex. The following list

shows the number of around pieces for each type of vertex in orthogonal polyhedra.

 A V30 vertex is shared by one piece.

 A V31 vertex is shared by three pieces.

 A V32 vertex is shared by five pieces.

 A V33 vertex is shared by seven pieces.

 A V42 vertex is shared by four pieces.

 A V63 vertex is shared by four pieces.

Figure 6.3: Around Pieces of Vertices of Orthogonal Polyhedra

There are two kinds of around pieces of a vertex: dominant pieces and dominated (non-

dominant) pieces. A dominant piece is less totally visible than a dominated piece from a

number of corner points. There are a number of around pieces for a V31 vertex, V32 vertex,

V33 vertex, V42 vertex, and V63 vertex. A V30 vertex is not considered to have a dominant

piece because there is only one around piece of a V30 vertex. By using Definition 6.1, the

dominant pieces of each orthogonal polyhedron in Figure 6.3 can be identified. The results

are described as follows:

1. The number of dominant pieces sharing each V31 vertex is two.

V32
1

2

3

4

5

V33
1

2

3

4

5

6

7 V42
1

2

3
4

V31

1 2

3 V30

V63
1

3

2

4

126

There are three around pieces sharing the same V31 vertex, namely 1, 2, and 3. 1

is dominant over 2, and 3 is also dominant over 2. But 1 and 3 are not equivalent;

hence, the number of dominant pieces sharing each V31 vertex is two.

2. The number of dominant pieces sharing each V32 vertex is two.

There are five around pieces sharing the V32 vertex, namely 1, 2, 3, 4 and 5. The

pieces 1, 2 and 4 are equivalent, and they are dominant over 3. 5 is also dominant

over 3. Therefore, the number of dominant pieces sharing the V32 vertex is two.

3. The number of dominant pieces sharing sharing each V33 vertex is three.

There are seven around pieces sharing the same V33 vertex, namely 1,..., 7. The

number of dominant around pieces sharing the V33 vertex is three, and they are 2, 3

and 7

4. The number of dominant pieces sharing each V42 vertex is two.

There are four around pieces sharing the same V42 vertex, namely 1,..., 4. The

number of dominant pieces sharing the same V42 vertex is two, and they are 2 and

4

5. The number of dominant pieces sharing each V63 vertex is three. They are 1, 3 and

4.

6.2.2 Remote pieces

As defined in Section 6.2, a remote piece is visible from at least one vertex of an orthogonal

polyhedron and all corner points of the remote piece are arbitrary point. A remote piece lies

at least between two around pieces.

Lemma 6.1: A remote piece is dominated by an around piece.

127

Proof : As a remote piece lies at least between two around pieces, then a remote piece has at

least two arbitrary boundaries that is a kind of boundary having arbitrary point as corner

points. It is obvious that the number of vertices see a remote piece is more than the number of

vertices see an around piece. By definition 6.1, an around piece is less visible than a remoter

piece; therefore, an around piece is dominant over a remote piece. �

6.3 Reducing the Number of Input Data for the MSC Problem

The number of pieces input in the MSC problem can be reduced by excluding the dominated

pieces. Based on the definition of a dominant piece, one can conclude that if guards monitor

the dominant pieces, then the guards also monitor the dominated pieces. Therefore, the

dominated pieces can be neglected as inputs in the MSC problem. Thus, a corner point that

only sees dominated pieces can also be removed as an input in the MSC problem.

Given an orthogonal polyhedron P, assume that P is partitioned into a set of an m rectangular

prism  = {i | i is a rectangular prism and i=1,...,m}. The k visibility subset Sj (j=1,2,...,k),

each of which contains those rectangular prisms that are totally visible from a given corner

point, can be transformed into a collection of subsets Gi(i = 1, 2,...,m), each of which

contains those corner points that are visible from any point on a rectangular prism, . To

identify the dominant pieces, the rule in Definition 6.1 is applied. All the dominated pieces

and the corner points that only see the dominated pieces are removed as input in the MSC

problem.

After removing the dominated pieces, there is a set of an m dominant rectangular prism  =

{i | i is a dominant rectangular prism and i=1,...,m}, and k visibility subset Sj (j=1,2,...,k),

where Sj = { |   and   Vr(cj)} is the visibility subset for corner point cj, and cj are

corner points that are only visible from dominant pieces.

128

6.4 Upper Bound of Point Guards for an Orthogonal Polyhedron

After the partitioning, a guard can be deployed at each piece of an orthogonal polyhedron

such that the whole interior of the orthogonal polyhedron is totally covered. However,

considering the total number of pieces as an upper bound number of guards on the orthogonal

polyhedron seems overkill.

Seidel stated that not every orthogonal polyhedron can be covered by all its vertices [4]. This

idea can provide a starting point to calculate the upper bound number of guards. It implies

that there could be a point in some orthogonal polyhedra that is not visible from any vertex. A

piece  is totally visible from a vertex v if all points in  are visible from v, and a piece  is a

partially visible piece if there is a point in the piece that is not visible from any vertex. Thus,

there are two groups of pieces in terms of visibility from any vertex: a group of totally visible

pieces and a group of partially visible pieces.

The number of guards is not more than the number of dominant pieces. Hence, to obtain an

upper bound number of guards, the following steps are applied: The upper bound of dominant

pieces is first determined (Subsection 6.4.1), and followed by counting the number of

partially visible pieces (Subsection 6.4.2). They are then combined into a single number, and

the formula is represented by the n parameter, where n is the number of vertices of the

orthogonal polyhedron (Subsection 6.4.3).

6.4.1 Counting the number of dominant visible pieces

Section 6.2 discussed how to obtain the dominant pieces from a partitioned orthogonal

polyhedron that is visible from at least one vertex of the orthogonal polyhedron. The number

of dominant pieces can be considered as the upper bound of the guard to cover the visible

pieces from any vertices inside an orthogonal polyhedron.

