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ABSTRACT 

This thesis addressed the three-dimensional Art Gallery Problem (3D-AGP), a version of the 

art gallery problem, which aims to determine the number of guards required to cover the 

interior of a pseudo-polyhedron as well as the placement of these guards. This study 

exclusively focused on the version of the 3D-AGP in which the art gallery is modelled by an 

orthogonal pseudo-polyhedron, instead of a pseudo-polyhedron. An orthogonal pseudo-

polyhedron provides a simple yet effective model for an art gallery because of the fact that 

most real-life buildings and art galleries are largely orthogonal in shape. Thus far, the existing 

solutions to the 3D-AGP employ mobile guards, in which each mobile guard is allowed to 

roam over an entire interior face or edge of a simple orthogonal polyhedron. In many real-

word applications including the monitoring an art gallery, mobile guards are not always 

adequate. For instance, surveillance cameras are usually installed at fixed locations.  

The guard placement method proposed in this thesis addresses such limitations. It uses fixed-

point guards inside an orthogonal pseudo-polyhedron. This formulation of the art gallery 

problem is closer to that of the classical art gallery problem. The use of fixed-point guards 

also makes our method applicable to wider application areas. Furthermore, unlike the existing 

solutions which are only applicable to simple orthogonal polyhedra, our solution applies to 

orthogonal pseudo-polyhedra, which is a super-class of simple orthogonal polyhedron. 

In this thesis, a general solution to the guard placement problem for 3D-AGP on any 

orthogonal pseudo-polyhedron has been presented. This method is the first solution known so 

far to fixed-point guard placement for orthogonal pseudo-polyhedron. Furthermore, it has 

been shown that the upper bound for the number of fixed-point guards required for covering 

any orthogonal polyhedron having n vertices is (n3/2), which is the lowest upper bound 

known so far for the number of fixed-point guards for any orthogonal polyhedron.  

This thesis also provides a new way to characterise the type of a vertex in any orthogonal 

pseudo-polyhedron and has conjectured a quantitative relationship between the numbers of 

vertices with different vertex configurations in any orthogonal pseudo-polyhedron. This 

conjecture, if proved to be true, will be useful for gaining insight into the structure of any 

orthogonal pseudo-polyhedron involved in many 3-dimensional computational geometrical 

problems. Finally the thesis has also described a new method for splitting orthogonal polygon 
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using a polyline and a new method for splitting an orthogonal polyhedron using a polyplane. 

These algorithms are useful in applications such as metal fabrication.  
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CHAPTER 1 

INTRODUCTION 
 

 

 

1.1 The Classical Art Gallery Problem  

Guarding the works of famous painters in art galleries is not an easy task as a work of art is 

desired by art lovers and coveted by criminals. Art galleries must constantly monitor their 

collections of art to guard against any unexpected actions by visitors, such as theft, 

vandalism, and destruction. Art works can be monitored by video cameras, which are usually 

hung from the ceiling. Images from these cameras are sent to TV screens in the security 

offices either located at the gallery or some remote management centers.   

It is intuitive to think that the number of cameras used to monitor the art gallery should be 

kept as small as possible. The reason for this is not solely due to financial issues, but also 

because it is easier to monitor art gallery areas using fewer TV screens than many. On the 

other hand, art galleries cannot have too few cameras, because they may not cover all of the 

art gallery’s interior. This raises an interesting question in computational geometry, which is 

usually referred to as the Art Gallery Problem: How many cameras do we need to guard a 

given gallery and how do we decide where to place them? This problem was first posed by 

Victor Klee to his students in 1973[1]. 

Although the art gallery problem was motivated by the needs of monitoring the art gallery, 

the problem posed by Victor Klee is a computational geometry problem that has much wide 

application than guarding an art gallery, such as computer graphic, databases, image 

processing, VLSI layout, and artwork analysis [2].   
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A gallery is, of course, in a three-dimensional space, but its floor plan may give us a lot of 

information to place the cameras. Therefore, traditionally, an art gallery is modelled as a 

simple polygon  that is, regions enclosed by a single closed polygonal chain that does not 

intersect itself [3]. A camera position in the gallery corresponds to a point in the polygon. A 

camera sees a point as long as the line of sight to the point lies totally inside of the polygon. 

Much research has been done to solve the original art gallery problem and its many variations 

[4-6]. The first solution of the art gallery problem came in 1975 from Chavatal, who proved 

that n/3 guards are occasionally necessary and always sufficient to cover an n-gon [1]. 

Three years later, Fisk gave an elegant proof of Chavatal’s theorem by using the concept of 

triangulation and a three-colouring scheme [7]. Avis and Toussaint developed the O(n log n) 

algorithm for placing these n/3 stationary guards [8]. This algorithm is bounded by two 

other O(n log n) algorithms: the triangulation of a simple polygon [9] and three-colouring of 

the triangulated polygon [8]. The time complexity of Avis and Toussaint’s algorithm was 

further improved by Chazelle, who obtained a linear time triangulation algorithm [10], and by 

Kooshesh and Moret, who obtained a linear time three-colouring algorithm [11]. 

In the classic art gallery problem, an art gallery is represented by a simple polygon. Recently 

more attention was given to an important variation of the classic art gallery problem by 

restricting the simple polygon to be orthogonal. This is perhaps because most real buildings 

are largely orthogonal, and thus orthogonal polygons are better models for potential 

applications. Due to its simplicity, modelling an art gallery with a simple orthogonal polygon 

allow us to obtain more efficient algorithms and aesthetic results. An orthogonal polygon is a 

simple polygon whose edges are either horizontal or vertical. Khan, Klawe, and Kleitman 

showed that n/4 guards are sufficient and sometimes necessary to cover any simple 

orthogonal polygon with n vertices [12]. O’Rourke later gave a completely different but 
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somewhat simpler proof of this result [13]. Edelsbrunner, O’Rourke, and Welzl devised an 

O(n log n) algorithm for placing these n/4 guards [14]. The first O(n) algorithm for 

placement of the vertex guards for monitoring the inside of an orthogonal polygon was 

obtained by Sack [15]. 

The floor plan of any art gallery may be modelled as a simple polygon. However, in a real-

world art gallery, there may be obstructions inside the gallery. These obstructions are called 

holes.  In 1995, Bjorling-Sachs and Souvaine established that (n+h)/3 vertex guards are 

always sufficient and sometimes necessary to guard a polygon with n vertices and h holes 

[16]. 

There are several ways to place guards. The first type is the vertex guard where the position 

of any guard is restricted to a vertex of the polygon. The problem of determining the 

minimum number of vertex guards that can see an n-wall simply connected art gallery is 

shown to be NP-hard [17]. Meanwhile, Schuchardt and Hecker proved that the problem of 

determining the minimum number of vertex guards that see a simple orthogonal polygon is 

also NP-hard [18]. 

The second type of guard is the point guard where each guard can be placed anywhere in the 

polygon. Hoffmann, Kaufmann, and Kriegel proved that any polygon, possibly with holes, 

can be monitored by at most (n+h)/3 point guards where n is the total number of vertices 

and h the number of its holes. Lee and Lin showed that the problem of determining the 

minimum number of point guards that can see the inside of a simple polygon is NP-hard [17]. 

Furthermore, they proved that n/4 point guards are the exact bound for monitoring the 

inside of an orthogonal polygon with n vertices. 
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The third type of guard is the edge guard, where a guard is allowed to move along the edge of 

a polygon. O’Rourke showed that n/4 edge guards are always sufficient and sometimes 

necessary to cover the polygon with n vertices [19].  The problem of determining the 

minimum number of edge guards in a simple polygon is also NP-hard [17].  Meanwhile, 

Bjorling-Sach showed that (3n+4)/16 edge guards are always sufficient to guard any simple 

orthogonal polygon with n vertices. [20]. 

The fourth type is the mobile guard where a guard for a simple polygon is allowed to move 

along a sequence of closed line segments totally contained in the simple polygon [19]. 

O’Rourke showed that if the guards are permitted to patrol fixed interior line segments of a 

simple polygon with n vertices, then n/4 guards are always sufficient and sometimes 

necessary for n ≥ 4 [19]. Aggarwal in  [21] proved that (3n+4)/16 mobile guards are always 

sufficient and occasionally necessary to cover any simple orthogonal polygon with n vertices, 

and (3n+4h+4)/16 mobile guards are always sufficient and occasionally necessary to guard 

the polygon with n vertices and h holes. 

Since most of the minimum guard problems are NP-hard, the focus of the research 

community has been on developing heuristics and approximation methods for the problem. 

For example, Ghosh proposed an O(n5 log n) time approximation algorithm to find a vertex 

guard set that is at most O(log n) times the minimum number of vertex guards needed to 

cover a polygon with or without holes and with n vertices [22]. 

Tomas, Bajuelos, and Marques proposed an approximation algorithm to find a vertex guard 

set, in which the main idea in their approach is that each interior piece of an orthogonal 

polygon must be totally visible by at least one guard. They proved that the difference between 

the minimum number of guards and their approximation is quite small, namely (log n) times, 

where n is the number of vertices of the polygon [23]. 
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Amit, Mitchell, and Parker reported heuristics for computing a small set of point guards to 

cover a given polygon. They recommended three heuristics: guarding quality, space and 

time. The sets of guards obtained using heuristic approach were very satisfactory, and they 

were always either optimal or close to optimal [24]. A genetic algorithm was applied as an 

approximation algorithm, in which the average of the minimal number of vertex-guards 

needed to cover a simple polygon with n vertices was observed to be n/6.48 [25]. 

Recent studies have considered a number of variations of the original art gallery problem. 

Saleh proposed k-vertex guarding simple polygon, in which a polygon is called k-vertex 

guardable if there is a subset of vertices of the polygon such that each point in the polygon is 

see by at least k-vertices in the subset of vertices [26]. He proved that 2n/3 is needed for k=2 

to see the inside of a simple polygon with n vertices.  Fragoudakis addressed the problem of 

efficiently placing guards and paintings in an art gallery by introducing the finest visibility 

segmentation concept whose goal is to place paintings and guards in an art gallery in such a 

way that the total value of the guarded paintings is maximised [27]. Bajuelos estimated the 

maximum hidden vertex set in a polygon [28].  Rana proposed a technique to identify the 

minimal number of CCTV cameras with the most visual coverage of open spaces [29]. 

Carevelas considered the problem of monitoring a polygon where the edges of which are arcs 

of curves [30]. Epstein considered the problem of placing a small number of angle guards 

inside a polygon [31], and Toth studied the art gallery problem with guards whose range of 

vision is 180 [32]. 

1.2 Three-Dimensional Art Gallery Problems 

Early studies of the art gallery problem used a polygonal region in the plane as the model of 

the art gallery. The plane polygon only models the floor outline of the art gallery. It does not 

always provide adequate information about the complex spatial structure of the building. In 
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many applications, knowledge of the spatial structure of the building is essential for deciding 

how the building should be monitored.   

Therefore, it is necessary to consider the 3D structure of a building to determine the number 

of guards required to cover it as well as the placement of these guards. This thesis focused on 

the three-dimensional art gallery problem (3D-AGP), a version of the art gallery problem in 

which the art gallery is modelled by a pseudo-polyhedron. Hence, in this thesis the classical 

art gallery problem in which the art gallery is modelled by a polygon is called the two-

dimensional art gallery problem (2D-AGP) to distinguish it from the 3D-AGP. Furthermore, 

as this thesis exclusively focuses on the version of the 3D-AGP in which the art gallery is 

modelled by an orthogonal pseudo-polyhedron instead of a pseudo-polyhedron, the term 3D-

AGP is used to imply the three-dimensional art gallery problem in which the art gallery is 

modelled by an orthogonal pseudo-polyhedron, unless it is specially pointed out otherwise. 

An orthogonal pseudo-polyhedron provides a simple yet effective model for an art gallery 

because of the fact that most real-life buildings and art galleries are largely orthogonal in 

shape. In addition, most applications are in a 3D environment (e.g., art galleries, 

supermarkets, banks, sensor network areas, and robot motion planning); therefore, using an 

orthogonal pseudo-polyhedron to model the art gallery/building/structure is more desirable 

than using a plane polygon. 

Work on the 3D-AGP is much less extensive than those on the 2D-AGP. In the last two 

decades, only a small number of studies were reported on some aspects of the 3D-AGP. For 

instance, Bose, Shermer, Taussaint, and Zhu considered using vertex guards to monitor the 

surface of a polyhedron. They proved that n/2 vertex guards are always sufficient and some 

time necessary to see the surface of the polyhedron having n vertices. They also reported that 

(4n-4)/13 edges guards, which are mobile moving guards along the edges, are some time 
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necessary to guard the surface of a polyhedron having n vertices [33]. Grunbaum and 

O’Rourke used vertex guards to see the exterior of a simple polyhedron, and stated that (2f-

4)/3 vertex guards are sometimes necessary and always sufficient to monitor the exterior of a 

convex polyhedron with f faces, for f 10 [4].  

One may assume that placing a guard at each and every vertex of a polyhedron would cover 

the interior of the polyhedron. This was proved not be the case by Seidel. He gave an 

example of a simple orthogonal polyhedron in which guards placed at every vertex of that 

polyhedron do not fully cover the interior of the polyhedron. He also noted that (n3/2) 

guards are sufficient to monitor that special type of simple orthogonal polyhedron, where n is 

the number of vertices [4]. Based on the example given by Seidel, it can be concluded that 

vertex guards are not suitable for the 3D-AGP. The reason for this is that there could be some 

areas or points inside an orthogonal polyhedron that are not visible from any vertex.  

Souvaine, Veroy, and Winslow recently introduced the face guard, which is a guard that 

roam over an entire interior face of a simple polyhedron. They used face guards to monitor 

the interior of a simple polyhedron and a simple orthogonal polyhedron. They also proved 

that f /6 face guards are sufficient to monitor any simple orthogonal polyhedron with f 

faces. They also reported that f /2 face guards are sufficient to guard any simple polyhedron 

with f faces [34].  However, there is no procedure to place these face guards on the interior of 

the simple orthogonal polyhedron was given by them.  

Based on the above discussion, the 2D-AGP is well known, but very little is known about the 

3D-AGP. Progress in 3D-AGP has been difficult because the 3D-AGP does not have a set of 

established tools such as a triangulation, the main tool used in the 2D-AGP. Although there is 

a large difference between the problems in two and three dimensions, the 3D-AGP is being 

actively studied, and researchers have proposed vertex guards and mobile guards for solving 
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the 3D-AGP. However, these types of guards have shortcomings: (i) guards posted at every 

vertex of a polyhedron can obviously cover the inside if any polyhedron were 

tetrahedralizable such that every tetrahedron can be monitored by one guard in the corner; 

however, not every polyhedron is tetrahedralizable. Hence, vertex guards cannot be applied 

to fully cover the interior of a polyhedron. (ii) Mobile guards such as an edge guard and a 

face guard can overcome the limitation of vertex guards; however, in real life a mobile guard 

is not always suitable. Most real-life guards need to be stationary and remain at fixed 

positions at all times. For example, in many supermarkets, banks, art galleries, and even in 

many public places, surveillance cameras are widely deployed to monitor an area. It is 

impractical and also too expensive to require these cameras to move around in order to cover 

an area. 

Therefore, stationary guards are more suitable than mobile guards in these applications. 

Because of the limitation of the vertex guards, in this thesis, only stationary point guards will 

be considered. A stationary point guard is also called a point guard, or a fixed-point guard. It 

can be placed anywhere inside a pseudo-polyhedron including on the interior of a face, or an 

edge, or a vertex of the pseudo-polyhedron. Once placed inside a polyhedron, it will remain 

in the allocated point and will never change its position.  

1.3 Aims and Significance of this Research 

The primary aim of this thesis is to develop a guard placement algorithm to monitor the entire 

interior of an orthogonal pseudo-polyhedron using only fixed-point guards and to determine 

an upper bound for the number of fixed-point guards required to cover the interior of an 

orthogonal polyhedron.  
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Current work on the 3D-AGP faces some challenges such as the fact that vertex guards are 

not suitable to any simple orthogonal polyhedron and mobile guards are not adequate in many 

real-world applications. This thesis attempts to address these limitations.  

First, in this thesis, only fixed-point guards will be used. This formulation of the 3D art 

gallery problem is much closer to that of the original art gallery problem, which only 

considered stationary point guards. The use of fixed-point guards also means that any 

solution we develop will have wider applications. Second, existing work focused on guard 

placement for a simple orthogonal polyhedron. Unfortunately, many real-world objects 

cannot be modelled by a simple orthogonal polyhedron. In our work, a broader class of 3D 

geometric model, i.e., orthogonal pseudo-polyhedron, will be used. The simple orthogonal 

polyhedron is only a small subset of orthogonal pseudo-polyhedron. Therefore, our solution 

based on orthogonal pseudo-polyhedron is expected to have more real-world applications 

than those based on simple orthogonal polyhedron. Third, we believe our method based on 

orthogonal pseudo-polyhedron is more amenable to orthogonal pseudo-polyhedron with 

multiple boundaries.  

1.4 Research Objectives 

The main goal of this thesis is to develop a method for computing a small set of guards and 

their placement to cover any orthogonal pseudo-polyhedron. To achieve the goal, detailed 

study of the nature of orthogonal pseudo-polyhedron must be carried. A number of basic 

operations involving an orthogonal pseudo-polyhedron need to be developed. The following 

is a list of work we are proposing to carry out during this study: 

1. To investigate various properties of an orthogonal pseudo-polyhedron to see whether 

there are any intrinsic rules governing it. More specifically, we will investigate 



10 
 

different type of vertex configurations and their relationships in an orthogonal 

pseudo-polyhedron.  

2. To investigate an effective way to split an orthogonal polygon, as well as an 

orthogonal polyhedron, and a polyhedron. The work on polygon splitting may lend us 

ideas for splitting polyhedron. 

3. To investigate the ways to decompose an orthogonal pseudo-polyhedron into a set of 

simple and primitive 3D shapes, such as rectangular prisms. An effective method for 

decomposition of orthogonal pseudo-polyhedron will be critical in determining the 

guard placement. 

4. To investigate the way to compute the set of rectangular prisms, or other primitive 3D 

shapes, that are visible from a given point inside an orthogonal pseudo-polyhedron. 

This procedure would be useful for the reduction of the number of guards required. 

5. To develop methods for determining the number of fixed-point guards needed for 

monitoring an orthogonal pseudo-polyhedron and the procedures for placement of 

these fixed-point guards in the orthogonal pseudo-polyhedron. 

6. To determine a non-trivial upper bound for the number of fixed-point guards required 

for monitoring an orthogonal polyhedron. Such an upper bound will have theoretical 

significance since no non-trivial upper bound is known for a general orthogonal 

polyhedron at the present. 

1.5 Outcomes of the Research 

1. A general solution to the guard placement problem for 3D-AGP on any orthogonal 

pseudo-polyhedron will be developed. To our knowledge, this method will be the first 

solutions to fixed-point guard placement for orthogonal pseudo-polyhedron. 
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2. An upper bound for the number of fixed-point guards required for covering any 

orthogonal polyhedron. 

3. A new way to represent a vertex configuration in orthogonal pseudo-polyhedra and a 

conjecture a quantitative relationship between the numbers of vertices in different 

vertex configurations in any orthogonal pseudo-polyhedra. This innovative approach 

will be useful for representing related geometry objects and their computational 

aspects.   

4. A new method for splitting orthogonal polygon using a polyline and a new method for 

splitting an orthogonal polyhedron using a polyplane. These algorithms will be useful 

in applications such as metal fabrication.  

   

1.6 Structure of Thesis 

This thesis consists of seven chapters and two appendixes.  

Chapter 2 provides definitions and terminology for concepts and operations involving 

polygons and polyhedra.  It also discusses the data structures for representing orthogonal 

polygons, and polyhedra in computer memory.   

Chapter 3 introduces the concept of vertex configurations of orthogonal pseudo-polyhedra. It 

then shows that there are up to 16 different vertex configurations in any orthogonal pseudo-

polyhedron. The chapter also discusses the quantitative relationship between different types 

of vertex configurations in an orthogonal pseudo-polyhedron, and proposes a conjecture 

called the Vertex Configuration Conjecture. A number of related topics are also discussed in 

the chapter. They include reconstructing the orthogonal pseudo-polyhedron after it has been 

decomposed.  Finally, it discusses the duality of each vertex configuration. 
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Chapter 4 proposes procedures for splitting different geometry models. Splitting operations 

are used to separate an object into two halves.  The chapter starts with a new splitting 

procedure for an orthogonal polygon using a polyline. Then, it presents a new algorithm for 

splitting an orthogonal polyhedron using a polyplane.  Finally, it introduces a procedure for 

splitting polyhedra using a splitting plane that passes through a given view point. This 

procedure is used in Chapter 5. 

Chapter 5 develops a new method for determining the number of fixed-point guards needed 

to monitor an orthogonal pseudo-polyhedron, as well as where to place these guards. After 

introducing the related terminology and the existing work, the chapter describes a new 

algorithm for calculating the positions of a set of fixed-point guard. This algorithm makes use 

of several basic operations such as partitioning an orthogonal pseudo-polyhedron, computing 

visibility subsets, and mapping the 3D-AGP into the minimum set cover (MSC) problem, 

each of which is explained separately in this chapter. Finally, a new method is proposed to 

reduce the number of guards required to cover the interior of an orthogonal pseudo-

polyhedron. 

Chapter 6 refines the algorithm presented in Chapter 5 for determining and placement of 

fixed-point guards for monitoring an orthogonal pseudo-polyhedron. In the refined algorithm, 

only orthogonal polyhedron, rather than orthogonal pseudo-polyhedron, is considered. The 

refined algorithm relies on a definition to determine the dominant pieces such that the number 

of data inputs for the MSC problem which is a component of that algorithm can be reduced. 

In this chapter, the dominant pieces around various types of vertex configurations in any 

orthogonal polyhedra are identified. Based of the identification of dominant pieces, a new, 

non-trivial, upper bound for the number of fixed-point guards required for monitoring the 

interior of an orthogonal polyhedron is derived. 
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 Chapter 7 presents the conclusions of this thesis and discusses the future research directions. 
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CHAPTER 2 

CONCEPTS AND TERMINOLOGY FOR POLYGONS AND 
POLYHEDRA 

 
 

This chapter provides some basic concepts and terminology for polygons and polyhedra. 

They will be used for developing new concepts and procedures in later chapters. Some issues 

and related research on polygons and polyhedra are also discussed in this chapter.   

2.1 Polygon 

In elementary geometry, a polytope is a geometric object with flat sides, which exists in any 

general number of dimensions. For example, a polygon is a polytope in two dimensions, 

while a polyhedron is a polytope in three dimensions. Polygons and polyhedra are the most 

popular polytopes  because they are widely used models for many real world objects. 

2.1.1 Definitions and terminology 

A polygon is one of the basic concepts in computational geometry.  A polygon is defined 

using its boundary, which is called a polygonal curve. A polygonal curve consists of a series 

of line segments, s1, s2,..., sn. Each line segment si has two end points known as the starting 

point and the end point. These line segments are connected in the following way: for any two 

consecutive line segments si and s(i+1), the end point of si is connected to the starting point of 

s(i+1) for 1  i < n. A polygonal curve is said to be simple if, apart from the aforementioned 

intersections between consecutive line segments, there are no other intersections between the 

line segments of the polygonal curve. A polygonal curve is closed if the end point of its last 

line segment sn is connected to the starting point of its first line segment s1. A simple closed 

polygonal curve is a polygonal curve that is both simple and closed. A polygon is defined as a 
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closed and bounded region of a plane whose boundary is a simple closed polygonal curve. 

[3].  

From these definitions, there are clearly two basic components in a polygon. They are the 

vertex and the edge. A vertex of a polygon is a point on its boundary in which the boundary 

changes its slope, and an edge is a line segment on the polygon’s boundary that connects two 

vertices. Two vertices p and q are adjacent to each other if they are connected by an edge e. 

In such a case, e is incident to vertex p and vertex q, and p and q are incident to e.  

A polygon divides the 2-dimensional plane into two disjoint regions: the interior region 

which is finite and exterior region which is infinite. The simple closed polygonal curve forms 

the boundary that separates the two regions. A point is said to be inside a polygon if that 

point is located in the interior region of the polygon, or on its boundary. A point is said to be 

outside of a polygon if it is not located inside polygon. An area is said to be inside a polygon 

if all of its points are located inside the polygon [35].  

A polygon with holes is defined as a shape that consists of one large polygon and one or more 

smaller polygons that are located completely inside the large polygon (but they do not 

intersect with the boundary of the large polygon), and these smaller polygons neither intersect 

with each other nor overlap with each other [3]. For a polygon with holes, there are two 

boundaries. The inner boundary is the polygonal curves of the smaller polygons, while the 

outer boundary is the polygonal curve of the large polygon in a polygon with holes.  The 

following figures depict a polygon and a polygon with holes. 
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Figure 2.1:  (a) A Polygon and  (b) a Polygon with Holes 

Every polygon has as many corners as it has sides, and each corner has several kinds of 

angles. The two most important types of angles are the interior angle and the exterior angle. 

An interior angle is the angle between two sides on the interior of a polygon. The exterior 

angle is the complementary angle to an interior angle, so the sum of the interior and exterior 

angles at any vertex must be 360o. A corner is said to be convex if its interior angle is less 

than 180o
 [36].  

Convexity is an important concept in a polygon. A subset S of the plane is convex if and only 

if for any pair of points p,q  S, the line segment ݍ݌ is completely contained in S. A convex 

polygon is a polygon with a convex interior. A polygon is convex if each corner is convex. A 

polygon that is not convex is called a concave polygon which has at least one interior angle 

greater than 180o [3]. 

Many real-world objects, such as books, tables, and rooms, have a rectangular shape. In many 

applications, these objects can be modelled as orthogonal polygons. An orthogonal polygon 

is a polygon with boundary sides parallel to the axes of the 2-dimensional Cartesian 

coordinate system. Clearly, the interior angle of any corner of an orthogonal polygon is either 

90o (convex) or 270o (concave) [37]. If all angles of a polygon are either 90o or 270, but the 

edges are not parallel to any axis, then it is called a rotated orthogonal polygon [38].  

a b 
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Orthogonal polygons are also known as rectilinear polygons. An orthogonal polygon with 

holes is defined as a shape that consists of one large orthogonal polygon and one or more 

smaller orthogonal polygons that are located completely inside the large orthogonal polygon 

in which the smaller orthogonal polygons neither intersect with the large orthogonal polygon, 

nor intersect with each other, nor overlap with each other. The following figures depict an 

orthogonal polygon and an orthogonal polygon with holes. 

 

 

 

Figure 2.2: (a)  An Orthogonal Polygon and (b) an Orthogonal Polygon with Holes 

An inflection vertex of an orthogonal polygon is a concave vertex where the interior angle is 

270. For any orthogonal polygon having n vertices, the number of inflection vertices i is:  

݅ = (௡ିସ)
ଶ

  [39].  

The only orthogonal polygon that is also convex is a rectangle; all other orthogonal polygons 

are concave. Therefore, the term “convexity” has a slightly different meaning when it is used 

to describe an orthogonal polygon. One way to define the convexity of an orthogonal polygon 

is by restricting the points when testing the convexity. In the context of an orthogonal 

polygon, a line is called orthogonal if it is parallel to one of the coordinate axes. A line 

segment is orthogonal if its two end points lie on an orthogonal line. 

An orthogonal polygon is called horizontally (vertically) convex if its intersection with every 

horizontal (vertical) line is no more than one line segment. Meanwhile, an orthogonal 

a b 
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polygon is called orthogonally convex if it is both horizontally and vertically convex [40]. 

For examples, see Figure 2.3 

 

  

 

 

a) horizontally convex orthogonal polygon, b) vertically convex orthogonal polygon, 
and c) orthogonally convex orthogonal polygon 

Figure 2.3: Three Different Convexity on Orthogonal Polygons 

The relationship between vertices is well known for orthogonal polygons. For an orthogonal 

polygon, the relationship between the number of convex vertices (HC) and the number of 

inflection vertices (HR) is:  HC  HR = 4 [39]. Meanwhile, Voss classified the orthogonal 

polygon with holes boundary into the inner or outer boundary based on the relationship 

between the concave and convex vertices in the 2D digital image [41]. 

2.1.2 Decomposition of polygons 

The task of polygon decomposition is to represent a polygon as the union of a number of 

simpler component parts. Polygon decomposition has many theoretical and practical 

applications. For examples, Taussaint employs polygon decomposition as tool for pattern 

recognition [42]; polygon decomposition is also useful for VLSI design, in which the layout 

is represented by a polygon, and one preparation approach for electron-beam lithography is 

by decomposing the polygon region into basic figures [43]. In computational geometry, 

algorithms for problems in general polygons are often more complex than those for restricted 

a b c 

X 

Y 
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types of polygon, such as the rectangle, star shape, or convex polygon. An example of 

polygon decomposition is partitioning an orthogonal polygon into fat rectangles [44].  

Polygon decompositions are classified according to how the component parts interrelate. A 

decomposition is called a partition if it divides a polygon into a set of simpler polygons that 

do not intersect with each other, except on their boundaries. Meanwhile, if overlapping pieces 

are allowed, then the decomposition is called a cover.  

Triangulation is a decomposition operation that decomposes a polygon into a set of non-

overlapping triangles. The triangulation of a polygon results in a set of the diagonals of the 

polygon that divides the polygon into non-overlapping triangles (a polygon with three sides). 

A diagonal is a line segment that connects two vertices of a polygon and lies in the interior of 

the polygon. In a triangulation, diagonals do not intersect with each other, except at their end-

points. The sides of triangles produced by a triangulation are either diagonals, or sides, of the 

triangulation or sides of the original polygon. Every triangulation of an n-vertex convex 

polygon has n-3 diagonals [45]. Furthermore, Berg et al. [3] stated that every polygon admits 

a triangulation, and any triangulation of a polygon with n vertices consists of exactly n-2 

triangles.  

An orthogonal polygon can be partitioned in several ways such as with quadraliteralisation 

and rectangularisation. Quadraliteralisation is the partitioning of a given orthogonal polygon 

into a set of non-overlapping quadrilaterals. The number of quadrilaterals is (n-2)/2, where n 

is the number of vertices on an orthogonal polygon [12]. Meanwhile, rectangularisation is the 

partitioning of an orthogonal polygon into the minimum number of rectangles.  

In some applications, such as in VLSI design, an orthogonal polygon has to be partitioned 

into rectangles. O’Rourke and Tewari proposed a polynomial-time algorithm for partitioning 



20 
 

an orthogonal polygon into fat rectangles, so that the shortest rectangle side is maximised 

over all rectangles [44].  

2.1.3 Optimization issues in the decomposition of polygon 

Many problems in computational geometry are related to the optimisation of some aspect of 

polygons and orthogonal polygons. In most applications, a polygon is decomposed that is 

minimal in some sense. Some applications seek to decompose a polygon into the minimum 

number of some basic components, and other applications seek to decompose a polygon into 

a minimal total length of internal edges. This section will focus on the partitioning problems 

for orthogonal polygons. These issues are relevant in the following chapters of this thesis. 

Rectangle is the most important basic shape to consider in relation to the partitioning of 

orthogonal polygons. One of such issues concerns the partitioning of an orthogonal polygon 

into the minimum number of rectangles.  

The minimum rectangular partition problem, defined for an orthogonal polygon, can be stated 

as follows: given an orthogonal polygon on the plane, find a minimally sized set of non-

overlapping rectangles, such that every rectangle is contained in the orthogonal polygon and 

the union of all rectangles is equal to the original orthogonal polygon. 

Ku and Leong provided a solution for the minimum rectangular partition problem [46]. 

However, their formula and its proof are very complicated. Nguyen simplified the formula 

for a minimum rectangular partition in which a given orthogonal polygon can be minimally 

partitioned into i  c  k +1 rectangles, where i is the number of inflection vertices, c is the 

number of chords and k is the number of holes. A chord is a cutting line that has a reflection 

vertex at its two endpoints [47].  
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Liou, Tan and Lee proposed an O(n log log n) algorithm for minimal rectangular partition of 

an orthogonal polygon, where n is the number of vertices in the polygon [48]. Lopez and 

Mehta proposed an algorithm for decomposing a polygon into a set of non-overlapping L-

shapes and rectangles by using only horizontal cuts. They reported that the algorithm 

has O(n + h log h) time, where n is the number of vertices in the polygon and h is the number 

of H-pairs. Because the parameter h is small in VLSI design, this algorithm is close to linear 

in n in practice [49]. 