129

When determining the upper bound number of guards for monitoring the visible pieces from

any vertex in an orthogonal polyhedron, it should be noted that that each reflex vertex is

always adjacent to at least one adjacent vertex. Two adjacent vertices share the same

dominant piece; therefore, it is sufficient to count one reflex vertex only.

Observation: Each reflex vertex has an adjacent reflex vertex.

Based on the above description, the highest number of dominant around pieces of any vertex

is three, and each reflex vertex has an adjacent reflex vertex; therefore, there are at most 3R/2

number of dominant visible pieces, where R is the number of reflex vertices. If the value of R

= 0, then the orthogonal polyhedron is a rectangular prism; hence, the number of guards is

one. The next step is calculating the number of partially visible pieces.

6.4.2 Counting the number of partially visible pieces

A dominant piece will not be visible if it is placed among six dents, in which each dent has at

least four reflex vertices. Figure 6.4 presents an illustration of a partially visible piece 

which is bounded by six dents d1, d2, d3, d4, d5 and d6. The position of d5 is under d6.

 a b

Figure 6.4: Illustration of a Partially Visible Piece  Position in 3D (a) and 2D (b)

The problem of finding an upper-bound number of partially visible pieces is defined as

follows:



d3 d4



d1

d2

d6 d5

130

Definition 6.2 : Let D be the number of dents. Then, a function f(D) is the maximum number

of partially visible pieces that can be created by D dents.

The function f(D) is calculated based on the following:

1. Each partially visible piece is bounded by six dents

This fact implies that each dent may bound one or more partially visible pieces. If each

dents bounds only one partially visible piece then the total number of dents with m

partially visible pieces is given by the formula: D = 6m. However, if one or more dents

are shared by a number of partially visible pieces then the formula is D < 6m. Therefore,

to obtain the minimum number of dents from m partially visible pieces then a partitioned

orthogonal polyhedron must have shared dents as many as possible.

Lemma 6.1 : If the number of dents of m partially visible pieces is less than 6m, then

there is at least one shared dents.

Proof: Let Dk = { Dxlk, Dxrk, Dylk, Dyrk, Dzlk, Dzrk} be a set of dents around a piece k

where Dxlk and Dxrk are dents in the left and the right of k, respectively, and each

element is not empty. Otherwise k is visible piece from a vertex. Two partially visible

pieces i and j share a dent if one element of Di is the same as that with Dj. If all

elements of Di are different from the element of Dj then Di+Dj = 12, and if, at least one,

element of Di is the same with element of Dj then Di + Dj < 12.

2. Two partially visible pieces may share at most three dents.

There are two positions of a shared dent with two partially visible pieces: between the

two partially visible pieces and in the same side of the two partially visible pieces (see

Figure 6.5 as an illustration)

131

Figure 6.5: The Partially Visible Pieces 1 and 2 Share Three Dents d1, d2 and d3

This fact implies that if each partially visible piece shares three dents then the total

number of dents bound to m partially visible pieces is minimum.

Definition 6.3: A partially visible piece 1 is adjacent to a partially visible piece 2 if 1

shares three dents with 2.

Theorem 6.1: To get a maximum number of adjacent pieces a from m partially visible pieces

then all partially visible pieces are arranged in a cube form.

Proof: A piece may be adjacent to several numbers of pieces, perhaps from one to six. If the

partially visible pieces’ layout is a line form (Figure 6.6(a)), then the total number of group

adjacent pieces is m-1, and each partially visible piece belongs to at least one group of

adjacent pieces and at most two groups of adjacent pieces. Meanwhile, if the partially visible

pieces’ layout is a plane form (Figure 6.6(b)), then each partially visible piece belongs to at

least one group of adjacent pieces and at most four groups of adjacent pieces. Finally, if the

partially visible pieces’ layout is a cube form (Figure 6.6(c)), then each partially visible piece

belongs to at least one group of adjacent pieces and at most six groups of adjacent pieces. �

 a b c

Figure 6.6 : Illustration of Adjacent Pieces among Several Formats

The maximum number of adjacent pieces suggests the minimum number of dents.

1 2

d1

d2

d3

132

Let L, W, and H be the length, the width, and the high, respectively, of a cube form that

contains m number of partially visible pieces. m is achieved by multiplication L, W and H;

therefore L = W = H = m1/3.

The number of adjacent pieces a can be calculated in several ways. Two different methods

are described below:

1. Method 1

Slice the cube of m into m1/3 layers in any direction. Let a1, a2, and am
1/3 be the

number of adjacent pieces in each layers. Then

a1 = 2(m1/3 -1) + 2 (m1/3 -1)2
a2 = 2(m1/3 -1) + 2 (m1/3 -1)2
...
am1/3 = 2(m1/3 -1) + 2 (m1/3 -1)2

The number of adjacent pieces a is equal to the number of pieces in each layer plus

the number of adjacent pieces between the layers. Therefore,

a = m1/3(2(m1/3-1) + 2(m1/3 -1)2) + (m1/3 – 1)m2/3 OR
a = 3m – 3m2/3

2. Method 2
Separating the cube of m into two parts such that one of the partitions is a smaller
cube, yields the set-up shown in Figure 6.7.

Figure 6.7: Cube of m where m = 27

(i) The number of adjacent pieces along the x, y and z axes is represented by a
solid black circle: aaxis = 3m1/3 -2

133

(ii) The number of adjacent pieces in the three planes is represented by a white
circle: aplane = 3(m1/3 – 1)2 + 3(m1/3-1)2

(iii) The number of adjacent pieces in the remained cube is represented by a grey
circle: aremainder = (m1/3-1)3

So, the total number of adjacent pieces is a compound of the aaxis, the aplane and the
aremainder as shown in the following formula:

a = 3m1/3 -2 + 3(m1/3 – 1)2 + 3(m1/3-1)2 + 3(m1/3-1)3
a = 3m – 3m2/3

As mentioned above, the number of dents is equal with each having six partially visible

pieces minus the number of deductions due to each adjacent piece sharing a dent. Therefore,

the relationship between m and D is derived as follows:

D = 6m – number of deductions due to the shared dent of each
adjacent piece.