2.2 Polyhedron 

2.2.1 Definitions and terminology 

Polyhedron is an extension of the polygon into the three dimensional space. A polyhedron is 

used to represent a solid object. Using a similar approach to the one for defining polygon, our 

definition of polyhedron also starts by defining polyhedron’s boundary known as polyhedral 

surface.  

A polyhedral surface is defined as a finite, connected set of flat polygons or polygons with 

holes, such that every edge of each polygon or polygons with holes belongs also to just one 

other polygon or polygons with holes, with the proviso that the polygons or polygons with 

holes surrounding each vertex form a single circuit (to exclude anomalies such as two 

pyramids with a common apex) [50]. An edge that belongs to exactly two polygons or 

polygons with holes is called two-manifold edge, and a vertex that is the apex of only one 

cone of polygons or polygons with holes is called a two manifold vertex [51]. A cone is 

defined as a three-dimensional geometric shape that tapers smoothly from a base to a point 

called the apex. Hence, a polyhedral surface contains a set of connected polygons or polygons 

with holes that have only two-manifold edges and two-manifold vertices. This kind of surface 
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is called a two-manifold surface. 

The polygons in a polyhedral surface are called faces, and these faces do not cross each other.  

A polyhedron is defined as a subset of the 3-dimensional Euclidean space whose boundary is 

a polyhedral surface [50].  

In addition to faces, a polyhedral surface also contains edges and vertices. In a polyhedral 

surface an edge is a line segment where two or more faces meet, while a vertex is a point 

where three or more edges meet.  

The boundary of a polyhedron divides the space into two regions, one of which, called the 

interior region, is finite, and the other one, which is called the exterior region, is infinite. A 

point is said to be inside a polyhedron if that point is located in the interior region of the 

polyhedron, or on its boundary. A point is said to be outside of a polyhedron if it is not 

located inside the polyhedron. An area is said to be inside a polyhedron if all of its points are 

located inside the polyhedron [50]. 

 

 

 

Figure 2.4: A Multi-shell Polyhedron 

The polyhedral surface in a polyhedron is also called the shell of that polyhedron [36]. A 

multi-shell polyhedron is a solid shape that consists of one large polyhedron and one or more 

smaller polyhedra that are located completely inside the large polyhedron in which these 

smaller polyhedra neither intersect with the large polyhedron, nor intersect with each other, 

nor overlap with each other. Two kinds of boundary exist in a multi-shell polyhedron: the 

The large polyhedron 

The smaller polyhedron 
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inner boundary and the outer boundary. The inner boundary of the multi-shell polyhedron is 

the polyhedral surfaces of all the smaller polyhedra, while the outer boundary is the 

polyhedral surface of the large polyhedron [39]. Figure 2.4 depicts a multi-shell polyhedron. 

It is possible for a solid object to have a surface with edges that are shared by at least two 

faces or with vertices that are the apex of more than one cone of faces. An edge that belongs 

to more than two faces is called a non-manifold edge, and a vertex that is the apex of more 

than one cone of polygons is called a two manifold vertex [51].  

The existence of the non-manifold edges and non-manifold vertices gives rise to another type 

of surface, which is called pseudo-polyhedral surface, that is similar to the polyhedral 

surface, but with some differences. A pseudo-polyhedral surface that is a finite, connected set 

of flat polygons or polygons with holes, such that (a) every edge belongs to at least two 

polygons or polygons with holes, and (b) if any two polygons or polygons with holes meet, 

they meet at a common edge [52]. However, there is a possibility that two polygons or 

polygons with holes meet at a common vertex rather than a common edge. To include this 

scenario, in this thesis, the definition of the pseudo-polyhedral surface is extended by 

modifying condition (b) in the above definition: if two polygons or polygons with holes meet, 

they meet either at a common edge or at a common vertex. With this extended definition, a 

pseudo-polyhedral surface may have non-manifold edges, as well as non-manifold vertices. A 

pseudo-polyhedron is a subset of the 3-dimensional Euclidean space whose boundary is a 

pseudo-polyhedral surface.  

A simple polyhedron is a polyhedron that can be deformed into a solid sphere; that is, a 

polyhedron that, unlike a torus, has no holes [53].  The polyhedron in Figure 2.5 cannot be 

deformed into a solid sphere, therefore it is not a simple polyhedron. A simple polyhedron is 

also called as a polyhedron with genus 0, and it must satisfy Euler’s formula, in which the 
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relationship among the number of vertices v, edges e and faces f must satisfy the following 

equation: v – e + f = 2 [36].  

 

 

Figure 2.5: A Polyhedron has a Hole 

There are two kinds of angles in a polyhedron: facial angles and dihedral angles. Two edges 

incident to a common vertex may be on the same face. In such case, the angle between the 

two edges on the same face is referred to as the facial angle of the face. The dihedral angle is 

the interior angle between two faces meeting at a common edge [54]. Furthermore, 

Wenninger defined that a polyhedron is convex if no dihedral angle is greater than 180 [55],  

otherwise the polyhedron is concave.  

To conclude this sub-section, the following Venn diagram shows the relationship among the 

pseudo-polyhedron class and the other classes in which SP  P  PP and PP  MSP = . 

 

 

 

 

 

Figure 2.6: Relationship between the Pseudo-Polyhedron Class and the other Classes  

 

The meaning of symbols: 
PP : pseudo-polyhedron 
P   : polyhedron 
SP: simple polyhedron 
MSP: multi-shell 
polyhedron 

PP 

P 

SP 

MSP 
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2.2.2 Orthogonal polyhedron 

The focus of this thesis is orthogonal polyhedron and orthogonal pseudo-polyhedron, which 

are used to represent art galleries.  

An orthogonal pseudo-polyhedron is a pseudo-polyhedron in which every edge is parallel to 

one of the three orthogonal directions. In an orthogonal pseudo-polyhedron, a non-manifold 

edge is adjacent to exactly four faces and a non-manifold vertex is the apex of exactly two 

corners [56].  

One of the most widely studied classes of pseudo-polyhedra is the orthogonal polyhedron. 

Tang defined an orthogonal polyhedron as a polyhedron in which every edge is parallel to 

one of the three orthogonal directions [52].  An orthogonal polyhedron is also called isothetic 

polyhedron.  All facial and dihedral angles in an orthogonal polyhedron are either 90 or 

270. 

The following figures show an orthogonal polyhedron and an orthogonal pseudo-polyhedron. 

The shape in Figure 2.7(a) satisfies the definition of a polyhedron, but the shape in Figure 

2.7(b) does not satisfy the condition that every edge is shared by exactly two faces, and this 

shape only satisfies the definition of an orthogonal pseudo-polyhedron. 

 
 
 
 

 
 

    a  b 

Figure 2.7: (a) An Orthogonal Polyhedron, and (b) an Orthogonal Pseudo-Polyhedron 

A multi-shell orthogonal polyhedron is a solid shape that consists of one large orthogonal 

polyhedron and one or more smaller orthogonal polyhedra that are located completely inside 
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the large orthogonal polyhedron in which these smaller orthogonal polyhedra neither intersect 

with the large orthogonal polyhedron, nor intersect with each other, nor overlap over each 

other. 

The degree of a vertex is the number of edges that meet at a vertex of an orthogonal 

polyhedron. If all the vertices have the same degree, the orthogonal polyhedron is regular. A 

rectangular prism is an example of a regular orthogonal polyhedron because each vertex has a 

degree of three. The degree of vertex is useful in determining the label type of each vertex on 

an orthogonal polyhedron.  

As stated above, the edges and faces of an orthogonal polyhedron are oriented in three 

orthogonal directions. Juan-Arinyo noted that the number of incident edges for any vertex in 

an orthogonal polyhedron is either three, four or six [57]. He also gave two possible 

configurations of three edges meeting at a vertex, as well as one configuration for each of 

four and six edges meeting at a vertex as depicted in Figure 2.8.  Vertex v has three edges in 

Figure 2.8 (a) and (b), four edges in Figure 2.8(c), and six edges in Figure 2.8(d).  

 

 

 
Figure 2.8: Number of Faces around a Vertex 

In addition to the above four configurations, Yip and Klette found another two  

configurations for three edges meeting at a vertex as shown in Figure 2.9 [39], where Figure 

2.9(a) has one 270o and two 90o interior dihedral angles, and Figure 2.9(b) has three 270o 

interior dihedral angles. Therefore, there are six vertex configurations on orthogonal 

polyhedra.  
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Figure 2.9: Different Dihedral Angles around a Vertex v 

Orthogonal polyhedra can be grouped based on their degree of vertex. There is a kind of 

orthogonal polyhedra in which every vertex has degree of three and has exactly three 

mutually-perpendicular axis-parallel edges meeting at each vertex [58]. Figure 2.10(a) shows 

an example of an orthogonal polyhedron in which the vertices do not all have a degree of 

three (e.g., vertex v has four edges). Figure 2.10(b) is an orthogonal polyhedron that has the 

degree of three for all its vertices. 

   

 

 

                                            a                                            b 

Figure 2.10:   A Degree-Three and a Non-Degree-Three Orthogonal Polyhedron 

An orthogonal polyhedron is called a simple orthogonal polyhedron if the polyhedron is both 

orthogonal and simple. As with a simple polyhedron, a simple orthogonal polyhedron 

satisfies Euler’s formula, which states that the relationship among the number of vertices v, 

edges e and faces f satisfies the equation: v – e + f = 2. For the f count in the Euler formula, a 

flat polygon in a polyhedral surface can be counted as one face. When dealing with a polygon 

a b 

v v 

v 
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with holes in a polyhedral surface, the polygon with holes requires triangulation. The number 

of triangles in the polygon with holes is counted as the number of faces for the f count in the 

Euler formula. [36]. The following are examples for the f count in the Euler formula for two 

different types of polygon in a polyhedral surface. 

 

 

a) A flat polygon does not require triangulation, therefore f =1 

 

 

 

b) A polygon with a hole requires triangulation, therefore f= 8 

Figure 2.11: The f Count in Euler Formula 

The concept of orthogonal convexity is not only applicable to orthogonal polygons, but it can 

also be extended to orthogonal polyhedra. A simple orthogonal polyhedron is called 

horizontally (vertically, frontally) convex if its intersection with every horizontal (vertical, 

frontal plane is either empty or a single orthogonally convex polygon. Meanwhile, a simple 

orthogonal polyhedron is called orthogonally convex polyhedron if it is horizontally, 

vertically and frontally convex. [59].  

To conclude this sub-section, the following Venn diagram shows the relationship among the 

orthogonal pseudo-polyhedron class with the other classes in which OCP  SOP  OP  

OPP and OPP  OPMS =  

 

 

False True 
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Figure 2.12: Relationship among the Orthogonal Pseudo-Polyhedron Class and other Classes 

2.2.3 Decomposition of polyhedron 

Polyhedron decomposition is a problem of dividing a polyhedron into a set of simpler forms 

of polyhedra, such as tetrahedron (i.e., a pyramid based on a triangle). Sometimes, only 

vertices from the original polyhedron may be used as vertices of the sub-polyhedra. The 

problem of partitioning a polyhedron into a number of tetrahedra is called the 

tetrahedralisation of the polyhedron. Two neighbouring tetrahedra share a face, which is the 

triangle defined by the three shared vertices of the two polyhedra [60]. 

 
Research on tetrahedralisation began in the early twentieth century. It is now known that all 

convex polyhedra are tetrahedralisable, but not all non-convex polyhedra can be 

tetrahedralised [61]. The problem of optimal tetrahedralisation is finding a tetrahedralisation 

of a polyhedron with the minimum number of tetrahedra. Ruppert and Seidel showed that the 

three-dimensional tetrahedralisation problem is significantly more difficult than the two-

dimensional triangulation problem. [62]. They also reported that one difference between the 

two problems lies in the size of the resulting partitions: triangulating every n-sided polygon 

The meaning of symbols: 
OPP : orthogonal pseudo-polyhedron 
OP   : orthogonal polyhedron 
OSP: simple orthogonal polyhedron 
OCP: orthogonally convex polyhedron 
MSOP: multi-shell orthogonal 
polyhedron 

MSOP 

OPP 

OP 
SOP 

OCP 
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produces exactly n-2 triangles, but the number of tetrahedra in a tetrahedralisation of a given 

polyhedron varies. 

For example, a bi-pyramid may be partitioned into two groups A and B, in which each group 

has either two or three tetrahedra (see Figure 2.13 below). 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure. 2.13: Number of Tetrahedra in Different Tetrahedralisations  
 

The problem of finding the minimum tetrahedralisation of a convex polyhedron is known to 

be NP-complete, and the number of tetrahedra from the tetrahedralisation of a convex 

polyhedron can be decreased if Steiner points are allowed [63]. Chen, Hsich and Wang 

presented a genetic algorithm for finding the minimum tetrahedralisation of a convex 

polyhedron. The result showed that the genetic approach obtains the optimum solution for 

point sets for which the optimum is known [64]. 

An orthogonal polyhedron can be partitioned into rectangular prisms. However, the problem 

of finding the minimum rectangular partition of an orthogonal polyhedron where the number 

of resultant rectangular prism is minimal is NP-complete [65], and Stolee reported that the 

scheme used for finding the minimum rectangular partition for an orthogonal polygon cannot 

be applied to solving the minimum rectangular partition problem for an orthogonal 

polyhedron. [66].  
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2.3 Data Representation for Polygons and Polyhedra 

In computational geometry, raw data from a geometric model needs to be stored in computer 

memory in such a way as to make the subsequent computation more efficient. The way data 

are stored is called the data structure [67]. One way to represent an orthogonal polygon or 

orthogonal polyhedron in computer memory is by storing the coordinates of each of its 

vertices. 

2.3.1 Data representation for an orthogonal polygon 

This section will discuss how to represent an orthogonal polygon in computer memory. 

O’Rourke described a method for representing an orthogonal polygon [68] by using the 

vertices of the polygon. This method is discussed below. 

In an orthogonal polygon, each edge has two end vertices, and each vertex is incident to 

exactly one horizontal edge and one vertical edge. For an orthogonal polygon with n vertices, 

the horizontal edges and vertical edges can be constructed as follows. Let v1, v2,..., vm be the 

group of vertices that have the same y-coordinate and are sorted increasingly by the x-

coordinates, then for this group of vertices, a set of edges can be constructed by connecting 

the vertices vi and vi+1, where i is an odd number. Repeat this process for every set of vertices 

with the same y-coordinate until all horizontal edges are obtained. 

To get all vertical edges, repeat the above process by grouping the vertices that have the same 

x-coordinate and sorted them in increasing order by their y-coordinates. By applying this 

method, only one orthogonal polygon can be constructed out of any given set of vertices. For 

example, the vertices v1, v2, v3, v4, v5, and v6 in Figure 2.14 are a group of vertices that have 

the same y-coordinate and are sorted increasingly by x-coordinates. The edges v1v2, v3v4, v5v6 

are constructed by connecting the vertex vi and vi+1 where i ={1,3,5},  
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Figure 2.13: Reconstruction of an Orthogonal Polygon  

2.3.2 Data representation for an orthogonal polyhedron 

Generally speaking, there are two types of data structure for polyhedra, an edge-based and a 

vertex-based data structure. The edge-based data structure uses the edges of a polyhedron as 

the input to construct the polyhedron. The following methods use the edge-based data 

structure: winged-edge [69],  half-edge [70], and quad-edge [71]. Preparata and Shamos 

introduced a standard representation of polyhedra by using doubly-connected edge list and 

vertex coordinates [37] as a variant of the winged-edge method, but this representation 

contains a lot of redundancy when applied to an orthogonal polyhedron. Bournez, Maler and 

Pnueli showed that this representation is ambiguous [72].  

Aquilera and Ayala represented an orthogonal polyhedron by using only extreme vertices 

[73]. Their method requires a lower number of vertices compared with other methods that 

involve all the vertices. An overview of this method is given below. 

As stated by Juan-Arinyo [57], the number of incident edges at any vertex on an orthogonal 

polyhedron can be three, four, or six. Such a vertex is called V3, V4 or V6 type of vertex, 

respectively. V3 means three edges meet at the vertex; the meaning of V4 and V6 are similar. 

X 

Y 

v1 v2 v3 v4 v5 v6 
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A brink is the longest uninterrupted line segment, built out of a sequence of collinear and 

contiguous edges from an orthogonal polyhedron. In an orthogonal polyhedron, every edge 

belongs to a brink and each brink contains at least one edge. A vertex in a brink can be V3, 

V4 or V6 type, but the two ending vertices of a brink is always V3 type. V4 and V6 types of 

vertices may only appear as interior vertices of a brink. An ending vertex of a brink in an 

orthogonal polyhedron is called extreme vertex.  

The extreme vertices model (EVM), which was proposed by Aquilera and Ayala [73] 

represents an orthogonal polyhedron only using its extreme vertices. The extreme vertex is 

stored in array data structure known as the EVM array. Each element of the EVM array 

contains coordinates of a single extreme vertex. The array elements in an EVM array can be 

sorted lexicographically with the order <a,b,c>, where x is the coordinated in Axis A, y is the 

coordinate in Axis B, and z is the coordinate in Axis C. The resulting array is called ABC-

sorted EVM array. 

For example, let va = (xa, ya, za) and vb = (xb, yb, zb) be two vertices, the YZX-sorting use the 

following rule: 

 va<vb if and only if 
  Either va < vb 
  Or va = vb and za < zb 
  Or va = vb and za = zb and xa < xb 

The resulting array is called YZX-sorted EVM array. 

Depending on the order of the three Cartesian coordinates in the sorting, an EVM array can 

be sorted into the following six orders. They are  XYZ-sorted, XZY-sorted, YXZ-sorted, 

YZX-sorted, ZXY-sorted and ZYX.  

A plane of vertices of an orthogonal polyhedron is the set of extreme vertices lying on a plane 

perpendicular to one of the three axes. There are three directions of plane of vertices. They 
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are XY-plane, XZ-plane and YZ-plane of vertices. For generality, they are written as AB-

plane of vertices where A and B represent two axes. An AB-plane of vertices consists of all 

vertices of the orthogonal polyhedron lying on the same plane that is parallel to both axis A 

and axis B. These vertices have the same coordinate in the C-axis (the axis other than A or 

B). For example, an XY-plane of vertices consists of all vertices of the orthogonal 

polyhedron with the same Z coordinate. 

In an ABC-sorted EVM array, the sequence of vertices can be viewed as a list of pairs of 

vertices starting from the first vertex in the array. The two vertices in each pair have the same 

coordinate values in the A-axis and the B-axis, but different coordinate values in the C-axis. 

These two vertices are actually the two end vertices of the same brink that parallel to the C-

axis. Furthermore, the set of pairs of vertices in this ABC-sorted EVM array represents all 

brinks in the orthogonal polyhedron that are parallel to the C-axis. 

The above method can be used to find all brinks that are parallel to Z-axis by sorting the 

EVM array into XYZ-sorted. The set of brinks parallel to Y-axis can be obtained by sorting 

the EVM array into XZY-sorted. Similarly the set of brinks parallel to the X-axis can be 

obtained by sorting the EVM array into YZX-sorted. 

As the size of any ABC-sorted EVM array is same as that of the original EVM array, it is 

obvious that the number of brinks in an orthogonal polyhedron that are parallel to each of the 

three axes is the same, i.e., it is always a half of the extreme vertices.  

Figure 2.15(a) is an example of a solid orthogonal polyhedron object. This object is 

represented by coordinates of its extreme vertices that may be inputted in any order, and the 

object can be reconstructed perfectly by the above EVM method. Figure 2.15(b) shows the 

order of the XYZ-sorted extreme vertices that were sorted by the x-coordinate first, followed 

by y-coordinate, and then followed by z-coordinate. By connecting the two extreme vertices 
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in each pair, all vertical brinks (hence all vertical edges) would be reconstructed. The same 

procedure can be used to reconstruct all horizontal edges (parallel to the X-axis) and all back-

front edges (parallel to Y-axis).   

 

 

 

 
 

Figure 2.15:  Reconstruction of Orthogonal Polyhedron 
 

The concept of extreme vertices model in orthogonal polyhedron can be extended to 

orthogonal pseudo-polyhedron [56].  

Representing an orthogonal polyhedron by its extreme vertices is better than representing it 

with all vertices. First, the number extreme vertices is smaller than the number of vertices for 

any orthogonal polyhedron, hence the EVM method requires less input data and therefore less 

memory requirement. Second, the coordinates of non-extreme vertices can be obtained from 

the intersection points of brinks.   

2.3.3 Data structure for a polyhedron 

A polyhedron can be represented by a collection of vertices, edges and facets, and this data 

structure is called star-edge representation [74], where a facet is a terminology for a face. 

Bajaj and Dey proposed the similar data structure to the star-edge representation [75]. The 

star-edge representation uses the following four components. 
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a. Vertex 

A vertex is the corner of a polyhedron in which three or more faces intersect at the 

corner. Each vertex will be represented by two fields: the coordinates of the vertex, 

which is the position of the vertex in the three-dimensional Cartesians system; and the 

adjacent edges, which contain pointers to the edges incident to the vertex. 

b. Edge 

An edge is a line segment that connects two vertices and has two adjacent faces. Each 

edge is represented by fields: adjacent vertices, which contain pointers to the two end 

vertices, and edge orientation, which contains pointers to the structure that is called 

Orientededges. 

c. Orientededges 

The orientation of an edge on a facet f is such that a traversal of the oriented edge has 

facet f to its right. The orientation of an edge is recognized by several fields: edge; 

facet, which contains pointer to the facet on which the orientededge is incident; 

orientation, which contains information of the orientation of the edge on the facet; 

and nextorientededge, which contains pointer to the next orientededge on the oriented 

edge cycle of a facet as described below. 

d. Facet  

A facet is a polygon in a polyhedron surface. Each facet has two fields. They are the 

facet equation, which contains the equation of the plane on which the facet lies, and 

the facet cycle, which contains the oriented cycle bounding the facet. The traversal of 

the oriented edge cycle always has the facet to the right. 

Polyhedron in Figure 2.16 consists of six vertices, nine edges, and five facets. The facet f1 has 

the oriented edge cycle as e2, e5, e6, and e7. The edge e2 has v2 and v3 as its ending vertices 

and f1 as one of its incident facets. 
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Figure 2.16: Facet f1 is in the Right Side Oriented Edge Cycle 
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CHAPTER 3 

VERTEX CONFIGURATIONS OF ORTHOGONAL  
PSEUDO-POLYHEDRA 

 
 

3.1 Introduction 

This chapter focused on vertex configuration in orthogonal pseudo-polyhedra (OPP). The 

chapter will present the following results: first, it will be shown that there are no more than 

16 different vertex configurations for any orthogonal pseudo-polyhedra. Second, a method 

for decomposing an orthogonal pseudo-polyhedron into a set of rectangular prism is 

described, and it will be proved that for any OPP, there exists a set of rectangular prisms such 

that the OPP can be constructed by combining these rectangular prisms together. Finally, a 

conjecture is presented that describe a quantitative relationship between the numbers of 

vertices of different vertex configurations in any OPP. 

The main contributions of this chapter are: a new way to represent a vertex configuration in 

orthogonal pseudo-polyhedra and a vertex configuration conjecture. Understanding the vertex 

configurations in OPP and their relationship among each other could provide insight into the 

structure of an OPP and be useful when designing algorithms for many 3-dimensional (3D) 

geometrical problems.   

This chapter is organized into several sections. Section 3.2 gives definitions and terminology 

that are useful for discussing the topic of vertex configurations. Section 3.3 shows a proof 

that there are no more than 16 vertex configurations for any OPP. Section 3.4 provide an 

overview a technique for decomposing an OPP into a set of rectangular prisms. This section 

also demonstrates joining operations between various OPPs with a rectangular prism. Section 
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3.5 presents a formula to show the relationship among the number of each type of vertices in 

any OPP and gives some evidences for this formula.  Finally, the last section will identify the 

dual vertex of each vertex configuration in multi-shell OPPs. 

 
3.2 Vertex Configuration 

Recall that an orthogonal pseudo-polyhedron (OPP) is a pseudo polyhedron in which every 

edge is parallel to one of the three orthogonal directions. In many practical applications, an 

OPP provides a simple yet effective approximation to many important geometrical objects. 

The use of an OPP arises frequently in practice, such as creating models of buildings that are 

largely orthogonal shaped. Even though it was stated in the previous chapter that orthogonal 

polyhedra are used to represent art galleries, in fact, not all galleries can be represented by 

orthogonal polyhedra, such as a gallery that has edges from four walls. Therefore, an 

orthogonal pseudo-polyhedron (OPP) is often required for such situation. 

Like its sub-class, orthogonal polyhedron, an OPP has many applications in such areas as 

connected component labeling [76] and pattern analysis in digital images and VLSI layout 

[39]. Often they are studied with respect to partitioning problems [56] and visibility problem 

[77]. 

In an orthogonal polyhedron, any two adjacent faces form an interior dihedral angle and there 

are only two possible values for such a dihedral angle. Recall that either the angle is  90, 

which is called the convex dihedral angle, or the angle is  270, which is called concave 

dihedral angle.  However, in an OPP, two adjacent faces may not always be capable of 

forming a dihedral angle due to the presence of a non-manifold edge or non-manifold vertex.  

The vertex configuration of a vertex is defined by the number of adjacent edges, concave 

dihedral angles, and non-manifold components meeting at that vertex. Each type of vertex 
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configuration is represented by a unique label. For example, the vertex configuration, which has 

five edges, four concave dihedral angles, one non-manifold edge, and which is not non-

manifold vertex, is labelled V54-10. For any manifold vertex, its label can be shortened to 

three digits. For instance, the aforementioned vertex can also be labelled as V54-1 instead of 

V54-10. 

As examples, vertex v1 in Figure 3.1(a) has four edges meet at the vertex, one concave 

dihedral angle, and two non-manifold edges; hence, the vertex configuration of v1 is labelled 

V41-2. Vertex v2 in Figure 3.1(b) has six edges meet at the vertex, three concave dihedral 

angles, and zero non-manifold edges; hence, the vertex configuration of v2 is labelled V63-0 

or V63. 

 

 

 

Figure 3.1: Two Different Vertex Configurations 

Special for orthogonal polyhedra, Yip and Klette reported that there are only six different 

types of vertex configurations [39]. They also stated and proved a formula about count of 

these types of vertex in orthogonal polyhedra. However, very little is known about vertex 

configurations in OPP and their relationship with each other. 

3.3 The Number of Different Vertex Configurations in any OPP 

In this section it will be proved that there are no more than 16 different vertex configurations 

for any OPP. In order to prove the theorem, some terms and concepts need to be introduced 

first.  A cube is the simplest OPP. Two OPPs are said to be congruent if both OPPs can be 

v1 v2 

a b 
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oriented in such a way that they have the same shape and the same size. Imagine that a cube 

is divided into eight congruent cubes c1, c2, ..., c8. The following are terminology for 

relationship among cubes: (i) A cube c1 is adjacent to another cube c2, if c1 and c2 share one 

face (see Figure 3.2 (a)). (ii) c1 is diagonally adjacent to c2 if they share one edge (see Figure 

3.2 (b)). (iii) Two cubes are said to be an interstitial cubes if they only share one vertex (see 

Figure 3.2 (c)). (iv) Three cubes c1, c2, c3 are said to be 3-consecutive cubes if a cube is 

adjacent to two other cubes and all three cubes share one common edge (see Figure 3.2 (d)). 

(v) Four cubes c1, c2, c3, c4 are said to be 4-consecutive cubes if each cube is adjacent to two 

other cubes and all four cubes share one common edge (see Figure 3.2 (e)).   

 

 

 

Figure 3.2: Relative Position of Cubes: Adjacent (a), Diagonally Adjacent (b), 

 Interstitial Cubes (c), 3-Consecutive Cubes (d), and 4-Consecutive Cubes (e) 

Several premises, PR1, PR2, PR3, PR4, and PR5 are made to describe similarities between 

two OPPs. The premises and their proof are listed as follows: 

Premise PR1:  Two adjacent cubes are congruent with any two other adjacent cubes. 

Premise PR2: Two diagonally adjacent cubes are congruent with any two other diagonally 

adjacent cubes. 

Premise PR3: Two interstitial cubes are congruent with any other two interstitial cubes. 

Premise PR4:  3-consecutive cubes are congruent with any other 3-consecutive cubes. 

Premise PR5: 4-consecutive cubes are congruent with any other 4-consecutive cubes. 

The validity of the above five premises are obvious. For example, given any two 3-

consecutive cubes, P1 and P2, no matter how they are positioned in the 3D space initially, no 

a b c d e 
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c1 c2 
c1 c1 

c3 c2 
c1 

c2 c3 c4 



42 
 

matter how they are positioned in the 3D space initially, one can always re-orient one of the 

two, so that both look the same (and also have the same size). 

In an OPP, each edge is parallel to one of the three orthogonal directions. Therefore, for each 

vertex in an OPP, there are at most six distinct incident edges. At the same time, there must 

be at least three incident edges for each vertex to be 3D. Hence the number of incident edges 

of any OPP vertex ranges from three to six. In this thesis, an OPP vertex with n incident 

edges is denoted as Vn (n = 3, 4, 5, 6), and from now on, these vertices are referred to as V3, 

V4, V5, and V6, respectively.  

For a given number of edges, a vertex in an OPP vertex may have one of several possible 

vertex configurations depending on the way the faces are formed by edges incident to the 

vertex. However, we will show that the number of different vertex configurations in any OPP 

is no more than 16. 

Imagine that a cubical frame is divided into eight congruent smaller cubical frames and an 

OPP can be constructed by occupying the cubical frames with, at most, eight congruent cubes 

that are also congruent with the smaller cubical frames.  The number of ways that the cubes 

occupy the cubical frames is 255, which is counted by the formula: 28- 1, where 8 is the 

number of cubical frames that will be occupied by the cubes, 2 is the number of possibility of 

each frame to be occupied, and 1 is a the number of possibility for the frame having null 

cubes.   

Each resulting OPP at the cubical frame has a number of vertices. A different vertex 

configuration is counted from the most shared vertex in an OPP. The total number of 

different vertex configurations is stated in the following theorem. 

Theorem 3.1:  There are no more than 16 vertex configurations in any OPP 
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Proof :Let B be a cubical frame that can be composed of eight smaller cubical frames of the 

same size, f1, f2, …, f8, and let c1, c2, ..., c8 be a set of cubes that will occupy the frames in B. 

Those smaller frames are grouped into a bottom layer and top layer. The members of the 

layer group are f1, f2, f3, and f4; meanwhile, the members of the top layer are f5, f6, f7, f8. An 

OPP is constructed by putting a number of cubes ranges from one to eight into B. 

By using the above definitions and premises, then the total number of possible shapes of OPP 

can be detected without missing possible shapes. The possible shapes of OPP are listed in 

Table 3.1. Two OPPs are of similar shape and satisfy one of the above premises.  

Table 3.1: Constructing OPPs Using at most Eight Cubes 

N Illustrations Description NSS 

1.  

 

All frames are empty 1 

2.  A frame is occupied by a cube. 8 

3.  Two frames are occupied by two adjacent cubes. 12 

4.  Two frames are occupied by two diagonally adjacent cubes 12 

5.  Two frames are occupied by two interstitial cubes 4 

6.  Three frames are occupied by 3-consecutive cubes. 24 

7.  Two adjacent cubes share an edge with a cube. 24 

8.  Two edges of two diagonally cubes meet with an edge of a 
cube. 

8 

9  The middle cube of 3-consecutive cubes shares a face with a 
cube. 

8 

10  An end cube of 3-consecutive cubes shares a face with a cube. 24 

11.  A shared vertex of 3-consecutive cubes shares a vertex of 
another cube. 

24 

12.  Two diagonally adjacent cubes share vertices and edges. 2 
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NOTE : N  ROW NUMBER; NSS NUMBER OF SIMILAR SHAPES 

 

Table 3.1 shows how all possibilities of, at most, eight cubes occupy a cubical frame that is 

divided into eight cubical frames; the total number of shapes is 255, and they are distributed 

in 22 different shapes and sizes of OPP. The simplification is made by grouping them based 

on their similarity, in which two similar OPPs are grouped together, and they represent one 

kind of OPP. Two OPPs are called similar shapes if both of them have the same number of 

vertices and a similar vertex configuration.  For example, the OPPs at rows 2, 3, 13, and 22 in 

Table 3.1 have the same number of vertices and the same vertex configuration; hence, they 

are grouped together as the same shape. The total possible shapes of OPPs are grouped in 

Table 3.2. 