D = 6m – (3.3(m1/3 -1) + 3.3(m1/3 – 1)2 + 2.3(m1/3-1)2 + 3(m1/3-
1)3 + 2(m1/3-1)3 + (m1/3-1)3).

D = 3m1/3 + 3m2/3.

Let x = m1/3, then 3x2 + 3x –D=0.

The abc formula is applied to obtain the value of x. Therefore, x = -3 + ((9
+12D)1/2)/6.

x  (D/3)1/2 or m1/3 = (D/3)1/2.

m = (D/3)3/2 Or f(D) = (D/3)3/2.

As each dent has eight reflex vertices, 8D  R or D  R/8

Therefore, m = (R/24)3/2.

6.4.3 Relationship between the number of all vertices and reflex vertices

The relationship between the number of reflex vertices R and the number of vertices n on an

orthogonal polyhedron can be simply derived as follows:

Let P be an orthogonal polyhedron, and let PV30, PV31, PV32, PV33, PV42, and PV63 denote the

number of vertices having V30, V31, V32, V33, V42, and V63 configurations respectively,

134

let n be the number of vertices, and let R be the number of reflex vertices where R = PV31+

PV32+ PV33+ PV42+ PV63. Then, the relationship between n and R is:

n = PV30 + R (6.1).

As every orthogonal polyhedron has at least eight PV30 vertices, then

n  8 + R or R  n - 8 (6.2).

As mentioned above, the upper bound number of guards g for covering an orthogonal

polyhedron is the upper bound number of dominant pieces that are totally visible from

vertices added to the upper-bound number of partially visible pieces from vertices, and g is

written as the following formula:

g  3R/2 + (R/24)3/2 (6.3).

Finally, substituting the equation (6.2) with (6.3) yields:

g  3(n-8)/2 + (n-8)/24)3/2  n3/2

6.5 Summary

This chapter has discussed a method to obtain an upper bound of point guards for monitoring

the interior of an orthogonal polyhedron. The upper bound of fixed-point guards was obtained

by determining the upper bound of dominant visible pieces from any vertex of an orthogonal

polyhedron and the upper bound of partially visible pieces from any vertex of an orthogonal

polyhedron. The upper bound number of fixed-point guards is the sum of the dominant pieces

and partially visible pieces, in which the upper bound of the fixed-point guards for any

orthogonal polyhedron having n vertices is (n3/2).

135

CHAPTER 7

CONCLUSION AND FUTURE RESEARCH

7.1 Conclusion

This thesis aims to provide a solution to the 3-dimensional art gallery problem, which is the

natural extension to the classical art gallery problem. There has been extensive research on

the classical art gallery problem, but relatively less research has been done on the 3-

dimensional version of the problem. Part of the reason for this lack progress in the 3-

dimensional version of the problem is the difficulty in the tetrahedralisation of polyhedra.

However, the 3-dimensional version of the problem is important in many real-world

applications. This is obvious when one considers the extensive use of surveillance cameras in

supermarkets, banks, and many public places. In this type of applications one has to take the

spatial structure of the buildings, not just the floor outline of the building, into consideration

in order to provide adequate monitoring.

Current solutions to the 3-dimensional art gallery problem use mobile guards that are

required to move either around faces and along the given edges in order to provide full

coverage of the interior of a simple polyhedron. While this type of guards may be useful in

some applications, such as deployment of human guards in an art gallery, they are not

adequate in many other applications where fixed-point guards are required. This thesis

presented our attempt to the 3-dimensional art gallery problem. The approach adopted in this

thesis differs from the existing work in two ways: it uses fixed-point guards instead of mobile

guards and it uses orthogonal pseudo-polyhedron, rather than simple orthogonal polyhedron

which is a small subset of orthogonal pseudo-polyhedron, as the model for buildings.

136

This thesis has presented a new algorithm for determining and placement of fixed-point

guards for any orthogonal pseudo-polyhedron. The algorithm involves the following steps:

1. Partition an orthogonal pseudo-polyhedron into a set of rectangular prisms.

2. Construct a visibility subset for each corner point of each rectangular prism. Each

corner point can be a candidate position to station a point guard.

3. Computing the minimum number of visibility subsets that include all rectangular

prisms from the above step. The computation in this step is equivalent to the

Minimum Set Cover (MSC) problem, including both exact algorithm and

approximated algorithms.

4. After the reduction of the number of visibility subsets in Step 3, there are still rooms

to further reduce the number of guards for covering an OPP. This possibility comes

from the fact that some rectangular prism could be covered by two or more guards

cooperatively even though it is already covered totally by an allocated guard. In this

case this allocated guard may be removed without affecting the coverage of that

rectangular prism.

The result of the last two steps is the reduced number of visibility subsets, each of which

corresponds to one corner point of a rectangular prism. By placing one fixed-point guard in

each of these corner points, either every rectangular prism would be visible from at least one

such guard, or each point in reach rectangular prism is visible from at least one such guard.

Hence the entire interior of the original orthogonal pseudo-polyhedron is covered by this set

of guards. This algorithm is the first algorithm known so far for covering any orthogonal

pseudo-polyhedron with fixed-point guards.

137

The thesis has also shown that no more than O(n3/2) fixed-point guards are required to

provide full coverage of the interior of any orthogonal polyhedron. This is the lowest known

upper bound for the number of fixed-point guards for any orthogonal polyhedron.

The above results are superior to those of other studies on the 3D-AGP for several reasons.