13.  4-consecutive cubes occupy four frames. 6 

14.  Two diagonally adjacent cubes share faces 6 

15.  3-consecutive cubes share a face with diagonally adjacent 
cubes 

8 

16.  An ending face of  3-consecutive cubes shares a face with an 
adjacent cubes 

24 

17.  4-consecutive cubes share a face with a cube 24 

18.  4-consecutive cubes share two face with 2-adjacent cubes. 12 

19.  3-consecutive cubes share a face with 2-diagonally adjacent 
cubes 

12 

20.  3-consecutive cubes share a vertex with another 3-consecuteve 
cubes 

4 

21.  3-consecutive cubes are combined with 4-consecutive cubes. 8 

22.  Two 4-consecutive cubes occupy the whole frame. 1 

  Total number of possible shapes 255 
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Table 3.2: Grouping of OPPs 

Group 
Number 

OPPs’ Row in 
Table 3.1 

Group 
Number 

OPPs’ 
Row in 
Table 
3.1 

Group 
Number 

OPPs’ 
Row in 
Table 
3.1 

Group 
Number 

OPPs’ 
Row in 
Table 
3.1 

1. 2,3,13,22 5. 8 9. 4,5,15 13. 10 

2. 7,19 6. 12 10. 20 14. 16 

3. 18 7. 11 11. 9 15. 21 

4. 22 8. 17 12. 14 16. 6 

 
 

To conclude, there are no more than 16 different shapes of OPP that can be constructed by 

arranging up to eight identical cubes in the way described above.  Each OPP is counted 

having as one unique type of vertex configuration that is determined by the vertices that have 

the most shared vertex by edges in the OPP. Each the most shared vertex has a unique vertex 

configuration; therefore, there are no more than16 kinds of vertex configuration in any 

orthogonal polyhedra. � 

The 16 kinds of vertex configurations can be organized based on their degree of vertices. 

There are four groups of vertices namely V3, V4, V5, and V6. Each vertex configuration 

belongs to a group of vertices. 

An OPP vertex with three edges (V3) has four possible configurations. Every vertex is two-

manifold vertex and every edge is two-manifold edge. The four vertex configurations of V3 

are illustrated in Figure 3.3. 
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Figure 3.3: Four Possible Vertex Configuration for V3 
 

An OPP vertex with four edges (V4) has four possible configurations, only one of which has 

no non-manifold edges. The four vertex configurations of V4 are illustrated in Figure 3.4.  

 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Four Possible Vertex Configurations for V4 

 

Meanwhile, an OPP vertex with five edges (V5) has two possible vertex configurations, and 

both of them have non-manifold edges. The two vertex configurations for V5 are illustrated 

in Figure 3.5. 

 
 
 
 
 

Figure 3.5:  Two Possible Vertex Configurations for V5 

Any OPP vertex with six edges (V6) has six possible configurations. One of them has no 

non-manifold edges or non-manifold vertices. Three of them have non-manifold edges but 

not non-manifold vertex. Two of them have a non-manifold vertex but not a non-manifold 

edge. All vertex configurations for V6 are shown in Figure 3.6.  

V40-1 
V41-2 

V42-0 V43-1 

V50-1 V54-1 

V30 

V32 V33 

V31 



47 
 

 

 
 
 
 
 

 
 
 
 

Figure 3.6: Six Possible Vertex Configurations for V6 

3.4  Constructing Orthogonal Pseudo-Polyhedra 

Is there any relationship among the vertex configurations of an OPP? This question may arise 

after identifying all the vertex configurations. The relationship can be shown with a formula, 

which is satisfied by different shapes of OPPs. To show a relationship among the vertex 

configuration of an OPP, it is initially based on a hypothesis that each OPP can be 

constructed from a set of rectangular prisms. 

To verify the hypothesis, it is started with a statement that any OPP can be decomposed into a 

set of rectangular prism. This statement come from a work of Ayala and Rodriquez in which 

they proposed an algorithm to decompose an OPP that is represented by its extreme vertices 

into a particular set of disjoint boxes [76]. There are two steps to obtain the disjoint boxes 

from an OPP. First, split the data at every plane of vertices perpendicular to a main axis 

obtaining a set of slices. Second, split each slice at every plane of vertices perpendicular to 

another main axis obtaining a set of boxes for each slice. An OPP can be decomposed into six 

different set of boxes depending on the axes that is chosen to split the OPP. They are XY, 

YX, YZ, ZY, XZ, and ZX. The meaning of XY decomposition is OPP is split into a set of 

boxes by slicing on the plane of vertices that perpendicular to x-axis first, and split each slice 

on the plane of vertices that perpendicular to y-axis. Therefore, the number of boxes may not 

be unique.  Figure 3.7 is an example of decomposition an OPP. 

V63-3 V60-01 

V60-3 V60-6 V63-0 

V66-0 
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Figure 3.7: (a) An OPP. (b) XY Decomposition (4 boxes). (c) YX Decomposition (5 boxes) 

Logically, if an object can be decomposed into a set of smaller objects then the object should 

be able to be constructed by the set of smaller objects. This section will show how to 

construct an OPP from a set of rectangular prisms.      

3.4.1 Joining operations 

A joining operation is an operation to construct an OPP from a smaller OPP and a rectangular 

prism. A smaller OPP is an OPP in which its volume is less than another OPP. Therefore, 

each operation contains two operands, namely a smaller OPP and a rectangular prism.  The 

location of the smaller OPP and the location of the rectangular prism are significant in joining 

operations. 

Both of an OPP and a rectangular prism are joined at their properties. The properties of them 

are vertices, edges, and faces. After joining properties of an OPP and a rectangular prism, 

then the two joined properties will form a new format, or both of them are lost. Table 3.3 

shows examples of how an OPP P and a rectangular prism R are joined. 

 

 

X 
Y 

Z 

 

 

a) b) c) 
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Table 3.3: Joining Operation on an OPP 

Operation 
Number 

Description Illustration 

1. Only a V30 vertex on P is joined with a V30 
vertex on R. They gain a new V60-0 vertex. 

 

 

2. A V30 vertex on P is joined with a V30 vertex R, 
in the way shown in diagram on the right. The 
two vertices are combined to form one V50-1. 

 

3. A V30 vertex, two edges and one face on P are 
joined with a V30 vertex, two edges and one face 
on R. After joining, both V30 vertices are lost.  

 

5. A V50-1 vertex on P is joined with a V30 vertex 
on R. They gain a new V60-3 vertex.  

 

 
 
 
To produce the complete possible results of joining two properties, a procedure is introduced. 

The inputs of this procedure are a set of properties of an OPP and a set of properties of a 

rectangular prism. The properties of the orthogonal polyhedron are 16 kinds of vertex 

configurations, edge, point in edge, face, and point in face. Meanwhile, the properties of the 

rectangular prism are identified as the V30 vertex, edge, and face. 

To get the complete possible result of joining two properties, the joining operation is 

performed in a tree diagram. The tree contains root and children. The root of the tree is a 

rectangular prism, and the rectangular prism is regarded as an OPP. Some children become 

roots of a sub-tree, and some of them become leaves. The OPP in a root of a sub-tree contains 

at least two rectangular prisms and at most seven rectangular prisms. A child of a root is 

created by joining the OPP in a root with a rectangular prism, and the joining process is 

continued until the whole rectangular frames in B are occupied by rectangular prisms. Once 

the OPP contains eight rectangular prisms, then the OPP becomes a leaf. If all leaves are 

found then the tree diagram construction is finished.    
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As shown in Figure 3.8, each node contains an OPP. The nodes also show the part of OPPs 

that are joined with the properties of a rectangular prism. If the joining process creates a new 

vertex configuration, then the new OPP is labeled with the new created vertex configuration. 

Each label of the node has two parts, the joining process number and vertex configuration on 

the joined part. To avoid repetition, some nodes are provided with a pointer to the appropriate 

node. However, if the joining process does not form any kind of vertex configuration, then 

the new orthogonal polyhedron is labeled as follows:  

(i) F-V30 

The OPP is labeled as F-V30 if each vertex is a V30 vertex. 

(ii) F-V31 

The OPP is labeled as F-V31 if two vertices are V31 vertices, and the rest are V30 

vertices. 

(iii) F-V501 

The OPP is labeled as F-V501 if two vertices are V50-1 vertices, and the rest are 

V30 vertices. 
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Figure 3.8:  A tree Diagram of Vertex Configurations 

1: V60-10 

4: V40-1 8: V40-1 : 4 

11: V41-2 

12: F-V501 

13: V42 
14: V41-2 

. 

- 

- 

15: V60-6 
16: V63 

2: V50-1 

10: V32 : 21 
7: V31 

6: V40-1 : 4 

9: V31 : 7 

17: V42 :13 

18: F-V30 :3 19: V63 : 16 
20: V41-2 : 11 

21: V32 

22: V43-1 

23: V63-3 

24: V43-1 : 22 

5: V60-3 

25: V43-1 : 22 

26: V43-1 : 22 27: V32 : 39 

28: V32 

29: V63-3 : 23 

30: V32 : 21 

31: F- V31 

32: V54-1 33: F-V31 

34: V66-0 

35: V54-1 : 32 

36: V54-1: 32 

37: V54-1 : 32 

38: V54-1 : 32 

39: V33 

3: F-V31 

Rectangular Prism 

42: F-V30 

40: V33 : 42 

41: V33 : 39 
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Theorem 3.2: For any OPP, there exists a set of rectangular prisms such that the OPP can be 

constructed by combining these rectangular prisms together. 

Proof: Ayala and Rodriquez has shown that any OPP P can be decomposed into a set of 

rectangular prisms [76], so we can compose reversely all rectangular prisms to construct P. 

The task to compose P from a set of rectangular prisms comes from the definition that two 

rectangular prisms are joined if they share at least one corner point and that two corner points 

are a share point if they have the same coordinate. Therefore, an OPP is obtained by joining a 

rectangular prism with a smaller OPP that has at least one shared corner points. This task is 

carried out repeatedly until P is achieved. � 

3.5 The Vertex Configuration Conjecture 

Recall that Voss classified the orthogonal polygon boundary into the inner or outer boundary 

based on the relationship between concave and convex vertices in a two-dimensional digital 

image [41]. Yip and Klette mentioned that an orthogonal polyhedron may also have an outer 

boundary as well as an inner boundary [39] if the orthogonal polyhedron has a hole inside.  

For a simple orthogonal polyhedron where there is only an outer boundary, Yip and Klette 

[39] established a formula that the relationship among the different vertex configurations  in 

an orthogonal polyhedron can be characterized by the following formula: (HA+HG) –

(HC+HE) – 2(HD1+HD2) =8, where HA, HG, HC, HE, HD1, and HD2 denote the number 

of  V30, V33, V31, V32, V42-0, and V63-0 types of vertices in the orthogonal polyhedron 

respectively. They also proved that for an orthogonal polygon, the relationship between the 

number convex vertex (HC) and reflect vertices (HR) is:  HC  HR = 4. 

The first formula is useful for analyzing the boundaries of simple orthogonal polyhedra. The 

second formula can be used to analyze polygonal boundary. Yep and Klette suggested that 

the first formula can be used in 3D pattern analysis by providing a necessary condition for 
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having traced a complete 3D surface of a simple orthogonal polyhedron [39]. 

A digital image on 3D may have an OPP representation. After introducing the vertex 

configurations, it is time now to conjecture the vertex configurations relationship of an OPP.  

Vertex Configuration Conjecture :  Let NV30, NV31, NV32, NV33 PV401, NV412, NV420, NV431, NV501, 

NV541, NV600, NV603, NV606, NV630, NV633, and NV660 denote the number of vertex V30, V31, V32, 

V33, V40-1, V41-2, V42-0,V43-1, V50 and V54-1, V60 -01, V60-3, V60-6, V63-0, V63-3, 

and  V66-0 respectively in an OPP. The relationship among the number of each type of 

vertices is: 

(NV30 + NV33 + 0NV412 + NV431+   2NV541+ 6NV606 + 3NV633 + 2NV660) – (NV31+ NV32 + 3NV401 + 

2NV420 + 2NV501 + NV603 + 6NV600 + 2NV630) = 8 

The following is a number of evidences to show that there is a good chance the conjecture is 

right. 

1. It is proven in Theorem 3.2 that for any OPP, there exists a set of rectangular prisms such 

that the OPP can be constructed by combining these rectangular prisms together. The 

process starts with marking the first rectangular prism in the sequence as the OPP. It has 

exactly eight V30 vertices, and no others kind of vertices. In the next step, a next 

rectangular prism is added to the OPP. Assume that the OPP is congruent with the 

rectangular prism. After combining the OPP and the rectangular prism at their face  the 

whole of a face of the OPP replaces the whole of a face of the rectangular prism  then a 

new rectangular prism is formed. The new OPP is not congruent with the previous OPP 

or rectangular prism; however, the new OPP still has eight vertices, and all of them are 

V30-vertex. Therefore, for this case the conjecture is valid.  
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2. The conjecture is also true for some OPPs, as shown in Table 3.4. Each OPP only 

contains several types of vertex configurations, and the number of the other vertex 

configurations is null. The vertex configuration relationship for each OPP is obtained by 

determining the relationship between the number of each vertex type at n-term of the 

arithmetic sequence. For example, OPP at Row 1 has two kinds of vertices, the V30 

vertex and the V60-1 vertex. The n-term of the arithmetic sequence for the V30 vertex is 

given by Sn = 6n + 2; meanwhile, the arithmetic sequence for the V60-1 vertex is given 

by  Sn = a + (n 1)b ,where a is the first term value and b is the different value between 

two contiguous terms [78]. The relationship between these kinds of vertices can be 

written as 6n+2 = 6(n-1) + 8, or in terms of number of each vertex, it can be written as 

NV30  6NV60-1 = 8. Therefore, the conjecture is valid. 

 

Table 3.4: Relationship among the Vertex Configurations on Simpler OPPs 

No Involved 
Vertices 

Illustrations Variable 
Number 
Vertex 

Number of Vertex 
Configurations in 
Sequence 

Vertex Configuration 
Relationship 

S1 S2 S3 ... Sn 
          
1 V30,  

 
 

NV30 8 14 20 ... 6n+2 6n+2 -6(n-1) = 8 
 
NV30- 6NV60-01 = 8 

V60-01 NV60-01 0 1 2 ... n-1 

 
2 V30  

 
 

NV30 8 12 16 ... 4n + 4 4n+4 – 2(2n-2)=8  
NV30 – 2NV50-1 = 8 V50-1 NV50-1 0 2 4 ... 2n-2 

 
3 V30  

 
 

NV30 8 8 8 ... 8 8=8  
NV30 = 8 

 
4 V30  NV30 8 13 18 ... 5n+3 5n+3 -3(n-1)-2(n-1) 

=8  
NV30 – 3NV40-1 – 2NV50-

1  = 8 

V40-1 NV40-1 0 1 2 ... n-1 

V50-1 NV50-1 0 1 2 ... n-1 

 
 
5 V30  NV30 12 15 18 ... 3n + 9 3n+9 -2(n+1)-(n-1)=8 

... 

... 

... 

... 
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... 

... 