First, the proposed method uses fixed-point guards. This means our method is suitable to

many situations where mobile guards are not adequate. Second, our algorithm not only

determines the number of guards but also provide guard placement. In contrast, for example,

Souvaine et al. [34] provided only an upper and lower bound of the required number of face

guards without any procedure for their placement. Third, Souvaine et al. work in [34] is only

applicable to a simple orthogonal polyhedron, i.e., an orthogonal polyhedron with genus 0; in

contrast, our method is applicable to any orthogonal pseudo-polyhedron in which is the

superset of simple orthogonal polyhedron. Finally, this study shows that the upper bound for

the number of fixed-point guards required for covering any orthogonal polyhedron having n

vertices is (n3/2); meanwhile, Seidel proposed the same upper bound, but it was only

applicable to one special case of simple orthogonal polyhedra [4].

The key to the 3-dimensional art gallery problem is in the handling of pseudo-polyhedron, or

orthogonal pseudo-polyhedron which is the focus of this thesis. To this end, the thesis

proposed a new way, which is called vertex configuration, to characterise different types of

vertex in an orthogonal pseudo-polyhedron. It has shown that there are no more than 16

different vertex configurations in any orthogonal pseudo-polyhedron. We believe this result is

useful in the study of orthogonal pseudo-polyhedron and it can be used as a tool in the

analysis of orthogonal pseudo-polyhedron. Furthermore, we have proposed the following

conjecture, known as Vertex Configuration Conjecture, which characterises the quantative

relationship between different vertex configurations in any orthogonal pseudo-polyhedron:

138

(NV30 + NV33 + 0NV412 + NV431+ 2NV541+ 4NV606 + 3NV633 + 2NV660)

 – (NV31+ NV32 + 3NV401 + 2NV420 + 2NV501 + NV603 + 6NV600 + 2NV630) = 8

Where NV30, NV31, NV32, NV33, NV401, NV412, NV420, NV431, NV501, NV541, NV600, NV603, NV606,

NV630, NV633, and NV660 denote the number of vertex V30, V31, V32, V33, V40-1, V41-2,

V42-0,V43-1, V50 and V54-1, V60 -01, V60-3, V60-6, V63-0, V63-3, and V66-0 are the

number of vertices of the 16 different vertex configurations.

Some evidences supporting this conjecture has been provided in the thesis.

In addition, the thesis has developed a procedure for splitting an orthogonal polygon using as

polyline, a procedure for splitting an orthogonal polyhedron using a polyplane. These

procedures may be useful in some application such as metal fabrication.

7.2 Future Research

The following is a list of open problems for future research:

Open Problem 1: The proof of the Vertex Configuration Conjecture

Although some evidences supporting the validity of the conjecture are provided in this thesis,

we have not been able to prove it. If the conjecture is proven to be true, it could be a very

useful tool for studying orthogonal pseudo-polyhedron.

Open Problem 2: What is the upper-bound for our fixed-point guard placement algorithm?

In this thesis, a new algorithm has been presented for determining the number of fixed-point

guards to cover any orthogonal pseudo-polyhedron. The algorithm involves two steps of

139

optimisation in order to reduce the number of guards. However, we have not been able to

establish a non-trivial upper bound for the number of fixed-point guards from this algorithm.

It is interesting to know what is the upper bound of this algorithm. Such kind of upper bounds

would also be useful in the measurement of the quality of the algorithms.

For orthogonal polyhedron we have established that (n3/2) fixed-point guards required for

monitoring the orthogonal polyhedron. It would be interesting to compare this upper bound

with that for orthogonal pseudo-polyhedron.

140

REFERENCES

[1] V. Chavatal, "A combinatorial theorem in plane geometry," Combinatorial Theory Series B,
vol. 18, pp. 39-41, 1975.

[2] S. Nahar and S. Sahni, "Fast algorithm for polygon decomposition," IEEE Transaction on
Computer-Aided Design, vol. 7, pp. 473-483, 1988.

[3] M. d. Berg, M. v. Kreveld, M.Overmars, and O.Schwarzkopf, Computational Geometry,
Second ed.: Springer, 2000.

[4] J. O'Rourke, Art Gallery Theorems and Algorithms: Oxford University Press 1987, 1987.
[5] T. C. Shermer, "Recent results in art galleries," in Proceedings of IEEE, 1992, pp. 1384 -1399.
[6] J. Urrutia, Art gallery and Illumination Problems. Amsterdam: Elsevier Publisher, 2000.
[7] S. Fisk, "A short proof of Chavatal’s watchman theorem," Combinatorial Theory Series B, vol.

24, p. 374, 1978.
[8] D. Avis and G. T. Toussaint, "An efficient algorithm for decomposing a polygon into star-

shaped polygons," Pattern Recognition, vol. 13, pp. 395-398, 1981.
[9] M. Garey, D. Johnson, F. Preparata, and R. Tarjan, "Triangulating a simple polygon,"

Information Processing Letters, vol. 7, pp. 175-179, 1978.
[10] Chazelle, "Triangulating a simple polygon in linear time," Discrete and Computational

Geometry, vol. 6, pp. 485-524, 1991.
[11] A. A. Kooeshesh and B. E. Moret, "Three-coloring the vertices of a triangulated simple

polygon," Pattern Recognition, vol. 25, p. 443, 1992.
[12] J. Khan, M. Klawe, and D. Kleitman, "Traditional galleries require fewer watchmen," SIAM

Journal on Algebraic and Discrete Methods, vol. 4, pp. 194-206, 1983.
[13] J. O'Rourke, "An alternate proof of the rectilinear art gallery theorem," Journal of Geometry,

vol. 211, pp. 118-130, 1983.
[14] H. Edelsbrunner, J. O'Rourke, and E. Welzl, "Stationing guards in rectilinear art galleries,"

Computer Vision, Graphics, Image processing, vol. 27, pp. 167-176, 1984.
[15] J. R. Sack, "Rectilinear computational geometry," Ph. D, School of Computer Science, McGill

University, 1984.
[16] I. Bjorling-Sachs and D. L. Souvaine, "An efficient algorithm for guard placement in polygons

with holes," Discrete and Computational Geometry, vol. 13, pp. 77-109, 1995.
[17] D. T. Lee and A. K. Lin, "Computational complexity of art gallery problems," IEEE Transaction

on Information Theory Archive, vol. 32, pp. 276-282, 1986.
[18] D. Schuchardt and H. D. Hecker, "Two NP-hard art-gallery probles for orthgonal polygons,"

Mathematical Logic Quarterly, vol. 41, pp. 261-267, 1995.
[19] J. O'Rourke, "Galleries need fewer mobile guards: a variation on Chavatal’s theorem,"

Geometriae Dedicata, vol. 14, pp. 273-283, 1983.
[20] I. Bjorling-Sachs, "Edge guards in rectilinear polygons," computational Geometry: Theory and

Applications, vol. 11, pp. 111-123, 1998.
[21] E. Gyori, F. Hoffmann, K. Kriegel, and T. Shermer, "Generalized guarding and partitioning for

rectilinear polygons," Computational Geometry: Theory and Applications, vol. 6, pp. 21-44,
1996.