V50-1 NV50-1 2 3 4 ... n+1  
NV30 – 2NV50-1 – NV60-3 
= 8 
 

V60-3 NV60-3 0 1 2 ... n-1 

 
9 V30  

  
 

NV30 8 10 12 ... 2n+6 2n+6 –(2n-2) = 8 
NV30-NV31=8 
 

 V31 NV31 0 2 4 ... 2n-2 

 
10 V30  NV30 8 11 14 … 3n+5 3n+5 –(2n-2) – (n-1) 

= 8 
NV30-NV31-2NV3=8 

 V31 NV31 0 2 4 … 2n-2 
 V32 NV32 0 1 2 ... n-1 
 
11 V30  NV30 13 20 27 ... 8n+5 8n+5 – 1 – 2(4n-2) =8 

 
NV30 + 0NV41-2 – NV31 – 
2NV50-1 = 8 

 V31 NV31 1 1 1 ... 1 
 V50-1 NV50-1 2 6 10 ... 4n -2 
 V41-2  NV41-2 1 3 5 ... 2n-1 
 
13 V30  NV30 8 12 16 … 4n+4 4n+4 –(2n-2) –2(n-

1)=8  
NV30 - NV31 – NV42 = 8 
 

V31 NV31 0 2 4 ... 2n-2 
V42 NV42 0 1 2 ... n-1 

 
 
15 V30  NV30 12 14 16 … 2n+10 2n+10  +6(n-1) -2(4n-

2) = 8 NV30 + 6NV60-6 
– 2NV50-1 = 8 

V50-1 NV50-1 2 6 10 ... 4n-2 
V60-6 NV60-6 0 1 2 ... n-1 

 
16 V30  NV30 13 21 29 ... 8n+5 8n+5 - (4n-1) -2(2n-1) 

=8   
NV30 – NV31 – 2NV63 = 
8 

 V31 NV31 3 7 11 ... 4n-1 
 V63 NV63 1 3 5 ... 2n-1 

  
22 V30  NV30 12 18 24 ... 6n+6 6n+6 + (2n-1) –(4n-1) 

2(2n-1) = 8  
NV30 + NV43-1 – NV31 – 
2NV50-1 

 V50-1 NV50-1 1 3 5 ... 2n-1 
 V31 NV31 3 7 11 ... 4n-1 
 V43-1 NV43-1 1 3 5 ... 2n-1 
 
23 V30  NV30 14 19 24 ... 5n+9 5n+9+(2n-1) -3n – 

2(4n-1) = 8  
NV30 + 3NV63-3 – NV31 – 
2NV50-1 = 8 

 V31 NV31 3 6 11 ... 3n 
 V50-1 NV50-1 3 7 9 ... 4n-1 
 V63-3 NV63-3 1 3 5 ... 2n-1 
 
32 V30  NV30 10 12 14 ... 2n+8 2n+8 + 2(n-1) -2n -

2(n-1) = 8  
NV30 + 2NV54-1 – NV31 – 
2NV50-1 = 8 

 V31 NV31 2 4 6 ... 2n 
 V50-1 NV50-1 0 1 2 ... n-1 
 V54-1 NV54-1 0 1 2 ... n-1 
 
 

... 

... 

... 

... 

... 

... 

... 

... 
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34 V30  NV30 10 12 14 ... 2n+8 2n+8 + 2(n-1) –(4n-
2)=8  NV30 + 2NV66-0 
- NV31=8 
 

 V31 NV31 2 6 10 ... 4n-2 
 V66-0 NV66-0 0 1 2 ... n-1 

 
 
39 V30  NV30 10 12 14 … 2n+8 2n+8 + (2n-1) –(4n-1) 

 
NV30 + NV33- NV31  = 8 

 V31 NV31 3 7 11 … 4n-1 
 V33 NV33 1 3 5 … 2n-1 
          
 

 

3. There exists a consistent way to show the validity of the conjecture in the joining process 

of OPPs with a rectangular prism in the tree diagram in Figure 3.8.  

Let P1 be an OPP and P2 be a rectangular prism in Figure 3.8, and let R = (NV30 + NV33 + 

0NV412 + NV431+   2NV541+ 6NV606 + 3NV633 + 2NV660) – (NV31+ NV32 + 3NV401 + 2NV420 + 

2NV501 + NV603 + 6NV600 + 2NV630). Before a joining operation, R has a value of 16. The 

rest of this section will show that after the joining operation, R will have value of 8. 

In a joining process, a set property of P1 meets correspondently a set property of P2. 

Because of the meeting, some properties will be lost, and others will change type. 

Therefore, the value of R will change. For example, if the V30 vertex and two of its 

incident edges of P1 meet with the V30 vertex and two incident edges of P2, then the 

two V30 vertices will be lost, and the value of R will decrease by 2. Another example is 

if the V30 vertex meets with a point on a line and each adjacent surface of each property 

coincides with each other, then the V30 vertex will be lost. Instead, they are replaced by 

a V31 vertex, and the value of R will decrease by 2. The difference between the R value 

and its value after increasing or decreasing due to the joining of two properties of P1 and 

P2 is symbolized with R. 

... 

... 
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To calculate R, the nodes in the tree diagram in Figure 3.8 are used. All kinds of R 

may be founded based on the tree diagram.  However, this thesis does not prove that 

there are no more properties found. The value of R is calculated with the following 

steps: 

(1) Select a node in the tree diagram in Figure 3.8, which contains an OPP and a 

rectangular prism. The total value R of both the OPP and the rectangular prim is 16. 

(2) Determine the list of joined properties in the node. 

(3) R of a pair of properties can be counted if R of the other pairs of properties are 

known. 

(4) Find the relationship among the vertex configuration of the new OPP in Table 3.4 

(5) R of a pair of properties is counted based on the difference between the R value of 

the OPP in Step (4) and with the R value in Step (1). After substituting the R of 

each known pair of properties, then the R of the unknown pair of properties is 

obtained. 

Here is an example to calculate R from the given two OPPs. Let P1 and P2 be two 

rectangular joined at four corners. Due to rectangular form, P1 and P2 only have V30 

vertices. The value of vertex configuration on both P1 and P2 is 16 as shown in Figure 

3.8. Meanwhile, if P1 is joined with P2, then they will form a new OPP in which all 

corners are the V30 vertex, and the value of its vertex configuration is 8. Therefore, the 

different value of the vertex configurations between the two original P1 and P2 with the 

joined P1 and P2 is 8. It means that the two joined vertices decrease the total value by 2. 

 

 



58 
 

 

 

 

 

 

Figure 3.9: P is a Result of Joining P1 and P2 

P1 and P2 are joined by operator () such that sets of properties of P1 coincide with sets 

of properties of P2. The relationship that involves those kinds of set properties is shown 

in Table3.5 Number 3.  

By using the same way, the decreasing or increasing value of R for each set of properties 

as summarized in Table 3.5.  

Table 3.5: Operations and their R Value 

Ordered 
Number 

Involved properties R-Value New Property 
Increase Decrease 

1. P1: V30; P2: V30  8 V60-01 
2. P1: (V30,1E); P2: (V30, 1E)  4 V50-1 
3. P1: (V30, 2E,1F); P2: (V30,2E,1F)  2 Nothing 
4. P1: (V60-01,2E,1F); P2: (V30,2E,1F) 2  V40-1 
5. P1: (V50-1, 2E); P2: (V30, 2E) 0 0 V60-3 
6. P1: (V50-1, 2E,1F); P2: (V30, 2E, 1F)  2 V40-1 
7. P1: (V50-1, 3E, 2F); P2: (V30, 3E, 2F) 0 0 V31 
8. P1: (Point IN E, 1E); P2: (V30, 1E)  4 V40-1 
9. P1: (Point IN E, 1E, 1F); P2: (V30, 1E, 1F)  2  
10. P1: (Point IN F, 1F); P2: (V30, 1F)  2 V31 
11. P1: (V40-1, 2E, 1F); P2: (V30, 2E, 1F) 2  V41-2 
12. P1: (V40-1,  2E, 1F); P2: (V30, 2E, 1F) 2  Nothing 
13. P1: (V40-1, 1E, 2F); P2: (V30, 1E, 2F) 2  V42 
14. P1: (V60-3, 3E, 2F); P2: (V30, 3E, 2F) 2  V41-2 
15. P1: (V60-3,  3E); P2: (V30, 3E) 4   
16. P1: (V60-3, 3E, 3F); P2: (V30, 3E,3F)  4 V63 
17. P1: (V31, 1E, 1F); P2: (V30, 1E, 1F)  2 V42 
18. P1: (V31, 3E, 2F); P2: (V30, 3E, 2F) 0 0 Nothing 
19. P1: (V31, 1F); P2: (V30, 1F)  2 V63 
20. P1: (V32, 2E); P2: (V30, 2E, 2F) 0 0 V41-2 
21. P1: (V41-2, 3E, 3F); P2: (V30, 3E, 3F)  2 V32 
22. P1: (V41-2, 1E, 2F); P2: (V30, 1E, 2F) 0 0 V43-1 
23. P1: (V41-2, 1E,1F); P2: (V30, 1E, 1F) 2  V63-3 

P1 P2 P1 + P2 P1  P2 



59 
 

24. P1: (V41-2, 2E, 2F); P2: (V30, 2E, 2F) 0 0 V43-1 
25. P1: (Point in NE, 1E, 2F); P2: (V30, 1E, 2F)  4 V43-1 
26. P1: (V42, 2E, 1F); P2: (V30, 2E, 1F) 2  V43-1 
27. P1: (V42, 2E, 2F); P2: (V30, 2E, 2F) 0 0 V32 
28. P1: (V41-2, 3E, 3F); P2: (V30, 3E, 3F)  2 V32 
29. P1: (V60-6, 3E, 3F); P2: (V30, 3E, 3F)  2 V63-3 
30. P1: (V63, 3E,2F); P2: (V30, 3E, 2F) 0 0 V32 
31. P1: (V32, 2E, 2F); P2: (V30, 2E,2F) 0 0 Nothing 
32. P1: (V32, 1E, 1F); P2: (V30, 1E, 1F) 2  V54-1 
33. P1: (V43-1, 3E, 3F); P2: (V30, 3E, 3F)  2 Nothing 
34. P1: (V43-1, 1E, 2F); P2: (V30, 1E, 2F) 0 0 V66-0 
35. P1: (V43-1, 1E, 2F); P2: (V30, 1E, 2F) 0 0 V54-1 
36. P1: (V63-3, 3E, 3F); P2: (V30, 3E, 3F)  2 V54-1 
37. P1: (V63-3, 3E, 3F); P2: (V30, 3E, 3F)  2 V54-1 
38. P1: (V63-3, 3E, 3F); P2: (V30, 3E, 3F)  2 V54-1 
39. P1: (Point in ME, 1E, 2F); P2: (V30, 1E, 2F) 0 0 V33 
41 P1: (V54-1, 3E, 3F); P2: (V30, 3E, 3F) 2  V33 
42 P1: (V66-0, 3E, 3F); P2: (V30, 3E, 3F)  2 V33 

 

By applying the suitable R for each joined properties during joining P1 and P2 to form the 

new OPP, then the R value changes from 16 to 8 after joining. �   

3.6 Duality of Vertex Configurations 

Recall that the polyhedral surface in a polyhedron is also called the shell of that polyhedron, 

and a multi-shell polyhedron is a solid shape that consists of one large polyhedron and one or 

more smaller polyhedra that are located completely inside the large polyhedron in which 

these smaller polyhedra neither intersect with the large polyhedron, nor intersect with each 

other, nor overlap with each other. The Euler formula for a multi-shell polyhedron  is v e + f 

= 2(s  g), where v, e, f, s, and g is denoted as the number of vertices, edges, faces, shell, and 

genus [36]. 

 Figure 3.10 is a multi-shell orthogonal polyhedron. The small polyhedron in the multi-shell 

orthogonal polyhedron is bounded by an inner boundary. The small polyhedron in the larger 

orthogonal polyhedron is also an orthogonal polyhedron. Therefore, a vertex on an inner 

boundary has a duality. Figure 3.10 shows that vertex A has configuration V33 as an inner 
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boundary of a simple orthogonal polyhedron, and vertex A is also V30 vertex as an outer 

boundary of an empty space inside the simple orthogonal polyhedron.  

 

 

 

 

 Figure 3.10: A is a Vertex on the Inner Boundary of P1 and Outer Boundary of P2 

By observation, the dualities of vertex configurations of OPP are listed in Table 3.6. 

Table 3.6: Vertex Configurations and Their Duality 

No. Vertex Configuration Duality 

1. V30 V33 

2. V31 V32 

3. V32 V31 

4. V33 V30 

5. V40-1 V43-1 

6. V41-2 V41-2 

7. V42-0 V42-0 

8. V43-1 V40-1 

9. V50-1 V54-1 

10. V54-1 V50-1 

11. V60-3 V63-3 

12. V60-6 V60-6 

13. V63-0 V63-0 

14. V63-3 V60-3 

15. V66-0 V60-01 

16. V60-01 V66-0 

 

A P1 P2 
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3.7 Summary 

This chapter has proven that there are no more than 16 vertex configurations for any 

orthogonal pseudo-polyhedra. It is also proven that for any OPP, there exists a set of 

rectangular prisms such that the OPP can be constructed by combining these rectangular 

prisms together. This chapter also conjectured a formula to show the relationship among the 

number of each type of vertex in any orthogonal pseudo-polyhedra. This chapter has provided 

some evidences to support the conjecture.  The last section in this chapter has identified the 

dual vertex configuration of each type of vertex configuration for any OPP having inner and 

outer boundaries. 

The next chapter covers splitting techniques for several models of geometry objects in both 

2D and 3D.  
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CHAPTER 4 

SPLITTING OPERATIONS 
 

 

 

4.1 Introduction 

This chapter focuses on developing algorithms to split orthogonal polygon and polyhedra. 

The chapter will develop algorithms: splitting an orthogonal polygon with polyline, splitting 

an orthogonal polyhedron with a polyplane, and splitting polyhedra in a bounding box. The 

main contribution of this chapter is to provide effective method to do splitting on orthogonal 

polygon, orthogonal polyhedron, and polyhedra. The procedure of splitting orthogonal 

polygon and an orthogonal polyhedron using polyline and polyplane, respectively can be 

applied to a real work activity, such splitting metal in a metal fabrication. 

The task of orthogonal polyhedron decomposition is to represent an orthogonal polyhedron as 

the union of a number of simpler component parts. Orthogonal polyhedron decomposition 

has many theoretical and practical applications. For example, decomposition of an orthogonal 

pseudo-polyhedron into a set of rectangular prisms is a useful step for successful guard 

placement in the 3D-AGP.  

Generally, decomposition of an object into a set of smaller objects can be achieved by a set of 

splitting operations. A splitting operation is an operation to split an object into two parts, 

with each part containing one or more smaller objects. The object is split by a splitting tool 

that crosses the object until it hits its boundary. For example, Ayala and Rodriquez [76] 

proposed a procedure to decompose an OPP into a set of rectangular prisms. In this 

procedure, the splitting process is applied many times, and each splitting plane contains a 
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single plane that divides the OPP into two parts, each consisting of one or more smaller 

OPPs. 

Imagine that an L-shape piece of metal will be taken from a rectangular piece of metal in a 

metal fabrication. To get the piece, a splitting method that uses a single splitting plane for 

each process, such as proposed by Ayala and Rodriguez [76], can be deployed. The steps are 

pictured in Figure 4.1, as follows: First, a thick metal, represented by a rectangle (Figure 

4.1(a)), is split in a horizontal direction from the left boundary until it hits the right boundary 

and the resulting pieces are split again from each piece in the vertical direction (see Figure 

4.1(b)). Finally, three of four pieces (Figure 4.1(c)) are combined in their boundary to get the 

L-shape piece metal.  

 

 

 

Figure 4.1: Steps to Get an L-Shape Piece 

The above description shows that the splitting operation is applied twice and then followed 

by combining some parts to get the L-shape. This method seems inefficient. It is reasonable 

to ask the process in order to not involve only one splitting operation such that the combining 

step is no longer necessary. This question is a motivation of some of the works in this 

chapter. 

In the practical situation illustrated in Figure 4.1, an orthogonal polyhedron needs to be split 

into exactly two simpler orthogonal polyhedra. Therefore, another kind of splitting technique 

is required. One possible splitting technique is to introduce a splitting plane that contains one 

a b c d 
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or more connecting planes. By using this kind of splitting plane, an orthogonal polyhedron 

can be split into two smaller orthogonal polyhedra within a single splitting operation. 

A splitting tool for a polygon is a line or a set of connected lines, and a splitting tool for a 

polyhedron is a plane or a set of connected planes. A set of connected lines is called a 

polyline, and a set of connected planes is called polyplane. Each segment in a polyline or 

polyplane parallels to one of the axes in a Cartesian coordinate system.  

In this chapter, a number of splitting algorithms are developed for different object models, 

orthogonal polygons and orthogonal polyhedra. Section 4.2 will develop an algorithm for 

splitting an orthogonal polygon with a polyline. In Section 4.3, an algorithm is developed for 

splitting an orthogonal polyhedron with a polyplane.  

A splitting plane that contains only a single plane (not parallel to one of the three axes) can be 

used to split a bounding box that is a rectangular prism that contains one or more polyhedra. 

The splitting plane will divide the bounding box into two halves, in which each half consists 

of one or more polyhedra. In Section 4.4, an algorithm is provided for splitting a set of 

convex polyhedra in a bounding box using a splitting plane.  

4.2 Splitting an Orthogonal Polygon Using Polyline  

Splitting a polygon into two halves using a single splitting line is a well known-problem, and 

numerous methods have been proposed such as by Daniels et al. [79]. However, less method 

is known to split an orthogonal polygon using a polyline. In this section, a procedure of 

splitting an orthogonal polygon using a polyline is established. For that purpose, definitions 

and terminology are introduced first. 

4.2.1 Definitions and terminology 
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Polyline is the term for a polygonal chain in a computer graphic. It is a connected series of 

line segments connecting the consecutive vertices that are treated as a single entity [80]. An 

orthogonal polyline is a polyline in which each segment of the polyline is parallel to one of 

the two axes. Henceforth, the term polyline is used to refer an orthogonal polyline. 

In this thesis, a polyline is restricted by three conditions. First, the whole segment of a 

polyline must lie inside of an orthogonal polygon. Second, a segment of a polyline cannot lie 

on edges of an orthogonal polygon. Third, a polyline intersects the boundary of an orthogonal 

polygon only at two points. The point in which a polyline intersects the boundary of an 

orthogonal polygon is an intersection vertex.  In Figure 4.1, a connected segment lines passes 

through vs1, vs2, and vs3. The connected lines lie totally in an orthogonal polygon, and the 

connected lines intersect the boundary in two points; therefore, the connected line can be 

considered as a polyline.  

 

 

 

 

 

 

Figure 4.2: An Orthogonal Polygon with a Polyline 

In Figure 4.2, v1,..,.v8 are vertices of an orthogonal polygon. Each vertex has a coordinate to 

represent its position in the 2D Cartesian coordinate system. vs1, vs2, and vs3 are vertices of a 

polyline, in which vs1 and vs3 are intersection vertices obtained from intersection between the 

orthogonal polygon with the polyline, and they are a starting vertex and an ending vertex of 

the polyline, respectively.  
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The data representation for an orthogonal polygon has been studied by O’Rourke [68], and 

this data structure has been reviewed in Chapter 2. In this data structure, an orthogonal 

polygon is presented as in AB-sorted vertices. An AB-sorted vertices is a sequence of vertices 

where their coordinate are sorted first by coordinate A, and then by coordinate B. The vertices 

can be sorted in two different ways: XY-sorted vertices or YX-sorted vertices. Accessing 

vertices based on sorted-vertices is standard in computational geometry. Wu, Tian, and Xie 

also used sorted vertices as input for splitting arbitrary polygons [81]  

Meanwhile, a polyline can be easily represented by an ordered sequence of vertices, v1, v2, …, 

vn where each vertex is represented by its Cartesian coordinate. Because the proposed 

polyline is an orthogonal polyline, any two consecutive vertices will share one coordinate 

value. v1 and vn are vertices of a polyline that also lie on the boundary of an orthogonal 

polygon, and both are intersection vertices. 

A polyline may contain a single line that is perpendicular to the x-axis or y-axis. Figure 4.3 

shows two orthogonal polygons with different polylines. Figure 4.3(a) is an orthogonal 

polygon with a single line segment as a splitting line, and Figure 4.3(b) is an orthogonal 

polygon with a polyline as a splitting line. 

 

 

 

 

  

(a)                                            (b) 

 Figure 4.3: Polylines on orthogonal polygons 

 

Each of the above figures is explained as follow: 
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(i) In Figure 4.3(a), an orthogonal polygon is split by a polyline that consists of vertices vs1 

and vs2. This polyline has only one segment line. After splitting, vertices of the 

orthogonal polygon and the polyline will be grouped into two orthogonal polygons:  Q = 

{ vs1,v1,v2,v3,v4,vs2} and R = {vs1, v8,v7,v6,v5, vs2}.  

(ii) In Figure 4.3(b), the orthogonal polygon is split by a polyline that consists of vertices vs1, 

vs2, vs3. This polyline has two connected line segments. The result of splitting is Q = { 

vs1,v1,v2,v3,v4, v5,vs3,vs2} and R={ vs1,v8,v7,v6, vs3,vs2 }.  

 

4.2.2 An algorithm for splitting an orthogonal polygon using a polyline 

In this section, an algorithm on how to split an orthogonal polygon by polyline will be 

described. The inputs of the algorithm are vertices of an orthogonal polygon and vertices of a 

polyline. The following steps are used to split an orthogonal polygon into two smaller 

orthogonal polygons: 

1. Combine the vertices of an orthogonal polygon and a polyline into a set of combined 

vertices.  

2. Group the set of combined vertices into two groups of vertices in which each group 

represents a smaller orthogonal polygon.  

Based on the above steps, two procedures are needed. The first is a procedure for combining 

the vertices of an orthogonal polygon and a polyline, which will be discussed in Subsection 

4.2.3. The second is a procedure for grouping the combined vertices into two groups of 

smaller orthogonal polygons; this procedure will be discussed in Subsection 4.2.4. 
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4.2.3 Combining the vertices of an orthogonal polygon and a polyline 

Combining vertices is a process to combine the vertices of an orthogonal polygon and a 

polyline into a set of combined vertices that contains two smaller orthogonal polygons. The 

procedure to get a set of combined vertices is based on the following observations: i) each 

vertex of an orthogonal polygon is a vertex of a smaller orthogonal polygon; therefore, all 

vertices of an orthogonal polygon are added to a set of combined vertices. ii)  A polyline will 

become the boundary of each orthogonal polygon in the new set of vertices; therefore, each 

vertex of a polyline is added in such a way as to the set of combined vertices. There are two 

types of polyline vertices: non-ending vertices and ending vertices. A non-ending vertex 

belongs to two smaller orthogonal polygons; hence, a non-ending vertex is added twice to the 

combined vertices. Meanwhile, an ending vertex of a polyline lies on the edge or vertex of 

the orthogonal polygon, and the ending vertex is called as an intersection vertex. If an ending 

vertex lies on an edge, then add twice this intersection vertex to the set of combined vertices; 

if it lies on a vertex, then update the vertex and an adjacent vertex as in the set of combined 

vertices as intersection vertex (see Figure 4.4). Figure 4.4(a) shows an orthogonal polygon 

and a polyline before splitting. Meanwhile, Figure 4.4(b) shows the set of combined vertices 

after splitting. 

 

 

 

 

Figure 4.4: One of the Two Intersection Vertices Lies on the Vertex of an Orthogonal 
Polygon 
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Based on the observation, the source of vertices in a set of combined vertices are the vertices 

the orthogonal polygon, non-ending vertices of a polyline, and intersection vertices.  

Figure 4.5 is a procedure for combining, which is called CombiningVertices. The 

procedure has two kinds of input: vertices of an orthogonal polyhedron and vertices of a 

polyline. The output is a set of combined vertices. The procedure contains a function, 

ReadPolyline, which has a function to read one by one the vertices in a polyline, and a 

procedure, ReadVertexAdjacent, which has a purpose to determine the adjacent vertex 

of an intersection vertex in an orthogonal polygon. 

An adjacent vertex is found as follows. Let vs and vr be two end vertices of a segment line in 

a polyline, then if vsvr is perpendicular to x-axis, sort the vertices of the orthogonal polygon in 

xy-sorted to read the pair of vs as adjacent vertex vs’ in the orthogonal polygon; or if vsvr is 

perpendicular to y-axis then sort the vertices of the orthogonal polygon in yx-sorted to read 

the pair of vs. After finding vs’, update the source of vertex vs and vs’ in the set of combined 

vertices as intersection vertex. 

 

 

 

 

 

    

Figure 4.5: Procedure CombiningVertices for Combining Vertices 

Procedure CombiningVertices(INPUT P: an orthogonal polygon,  PL: a  polyline ;  
OUTPUT  cv: a set of combined vertices) 

var vs, vr : a vertex of PL; v: a vertex of P ; m: number of vertices in PL 
cv=; 
cv = cv + P; // add all vertices of P into the set of combined vertices cv 
for (i = 1 to m) { 

vs = ReadPolyline(PL) 
if vs = non-ending vertex { 

cv = cv + vs + vs 
 else 

 If (vs = ending vertices and lies on edge) { 
cv = cv + vs + vs 

  else // vs = ending vertices and lies on vertex of P 
   ReadVertexAdjacent(vs,vr ; vs’)// procedure to determine vs’ 

update v s and vs’ in cv as intersection vertex;  
  } 
 }} 
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4.2.4 Grouping vertices 

The new set of vertices of the orthogonal polygon after adding all vertices of a polyline 

represents two orthogonal polygons, in which each orthogonal polygon has a group of 

vertices. However, the vertices record has not yet given any information about the group of a 

vertex. Therefore, a procedure is needed to group the vertices. 

Grouping the vertices into two smaller orthogonal polygons is based on the following 

observations: (i) each vertex of the original orthogonal polygon belongs to one of the smaller 

orthogonal polygons; (ii) each non-ending vertex in the polyline belongs to the two 

orthogonal polygons; (iii) An intersection vertex belongs to a smaller orthogonal polygon. 

An orthogonal polygon has one boundary. This means that there is a path that passes through 

all the vertices and edges of the orthogonal polygon. The boundary of a smaller orthogonal 

polygon consists of a part of boundary of the original orthogonal polygon and a polyline. A 

polyline starts with an intersection vertex and finishes at another intersection vertex with 

different coordinate. Each smaller polygon has the same polyline; hence, the remaining path 

for a smaller orthogonal polygon is a path that starts with an intersection vertex and then 

continues to walk until meet the other intersection vertex.  

Figure 4.6 shows the algorithm to group vertices into two orthogonal polygons. The 

procedure starts by running a sub-procedure ReadNonEndingVertices, which reads all 

non-ending vertices in the set of combined vertices cv. All different non-ending vertices vne 

become the vertices of a smaller orthogonal polygon Q, while the other group of smaller 

orthogonal polygon R contains the set of combined vertices minus vne. See Figure 4.6 for 

detail. 
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Figure 4.6: Algorithm for Grouping Vertices 

4.2.5  Implementation of the algorithm 

In the implementation of the algorithm, the vertices of an orthogonal polygon are inputted 

randomly and saved in a file.  

 

 

 

 

 

 

Figure 4.7: The Vertices of Orthogonal Polygon and a Polyline 

Procedure GroupingVertices (INPUT cv:  a set of combined vertices, cvxy: cv in xy-sorted, cvyx : 
cv in yx-sorted; OUTPUT  Q, R : two orthogonal polygons)  
 
var vne : non-ending vertices in cv 

vs1, vs2  : intersection vertices 
 vi, vt : vertices of NP 
 direction: Boolean variable 
 PL : vertices of a polyline 
 
ReadNonEndingVertices(cv; vne) // a procedure to read the set of non vertices in cv 
Q= vne ; R=cv-vne 
direction= FALSE;  
 
vi  = ReadPairVertex(cvxy, vs1 ) // read  a pair of vs1 from cvxy; 
If (vi   PL){ 

vi = vs1;  
Else 

vt = vi;  Q = Q + vi;   R = R - vi 
} 
While vt  vs2 { 
 direction= Not direction 
 If ( direction = TRUE){ 
  vt  = ReadPairVertex(cvyx, vi); 
 Else 
  vt  = ReadPairVertex(cvxy,vi); 
 } 

vi = vt ; Q = Q + vi;   R = R - vi 
} 
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(1) Add all vertices of the orthogonal polygon and non-ending vertices of the polyline 

into a set of combined vertices cv. Therefore cv = {v1,v2,v3,v4,v5,v6,v7,v8, vs2, vs3, vs4}. 

(2) The set of intersection vertices is vs = {vs1, v7, vs5, vs5}. Each vertex in vs is added to 

cv, and if the vertex already exist in cv then replace it by vertex in vs. 

(3) Group the vertices into two groups by using the procedure GroupingVertices. 

The results are Q = {vs1, v5, v1, v2, v3, v4, vs5, vs4, vs3, vs2} and R = {v8, vs5, vs4, vs3, vs2, , v7}. 

4.2.6 Time complexity analysis and discussion 

The time cost is calculated for each of the following activities. Firstly, the time complexity 

for combining an orthogonal polygon and a polyline can be constructed in O(n) where n is 

total number of vertices of an orthogonal polygon and a polyline. The last part of the 

algorithm, grouping vertices into two orthogonal polygons, cost a time complexity in O(n). 

The sorting, which has O(n log n) in an average case, is not included to determine the 

complexity of these algorithms, because sorting is considered as inputs of the algorithm.  

Meanwhile, splitting an orthogonal polygon with a line also takes a linear time, and the 

splitting still takes a linear time for k number of splitting lines. However, this method is not 

effective because there should be operations to combine some part of orthogonal polygon.  

4.3   Splitting an Orthogonal Polyhedron Using a Polyplane 

Orthogonal polyhedra are the 3D analogue of 2D orthogonal polygons. They are used in 

computational geometry as a well-known model to represent many real 3-dimensional 

objects. 

Many different operations can be defined for an orthogonal polyhedron, for example: 

partitioning [82], splitting [56], and Boolean operations on arbitrary orthogonal polyhedra of 

any dimension [72], etc.  
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Splitting is one of operations in an orthogonal polyhedron, and a splitting has the purpose of 

splitting an orthogonal polyhedron into two halves. One of the splitting techniques has been 

introduced by Ayala by using a splitting plane that contains a single plane [56].  This splitting 

technique splits an orthogonal polyhedron into two halves, and each half consists of one or 

more orthogonal polyhedra.  

Suppose a smaller orthogonal polyhedron will be taken out from a large orthogonal 

polyhedron. Of course, the Ayala technique can be used to get the smaller orthogonal 

polyhedron by applying this operation many times until the smaller orthogonal polyhedron is 

achieved. However, this technique seems ineffective, since it may be applied many times, and 

compound operation is probably needed to get the smaller orthogonal polyhedron.  In the 

present section, a new method is established in which one splitting operation is sufficient to 

get the smaller orthogonal polyhedron from a large orthogonal polyhedron. The splitting 

operation uses a polyplane instead of single plane.  This splitting method split an orthogonal 

polyhedron into two halves, and each half only contains one orthogonal polyhedron. 

4.3.1 Definitions and terminology 

Two orthogonal polygons are said to be connected if edges with the same length from each 

orthogonal polygon meet. An edge that belongs to two orthogonal polygons is called a shared 

edge; meanwhile, the ending point of a shared edge is called a shared vertex.  Recall that a 

degree of vertex is the number of edges that meets at a vertex. Because each orthogonal 

polygon is parallel to one of three planes in Cartesian space, then the dihedral angle between 

two connected orthogonal polygons at a shared edge is either 90 or 270. An orthogonal 

polyplane is a connected orthogonal polygon, but it is not a closed polygonal surface. The 

present study is restricted to an orthogonal polyplane that has the same length edges for each 
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shared edges. Henceforth, the term polyplane is used as shorthand for the orthogonal 

polyplane defined above. 

As mentioned above, for any two orthogonal polygons with a shared vertex, the dihedral 

angle at the vertex is either 90 or 270. Thus, the shared vertex has degree of three. 

As an example, Figure 4.8 is a polyplane that contain three orthogonal polygons p1, p2, and 

p3.  e1 is a shared edge, shared by p1 and p2. v1 is a shared vertices that is shared by three 

edges e1, e2, and e3. Meanwhile, Figure 4.8(b) is not a polyplane. This is because the 

orthogonal polygon does not meet at the same length edges.   

 

 

 

Figure 4.8: Valid (a) and not Valid (b) Instances of Polyplane 

Figure 4.9 shows an orthogonal polyhedron having a polyplane. Numbers 1, 2 ... 28 in the 

figure are labels for vertices of the orthogonal polyhedron. Each vertex has a coordinate that 

represent its position in the 3D coordinate system. The gray planes represent a polyplane 

having three contiguous planes. 
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Figure 4.9: An Orthogonal Polyhedron with a Polyplane 

Splitting an orthogonal polyhedron with a polyplane is defined as dividing the orthogonal 

polyhedron into two smaller orthogonal polyhedra by splitting the orthogonal polyhedron 

along the polyplane. For the splitting operation, conditions include: 

1. A polyplane lies entirely in an orthogonal polyhedron. 

2. A vertex of a polyplane intersects the boundary of an orthogonal polyhedron at a 

vertex, an edge, or a face of the orthogonal polyhedron. If a vertex of a polyplane 

intersects at a face of an orthogonal polyhedron, then the vertex has a degree of three.  