[22] S. K. Ghosh, "Approximation algorithms for art gallery problems," in Proceeding of Canadian
Information Processing Society Congress, 1987, pp. 429-434.

[23] A. P. Tomas, A. L. Bajuelos, and F. Marques, "On visibility problems in the plane - solving
minimum vertex guard problems by successive approximation," in the 9th Int. Symp. on Artif.
Intel. and Math., 2006.

[24] Y. Amit, J. S. B. Mitchell, and E. Packer, "Locating guards for visibility coverage of polygons,"
2007.

141

[25] A.L.Bajuelos, A. M. Martins, S. Canales, and G. Hernandez, "Metaherustic Approaches for the
Minimum Vertex Guard Problem," in Third International Conference on Advanced
Engineering Computing and Applications in Sciences, 2009, pp. 77-82.

[26] I. Saleh, "K-vertex guarding simple polygon," Computational Geometry, vol. 42, p. 10, 2008.
[27] C. Fragoudakis, E. Markou, and S. Zachos, "How to place efficiently guards and paintings in

an art gallery," in 10th Panhellenic conference on Informatic, 2005, pp. 145-154.
[28] A.L.Bajuelos, S. Canales, G. Hernandez, and A. M. Martins, "Estimating the maximum hidden

vertex set in polygons," in International conference on Computational Sciences and Its
Applications ICSA, 2008, pp. 421-432.

[29] S. Rana, "Use of GIS for planning visual surveillace installations," in ESRI Homeland Security
GIS Summit, 2005.

[30] M. I. Karavelas, "Guarding curvilinear art galleries with edge or mobile guards," in ACM
Symposium on Solid and Physical Modeling, 2008.

[31] D.Eppstein, M.T.Goodrich, and N.Sitchinava, "Guard placement for Wireless Localization,"
2006.

[32] C. D. Toth, "Art gallery problem with guards whose range vision is 180o," Computational
Geometry, vol. 17, pp. 121-134, 2000.

[33] P. Bose, T. Shermer, G. Toussaint, and B. Zhu, "Guarding polyhedral terrains," Computational
Geometry, vol. 7, pp. 173–185, 1997.

[34] D. L. Souvaine, R. Veroy, and A. Winslow, "Face guards for art galleries," presented at the XIV
Spanish Meeting on Computational Geometry, Spanish, 2011.

[35] J. O'Rourke, Computational Geometry in C, Second ed. Cambridge: Cambridge University
Press, 1998.

[36] F. Yamaguchi, Computer-Aided Geometric Design: Springer, 2002.
[37] F. P. Preparata and M. I. Shamos, Computational Geometry an Introduction. New York:

Springer-Verlag, 1985.
[38] B. Genc, "Reconstruction of orthogonal polyhedra," PhD, University of Waterloo, Ontario,

Canada, 2008.
[39] B. Yip and R. Klette, "Angle Counts for Isothetic Polygons and Polyhedra," Pattern

Recognition Letter, vol. 24, pp. 1275-1278, 2003.
[40] J. M. Keil, "Polygon decomposition," University of Saskatchewan, Saskatoon, Canada1996.
[41] K. Voss, Discrete Images, Objects, and Functions in Zn. Berlin: Springer, 1993.
[42] G. T. Taussaint, "Pattern recognition and geometrical complexity," in Fifth International

Conference on Pattern Recognition 1985, pp. 1324-1347.
[43] T. Asano, T. Azano, and H. Imai, "Partitioning a polygonal region into trapezoids," Journal of

the ACM, vol. 33, pp. 290-312, 1986.
[44] J. O'Rourke and G. Tewari, "Partitioning orthgonal polygons into fat rectangles in polinomials

time," in Proceeding of 14th Canadian Conference Computational Geometry, 2002, pp. 97-
100.

[45] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cambridge: The
MIT Press, 1990.

[46] L. P. Ku and H. W. Leong, "Optimum partitioning problem for rectilinear VLSI layout,"
National University of Singapore, Singapore1995.

[47] V. H. Nguyen, "Optimum partitioning of rectilinear layouts," in IEEE proceeding Computing
Digital Technology, 1996.

[48] W. T. Liou, J. J. Tan, and R. C. T. Lee, "Minimum rectangular paritition problem for simple
rectilinear polygons," IEEE Transaction on Computer-Aided Design, vol. 9, 1990.

[49] M. A. Lopez and D. P. Mehta, "Efficient decomposition of polygons into L-shapes with
application to VLSI layouts," ACM Transaction on Design Automation of Electronic System,
vol. 1, 1996.

[50] H. S. M. Coxeter, Regular polytopes. New York: Dover Publications, 1973.

142

[51] J. R. Rossignac and A. A. G. Requicha, "Construcitve Non-Regularized Geometry," Computer -
Aided Design, vol. 23, pp. 21-32, 1991.

[52] K. Tang and T. C. Woo, "Algorithmic aspects of alternating sum of volumes. Part 1: Data
structure and difference operation," Computer-Aided Design, vol. 23, pp. 357-366, June
1991.

[53] J. D. Foley, A. v. Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics: Principles and
Practice in C, 2nd edition ed.: Addison-Wesley, 1996.

[54] T. Biedl and B. Genc, "Reconstructing orthogonal polyhedra from putative vertex sets,"
technical reports, 2007.

[55] M. J. Wenninger, Polyhedron Models: Cambridge University Press, 1974.
[56] A. Aquilera and D. Ayala, "Solving point and plane vs orthogonal polyhedra using the

extreme vertices model (EVM)," presented at the The Sixth International Conference in
Central Europe on Computer Graphics and Visualization'98, 1998.

[57] R. Juan-Arinyo, "Domain extension of isothetic polyhedra with minimal CSG representation,"
Computer Graphics Forum, vol. 5, pp. 281-293, 1995.

[58] D. Eppstein and E. Mumford, "Steinitz theorems for orthogonal polyhedra," in SoCG '10
Proceedings of the 2010 annual symposium on Computational geometry, 2010, pp. 429-438.

[59] T. Biedl and B. Genc, "When can a graph form an orthgonal polyhedron?," presented at the
CCCG 2004, Montreal, 2004.

[60] B. Yang and C. A. Wang, "Minimal tetrahedralizations of a class of polyhedra," Journal of
Combinatorial Optimazation, vol. 8, pp. 241-265, 2004.

[61] N. J. Lennes, "Theorem on the simple finite polygon and polyhedron," American Journal of
Mathematics, vol. 33, pp. 37-62, 1911.

[62] J. Ruppert and R. Seidel, "On the difficulty of tetrahedralizing 3-dimensional non-convex
polyhedra," in Proceedings of the Fifth Annual Symposium on Computational Geometry,
1989, pp. 380 – 392.

[63] A. Below, U. Brehm, J. A. D. Loera, and J. Richter-Gebert, "Minimal simplicial dissections and
triangulations of convex 3-polytopes," Discrete and Computational Geometry, vol. 24, pp.
35-48, 2000.

[64] K. Chen, I. Hsich, and C. A. Wang, "A genetic algorithm for minimum tetrahedralization of a
convex polyhedron," in Proceedings of the 15th Canadian Conference on Computational
Geometry, 2003, pp. 115-119.

[65] V. J. Dielissen and A. Kaldewij, "Rectangular partition is polynomial in two dimensions but
NP-complete in three," Information Processing Letters, vol. 38, pp. 1-6, 1991.

[66] D. Stolee. (2008). Minimum Rectilinear Partitioning. Available: www.math.unl.edu/~s-
dstolee1/Presentations/Sto08-MinRectPart.pdf

[67] M. Sprankle and J. Hubbard, Problem solving and programming concept, eighth ed. New
Jersey: Person Prentice Hall, 2009.

[68] J. O'Rourke, "Uniqueness of orthogonal connect-the-dots," Machine Intelligence and Pattern
Recognition: Computational Morphology, pp. 97–104, 1988.

[69] B. G. Baumgart, "A polyhedron representation for computer vision," in National computer
conference and exposition Anaheim, California 1975, pp. 589-596

[70] K. Weiler, "Edge-Based Data Structure for Solid Modlling in Curve-Surface Environments,"
IEEE Computer Graphics and Application, vol. 5, pp. 21-40, 1985.

[71] L. Guibas and J. Stolfi, "Primitives for the Manipulation of General Subdivisions and the
Computation of Voronoi Diagrams," ACM Transaction on Graphics, vol. 4, pp. 74-123, July
1985.

[72] O. Bournez, O. Maler, and A. Pnueli, "Orthogonal Polyhedra: Representation and
Computation," 1999.

[73] A. Aguilera and D. Ayala, "Orthogonal polyhedra as geometric bounds in constructive solid
geometry," Solid Modeling, p. 12, 1997.

143

[74] M. Karasick, "On the representation and manipulation of regid solids," PhD, Computer
science, McGill University, Montreal, Quebec, Canada, 1988.

[75] C. L. Bajaj and T. K. Dey, "Zone Theorem and Polyhedral Decompositions," Purdue
University8-3-1990 1990.

[76] D. Ayala and J. Rodriguez, "Connected component labeling based on the EVM Model," in The
18th spring conference on Computer graphics, 2002, pp. 63-71.

[77] J. Czyzowicz, E. Rivera-Campo, and J. Urrutia, "Illuminating rectangles and triangles in the
plane," Journal of Combinatorial Theory Series B archive, vol. 57, 1993.

[78] S. L. Senk, Advanced Algebra. Chicago: Scott Foresman/Addison Wesley, 1998.
[79] K. Daniels, V. J. Milenkovic, and D. Roth, "Finding the Largest Rectangle in Several Classes of

Polygons," Harvard University, Cambridge 1995.
[80] M. T˘anase, R. C. Veltkamp, and H. Haverkort, "Multiple Polyline to Polygon Matching,"

Utrecht University TR UU-CS-2005-0172005.
[81] L. Wu, G. Tian, and Z. Xie, "An algorithm for splitting arbitrary polygon," presented at the

2009 Fifth International Conference on Natural Computation, 2009.
[82] M. S. Paterson and F. F. Yao, "Optimal binary space partitions for orthogonal objects,"

Journal of Algorithms archive, vol. 13, pp. 100-106, March 1992 1992.
[83] A. B. Shiflet, Elementary data structure with Pascal: West Publishing Company, 1990.
[84] J. Lien and N. Amato, "Approximate convex deocmposition of polyhedra and its

applications," Computer aided geometric design, vol. 25, pp. 503-522, 2008.
[85] C. Ericson, Real-time collision detection. San Francisco: Morgan Kaufmann 2005.
[86] C. L. Bajaj and T. K. Dey, "Convex decomposition of polyhedra and robustness," SiAM Journal

on Computing, vol. 21, pp. 339-364, 1992.
[87] C. L. Bajaj and V. Pascucci, "Splitting a complex of convex polytopes in any dimension," in

The twelfth annual symposium on Computational geometry, 1996.
[88] W. Cheney and D. Kincaid, Linear Algebra Theory and Applications. Sudbury: Jones and

Bartlett Publishers, 2009.
[89] F. V. Fomin and D. Kratsch, Exact Exponential Algorithms. Verlag Berlin Heidelberg: Springer,

2010.
[90] S. Ceria, P. Nobili, and A. Sassano, "A lagrangian-based heuristic for large-scale set covering

problems," Mathematical Programming, vol. 81, pp. 215-258, 1995.
[91] E. Boros, P. L. Hammer, T. Ibaraki, and A. Kogan, "Logical analyis of numerical data,"

Mathematical Programming, vol. 79, pp. 163-190, 2000.
[92] D. Buezas, "Constraint-based modeling of Minimum Set Covering: Application to Species

Differentation," Master, Departamento de Informática, Universidade Nova de Lisboa, Lisboa,
2010.

[93] A. Caprara, M. Fischetti, and P. Toth, "Algorithm for Set Covering Problems," University of
Bologna and University of Padova1998.

[94] V. V. Vazirani, Approximation algorithm. New York: Springer, 2003.
[95] A. Schrijver, Theory of Linear and Integer Programming. Amsterdam: John Wiley & Sons,

1998.

144

APPENDIX 1

The solution of 3D-AGP case (input as Table 5.1) by using dual simplex algorithm

>> dsimplex(type,c,a,b)
 Initial tableau
a =
 Columns 1 through 20

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 0 0 0
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0
 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 -1 0 -1 -1
 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1
 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 0 0
 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 0 0
 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0 0 0
 0
 1

 Columns 21 through 40

 -1 -1 0 -1 -1 0 0 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0
 0
 -1 -1 0 -1 -1 0 0 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0
 -1 -1 0 -1 -1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0
 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 -1 -1 0 -1 -1 0 0 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0
 -1 -1 0 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 1

 Columns 41 through 50

 1 0 0 0 0 0 0 0 0 -1
 0 1 0 0 0 0 0 0 0 -1
 0 0 1 0 0 0 0 0 0 -1
 0 0 0 1 0 0 0 0 0 -1
 0 0 0 0 1 0 0 0 0 -1
 0 0 0 0 0 1 0 0 0 -1
 0 0 0 0 0 0 1 0 0 -1
 0 0 0 0 0 0 0 1 0 -1
 0 0 0 0 0 0 0 0 1 -1
 0 0 0 0 0 0 0 0 0 0

 Press any key to continue ...

 pivot row-> 1 pivot column-> 1
 Tableau 1
a =
 Columns 1 through 20

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 0 -1 -1 0 -1 -1
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 -1 0 0 -1 -1 -1
 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

 Columns 21 through 40

 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0
 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0
 0
 -1 -1 0 -1 -1 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 -1 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0

145

 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 -1 0 0 -1
 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1

 Columns 41 through 50

 -1 0 0 0 0 0 0 0 0 1
 -1 1 0 0 0 0 0 0 0 0
 -1 0 1 0 0 0 0 0 0 0
 0 0 0 1 0 0 0 0 0 -1
 -1 0 0 0 1 0 0 0 0 0
 0 0 0 0 0 1 0 0 0 -1
 -1 0 0 0 0 0 1 0 0 0
 -1 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 1 -1
 1 0 0 0 0 0 0 0 0 -1

 Press any key to continue ...
 pivot row-> 4 pivot column-> 13
 Tableau 2
a =

 Columns 1 through 20

 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 -1 -1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 -1
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 -1 0 0 -1 -1 -1
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 1 1
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1

 Columns 21 through 40

 0 0 0 0 0 0 -1 -1 1 1 0 1 1 0 1 1 0 1 1 0
 0 0 0 0 0 0 -1 -1 1 1 0 1 1 0 1 1 0 1 1 0
 0
 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 -1 0 0 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 -1 0 0 -1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 0
 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 -1 0 0 -1
 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1

 Columns 41 through 50

 -1 0 0 1 0 0 0 0 0 0
 -1 1 0 1 0 0 0 0 0 -1
 -1 0 1 0 0 0 0 0 0 0
 0 0 0 -1 0 0 0 0 0 1
 -1 0 0 0 1 0 0 0 0 0
 0 0 0 -1 0 1 0 0 0 0
 -1 0 0 0 0 0 1 0 0 0
 -1 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 1 -1
 1 0 0 0 0 0 0 0 0 -1

 Press any key to continue ...

 pivot row-> 2 pivot column-> 19
 Tableau 3
a =
 Columns 1 through 20

 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 -1 0 0 -1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0

146

 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

 Columns 21 through 40

 0
 0 0 0 0 0 0 1 1 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0
 0
 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 0
 0 0 -1 0 0 -1 0 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0
 0 0 -1 0 0 -1 0 0 1 1 0 1 1 0 1 1 0 1 1 0
 0
 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 0 0 -1 0 0 -1
 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

 Columns 41 through 50

 0 -1 0 0 0 0 0 0 0 1
 1 -1 0 -1 0 0 0 0 0 1
 -1 0 1 0 0 0 0 0 0 0
 -1 1 0 0 0 0 0 0 0 0
 0 -1 0 -1 1 0 0 0 0 1
 -1 1 0 0 0 1 0 0 0 -1
 -1 0 0 0 0 0 1 0 0 0
 -1 0 0 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 1 -1
 0 1 0 1 0 0 0 0 0 -2

 Press any key to continue ...
 pivot row-> 6 pivot column-> 41
 Tableau 4
a =
 Columns 1 through 20

 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 1 1
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 -1 0 0 -1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

 Columns 21 through 40

 0
 0 0 -1 0 0 -1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 1 0 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0
 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 -1 0 0 -1 0 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0
 0 0 1 0 0 1 0 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0
 0 0 1 0 0 1 0 0 -1 -1 0 -1 -1 0 -1 -1 0 -1 -1 0
 0 0 1 0 0 1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
 0 0 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

 Columns 41 through 50

 0 -1 0 0 0 0 0 0 0 1
 0 0 0 -1 0 1 0 0 0 0
 0 -1 1 0 0 -1 0 0 0 1
 0 0 0 0 0 -1 0 0 0 1
 0 -1 0 -1 1 0 0 0 0 1
 1 -1 0 0 0 -1 0 0 0 1
 0 -1 0 0 0 -1 1 0 0 1
 0 -1 0 0 0 -1 0 1 0 1
 0 0 0 0 0 0 0 0 1 -1
 0 1 0 1 0 0 0 0 0 -2

 Press any key to continue ...

147

 pivot row-> 9 pivot column-> 29
 Tableau 5
A =
 Columns 1 through 20

 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -1 1 1
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 -1 0 0 -1 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0

 Columns 21 through 40

 0
 0 0 -1 0 0 -1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1
 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 -1 0 0 -1 0 0 0 0 1 0 0 1 0 0 1 0 0 1
 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1
 0 0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 1
 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 41 through 50

 0 -1 0 0 0 0 0 0 0 1
 0 0 0 -1 0 1 0 0 0 0
 0 -1 1 0 0 -1 0 0 -1 2
 0 0 0 0 0 -1 0 0 0 1
 0 -1 0 -1 1 0 0 0 -1 2
 1 -1 0 0 0 -1 0 0 -1 2
 0 -1 0 0 0 -1 1 0 -1 2
 0 -1 0 0 0 -1 0 1 -1 2
 0 0 0 0 0 0 0 0 -1 1
 0 1 0 1 0 0 0 0 1 -3

 Press any key to continue ...
 Problem has a finite optimal solution
 Values of the legitimate variables:

 x(1)= 1.000000
 x(2)= 0.000000
 x(3)= 0.000000
 x(4)= 0.000000
 x(5)= 0.000000
 x(6)= 0.000000
 x(7)= 0.000000
 x(8)= 0.000000
 x(9)= 0.000000
 x(10)= 0.000000
 x(11)= 0.000000
 x(12)= 0.000000
 x(13)= 1.000000
 x(14)= 0.000000
 x(15)= 0.000000
 x(16)= 0.000000
 x(17)= 0.000000
 x(18)= 0.000000
 x(19)= 0.000000
 x(20)= 0.000000
 x(21)= 0.000000
 x(22)= 0.000000
 x(23)= 0.000000
 x(24)= 0.000000
 x(25)= 0.000000
 x(26)= 0.000000
 x(27)= 0.000000
 x(28)= 0.000000
 x(29)= 1.000000

148

 x(30)= 0.000000
 x(31)= 0.000000
 x(32)= 0.000000
 x(33)= 0.000000
 x(34)= 0.000000
 x(35)= 0.000000
 x(36)= 0.000000
 x(37)= 0.000000
 x(38)= 0.000000
 x(39)= 0.000000
 x(40)= 0.000000

 Objective value at the optimal point: z = 3.000000

149

APPENDIX 2

The solution of 3D-AGP case (input as Table 5.2) by using dual simplex algorithm

>> dsimplex(type,c,a,b)
 Initial tableau
a =
 Columns 1 through 21

 -1 -1 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
 -1 -1 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
 -1 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -1
 -1 -1 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 -1
 0 -1 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1
 -1 -1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 -1
 -1 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 -1
 -1 -1 -1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1
 0 -1 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1
 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 -1
 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 -1
 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 -1
 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 -1
 -1 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1
 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1
 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1
 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Press any key to continue ...
 pivot row-> 1 pivot column-> 1
 Tableau 1
a =
 Columns 1 through 21

 1 1 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 1 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 -1 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 -1
 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
 0 -1 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 -1
 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
 0 -1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 -1
 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

 Press any key to continue ...
 pivot row-> 6 pivot column-> 2
 Tableau 2
a =
 Columns 1 through 21

 1 0 0 -1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 -1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 -1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 -1
 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 1 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 -1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 0 0 1 -1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
 0 0 0 -1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0
 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

150

 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0
 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1
 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1

 Press any key to continue ...
 pivot row-> 4 pivot column-> 4
 Tableau 3
a =

 Columns 1 through 21

 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 1 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 1 0 0 1 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 1 0 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 1
 0 1 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 -1 0 -1 1 0 0 0 0 0 0 0 0 0 0 1
 0 0 1 0 0 0 -1 0 -1 0 1 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 -1 0 -1 0 0 1 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 -1 0 -1 0 0 0 0 1 0 0 0 0 0 0 1
 0 0 1 0 0 0 -1 0 -1 0 0 0 0 0 1 0 0 0 0 0 1
 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 1 0 0 0 0 1
 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 0 1 0 0 0 1
 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 0 0 1 0 0 1
 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0
 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1
 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 -2

 Press any key to continue ...
 pivot row-> 17 pivot column-> 3

 Tableau 4

a =

 Columns 1 through 21

 1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 1 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 1 -1 0 -1 0 0 0 0 0 0 0 0 0 0 1 0
 0 0 0 1 0 0 -1 0 -1 0 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 -1 1 -1 0 0 0 0 0 0 0 0 0 0 0 1
 0 1 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 -1 0 -1 1 0 0 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 -1 0 -1 0 1 0 0 0 0 0 0 0 0 1 0
 0 0 0 0 0 0 -1 0 -1 0 0 1 0 0 0 0 0 0 0 0 1
 0 0 0 0 0 0 0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 -1 0 -1 0 0 0 0 1 0 0 0 0 0 0 1
 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 1 0 0 0 0 1 0
 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 1 0 0 0 0 1
 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 0 1 0 0 0 1
 0 0 0 0 0 0 -1 0 -1 0 0 0 0 0 0 0 0 1 0 0 1
 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 1 0 0
 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 1
 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 -2

 Press any key to continue ...
 Problem has a finite optimal solution
 Values of the legitimate variables:
 x(1)= 1.000000
 x(2)= 0.000000
 x(3)= 1.000000
 Objective value at the optimal point:
 z= 2.000000