3. Any shared edge of a polyplane cannot coincide with any edge or face of an 

orthogonal polyhedron. 

From the above conditions, it can be identified that there are two kinds of vertex in a 

polyplane: coalition vertex that is a vertex of a polyplane that lies on a vertex of an 

orthogonal polyhedron, and non-coalition vertex that is a vertex of a polyplane that lies on 

edge, on a surface, or in the interior of an orthogonal polyhedron.  Figure 4.10 shows some 

valid polyplanes and a not valid polyplane in orthogonal polyhedra.  
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Figure 4.10: Valid (a,b,c) and not Valid (d) Polyplanes in Orthogonal Polyhedra 

(i). The polyplane in Figure 4.10(a) is a valid polyplane that consists of an orthogonal 

polygon, and all the vertices of polyplane intersect (coincide) with the edges of the 

orthogonal polyhedron. 

(ii) Figure 4.10(b) has one rectangle as a splitting polyplane that intersects with four edges of 

the orthogonal polyhedron and creates four intersection vertices. 

(iii) The polyplane in Figure 4.10(c) is a valid polyplane that has two contiguous rectangles 

that intersect four edges, and the polyplane has two shared vertices.  

(iv) The splitting plane in Figure 4.10(d) is not a valid polyplane, because a shared edge in 

the polyplane coincides with an edge of the orthogonal polyhedron; hence, it does not satisfy 

the rule of a polyplane intersecting an orthogonal polyhedron. 

An orthogonal polyhedron is represented by its extreme vertices as discussed in Chapter 2. 

Recall that extreme vertices are the ending vertices of brinks in an orthogonal polyhedron, 

and a brink is defined as the longest uninterrupted line segment, built out of a sequence of 

collinear and contiguous two-manifold edges of an orthogonal polyhedron.  

Meanwhile, a polyplane is represented by an open connected of planes, p1,p2,...,pn, in which 

each plane is an orthogonal polygon. Representing an orthogonal polygon has been described 

in Chapter 2. 
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4.3.2 An algorithm of splitting an orthogonal polyhedron using a polyplane 

This section will present an algorithm for splitting an orthogonal polyhedron by using a 

polyplane. The inputs of the algorithm are the extreme vertices of an orthogonal polyhedron 

and the vertices of a polyplane. The algorithm works in two main steps: 

1. Combine the vertices of an orthogonal polyhedron and a polyplane into a set of 

combined vertices. 

2. Group the set of combined vertices into two groups in which each group represents an 

orthogonal polyhedron.  

Based on the above steps, there are two main procedures for splitting an orthogonal 

polyhedron using a polyplane. The first is a procedure for combining the vertices of an 

orthogonal polyhedron, which will be discussed in Subsection 4.3.3. The second is a 

procedure for grouping the combined vertices into two groups that represent two orthogonal 

polyhedra; this procedure will be discussed in Subsection 4.3.4. 

4.3.3 Combining vertices 

Combining vertices is a process to combine the vertices of an orthogonal polyhedron and a 

polyplane into a set of combined vertices. Properties of each vertex in a set of combined 

vertices are a vertex name, the vertex coordinate, and source of the vertex. The procedure to 

get a set of combined vertices rests on the following observations: i) each vertex of an 

orthogonal polyhedron is a vertex of one of the two smaller orthogonal polyhedra. Therefore, 

all the vertices of an orthogonal polyhedron are added to a set of combined vertices. ii)  A 

polyplane will become the boundary of each orthogonal polyhedron after splitting; therefore, 

each vertex of a polyplane is added twice in such a way to the set of combined vertices. iii) A 

non-coalition vertex lies inside of an orthogonal polyhedron and it becomes a vertex in the 
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boundary of smaller orthogonal polyhedra. Hence, the vertex is added twice directly to the 

combined vertices. Meanwhile, if a coalition vertex exists, then update the vertex and its 

adjacent vertex as the same vertex in the combined vertices as the coalition vertex.  

Based on the observation, the source of vertices in a set of combined vertices are orthogonal 

polyhedron vertices, coalition vertices, and non-coalition vertices.  

Figure 4.11(a) shows an orthogonal polyhedron and a polyplane before splitting. Meanwhile, 

Figure 4.11(b) shows the set of combined vertices after splitting. 

 

 

 

 

Figure 4.11: Splitting an Orthogonal Polyhedron with a Polyplane 

The procedure CVOPolyhedronPolyplane, which is shown in Figure 4.12, is used to 

combine an orthogonal polyhedron and a polyplane. The inputs of this procedure are vertices 

of the orthogonal polyhedron and the vertices of the polyplane, and the output is a set of 

combined vertices. This procedure contains the function ReadVertexPolyplane(), 

which has the task of reading vertices in a polyplane. 
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Figure 4.12: Procedure CVOPolyhedronPolyplane for Combining Vertices 

4.3.4 Grouping vertices 

After combining the vertices, the next task is to separate the set of combined vertices into two 

groups of vertices in which each group represents an orthogonal polyhedron. To group the 

vertices into two orthogonal polyhedra rests on the following observations: (i) each vertex 

having source orthogonal polyhedron vertices in the set of combined vertices belongs to one 

of the two smaller orthogonal polyhedra. (ii)  Each vertex having source non-coalition vertex 

in the set of combined vertices becomes a vertex in the boundary of each smaller orthogonal 

polyhedron, so each the same vertices is distributed to each smaller orthogonal polyhedron. 

Therefore, each shared vertex is added directly to each smaller orthogonal polyhedron 

without a separating process. (iii) Each vertex having source coalition vertex belongs to one 

of the two smaller orthogonal polyhedra.  

A smaller orthogonal polyhedron has a polygonal surface, and the vertices on the polygonal 

surface come from the three sources of vertex in a set of combined vertices. Because the 

surface of an orthogonal polyhedron is a set of connected polygons, a closed walk can be 

Procedure CVOPolyhedronPolyplane(INPUT P: the extreme vertices of an 
orthogonal polyhedron,  PL: a polyplane;  OUTPUT  cv: a set of combined vertices) 

var vpi : ith  polyplane vertex 
 v : a vertex in cv 
 m : number of vertices in a polyplane 
cv= 
cv = cv + P 
 
For (i=1 to m){  // a polyplane has m vertices 
 vpi = ReadVertexPolyplane(PL) // function to read a vertex of PL 
 If vpi is a coalition vertex 
  cv=cv + vpi + vpi 
 else // vpi is non-coalition vertex and v pi  cv 
  ReadVertexAdjacent(vpi,cv,v,v’)// function to read vpi in cv 

replace v  and  its an adjacent vertex v’ in cv with vpi;  
} 
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made from a vertex and back to the vertex after visiting all vertices in a smaller orthogonal 

polyhedron. There are two non-coalition vertices that have the same position, and each of 

them belongs to different orthogonal polyhedra. Thus, the non-coalition vertex is obviously a 

vertex of each smaller orthogonal polyhedron, and it is not necessary to be explored in a 

closed walk. Some non-coalition vertices and coalition vertices are adjacent to orthogonal 

polyhedron vertices, and some of them are surrounded by other non-coalition and coalition 

vertices. Therefore, the closed walk moves backwards when meeting these kinds of vertices.  

The closed walk needs to visit vertices of the vertices having source orthogonal polyhedron, 

and move backwards when meets the coalition and non-coalition vertices. A closed walk 

starts from a starting vertex and terminates at the vertex. A coalition vertex and a non-

coalition vertex that lies on edge of the original orthogonal polyhedron are also known as a 

separating vertex. A starting vertex is a vertex that is selected from any separating vertex. All 

the vertices in a closed walk and non-coalition are the complete vertices of a smaller 

orthogonal polyhedron. 

The procedure for grouping vertices is based on by the following assumptions: i) each vertex 

having source orthogonal polyhedron vertices is visited three times, due to the vertices being 

extreme vertices  related to three other vertices. ii) After visiting a separating vertex, the walk 

backwards to the previous visited vertex. iii)  A vertex is visited in priority order, pair in a 

brink, pair on the same plane, and pair on the next plane.  

Figure 4.13 is the procedure GroupingVertices3D for grouping the vertices in a set of 

combined vertices into two groups of orthogonal polyhedra. Inputs of this procedure are the 

set of combined vertices vc. Meanwhile, the outputs are Q and R, respectively an orthogonal 

polyhedron. 
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A closed walk starts with any separating vertex vs1 that is achieved using a function 

ReadSeparatingVertex(). The next step is determining the pair of vs1, vi, from the 

sorted of a set of combined vertices using a function ReadPairVertex(). Let vt be the 

pair vertex of vi, then repeat the function ReadPairVertex()until vt is equal with the 

starting vertex vs1. Once it exists, the two groups of vertices are achieved, and each group of 

vertices represents a small orthogonal polyhedron.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Procedure GroupingVertices3D for Grouping the Combined Vertices 

Procedure GroupingVertices3D(INPUT: cv combined vertices, cvxyz: cv in xyz-sorted, cvyxz : cv in yxz-
sorted, cvzxy: cv in zxy-sorted; Q,R: orthogonal polyhedra) 
 
var     vs1  : a separating vertex 
 vi , vt , vnc : vertex in combined vertices cv 
 dir,i  : integer 
 staorthopoly : a Boolean variable  { TRUE if the source vertex is orthogonal polyhedron} 
 visited  : a Boolean variable { TRUE a vertex is visited} 
 
staorthopoly = false; visited= false;  i=0 
file(0) = cvxyz; file(1) = cvyzx; file(2) = cvzxy; 
 
vnc = ReadNonCoalitionVertex(cv) // a function to read non-coalition vertices from cv 
Q = vnc;  R = cv – vnc; 
 
// making a closed walk 
vs1 = ReadSeparatingVertex(cv)  // a function to read a separating vertex 
if (vs1  null) {  
 while (staorthopoly = false) { 

vi = ReadPairVertex (file((i), vs1) // read a pair of vs1 from file(i) 
if (vi  orthogonal polyhedron vertex){ 
 dir = direction(vs1,vi) // a function to determine the direction the brink (vs1,vi) 
 staorthopoly = true 
 if (vs1 non-coalition vertices){ 
  Q = Q + vs1; R = R – vs1; 
 } 
else 
 i=i+1;  

 } 
 While (vi   vs1){ 
  dir = ChangeDirection(dir) //change direction of brink in the walk 
  vt = ReadPairVertex(file(dir),vi) 
  if (visited = false and vt non-coalition vertices){ 
   Q = Q + vt; R = R-vt; vi = vt; 
  } 
 } 
} 
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4.3.5  Implementation of the orthogonal polyhedron splitting algorithm 

The following example illustrates the implementation of the algorithm for splitting an 

orthogonal polyhedron with a polyplane. Figure 4.14 is an orthogonal polyhedron having 

twelve vertices, and a polyplane splits the orthogonal polyhedron into two smaller orthogonal 

polyhedra.  

 

 

 

 

Figure 4.14: The Vertices of an Orthogonal Polyhedron after Splitting 

(1) Add all vertices of the orthogonal polygon and non-ending vertices of the polyline 

into a set of combined vertices cv by using the procedure CVOPolyhedronPolyplane. 

Therefore cv = {v2,v4,v1,v3,v6,i4,i4,v8,v5,i3,i3, v7,i2,i2,p2,p2,i1,i1,p1,p1, v10, v12,v9,v11}. 

(2) The set of non-coalition vertices vnc = {i3,i4, p1,p2,i1,i2}, and the set of coalition 

vertices is empty. 

(3) Apply the procedure GroupingVertices to group the vertices into two group 

vertices. Each of them represents an orthogonal polyhedron. i4 is a separating vertex, and let 

it be a starting vertex in the closed walk. v8 is a pair of i4 in xyz-sorted, because i4v8 is a brink 

that is parallel to the Z-axis. The resulting closed walk is i4,v8,v7,i3,v11,v9,v10,v12,i2, and i1 as 

shown in Figure 4.15. 
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Figure 4.15: A Walk for Grouping Vertices 
 
The closed walk vertices without non-coalition are v8,v7,v11,v9,v10, and v12. After combining 

the non-coalition vertices and the closed walk vertices without non-coalition vertices, a 

smaller orthogonal polyhedron vertices is Q = {i4,v8,i3,v7, i2,p2,i1,p1,v10,v12,v9,v11}, and they 

are presented in XYZ-sorted order. The remaining of vertices are allocated to R. 

4.3.6 The Time complexity analyisis and discussion 

Let n be the number of vertices of a given orthogonal polyhedron and a polyplane, then the 

time cost for splitting the orthogonal polyhedron using the polyplane is calculated as the 

following activities: 

 ABC-sorted vertices in the set of combined vertices has the time complexity O(n log 

n) in which the ABC-sorted applies Quick-sort method [83]. 

 The time complexity for combining vertices of an orthogonal polyhedron and a 

polyplane is O(n). 

 Grouping the set of combined vertices into two smaller orthogonal polyhedra needs: i) 

O(n) to put each non-coalition vertex to each orthogonal polyhedron, ii) O(n) time to 

read the first separating vertex, iii) O(n) for making a closed walk from the first 

separating vertex and back to the first separating vertex, in which each vertex in the 

walk is visited three times. 

v8 i4 v7 i3 

v11 v9 v10 v12 

i2 i1 

Separating vertex 
Brink 
Edges 
Planes connecting 
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From the above list, sorting the set of combined vertices in ABC-sorted is the most time 

consuming operation. Therefore, the time complexity for splitting them using a polyplane 

is O(n log n).  

4.4  Splitting Polyhedra in a Bounding Box  

A complex shape of a polyhedron is often a reason for dividing the polyhedron into simpler 

shapes to better facilitate representing and performing a variety of operations on the shape. 

There could be a variety of different operations to do this task. For example: decomposition 

[84], or splitting [85]. Decomposition is an operation to divide a polyhedron into a set of 

simpler polyhedra. One of the possible problems in decomposition operation is how to 

decompose a given polyhedron into a minimum number of tetrahedra. Splitting is another 

kind of operation to split a polyhedron into two partitions. 

Instead of dividing a complex-shape polyhedron, dividing a polyhedron based on a view 

point often happens in the real life, but not much study has been focused on it.  The purpose 

of this kind of operation is to separate a visible and an invisible area of a polyhedron from a 

view point outside of the polyhedron. It is a quite interesting operation, because a set of 

polyhedra bounded by a bounding box can be split simultaneously into two groups: visible 

and not visible polyhedra. 

Given a set of convex polyhedra Pi in a bounding box B and a view point v that sees partially 

B in an orthogonal direction, what is the efficient procedure to split Pi in B from v? The 

algorithm has two main steps; compute the splitting plane derived from a view vertex, and if 

the splitting plane intersects with a polyhedron then split each of the affected polyhedra into 

two polyhedra. 
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4.4.1 Definitions and terminology 

A bounding box is an orthogonal prism, and it is composed by one or more polyhedra. Thus, 

if there is only a polyhedron in a bounding box then the polyhedron is an orthogonal 

polyhedron (a polyhedron in which each edge is parallel to any orthogonal direction).  The 

bounding box definition implies that all properties of polyhedra lie entirely in the bounding 

box.  

The boundary of bounding box consists of six facets that can be divided into a solid facet and 

an arbitrary facet. A facet is called a solid facet if any two points at each side of the facet 

cannot see each other. Meanwhile, a facet is called arbitrary facet if any two points at each 

side of the facet can see each other. In this thesis, it is assumed that, for any bounding box, at 

least one facet is a solid facet; meanwhile, at most five facets are arbitrary facets. A point v 

cannot see another point p inside a bounding box if a solid facet intersects the segment line 

pv, and v can see p if they intersect with an arbitrary facet.  

A view point is a vertex outside of a bounding box that has the task of seeing an area in the 

bounding box.  Due to the existence of at least one solid facet on the bounding box then a 

view point sees the bounding box partially. A bounding box is visible from one view point if 

at least a point in the interior of an arbitrary facet is visible from the view vertex. A view 

point v, as shown in Figure 4.16 will create an arbitrary plane in a bounding box if v sees at 

least four different points on one of the bounding box facets, and v is not in the same plane 

horizontally or vertically with the visible vertices.  

An orthogonally view point is a view point in which the segment line to the closet point in 

bounding box is parallel to one of the three orthogonal directions. A closet point is a 

bounding box vertex that has the smallest distance to a view point. If a view point sees a 

bounding box partially then the bounding box will be separated into regions in terms of v, 
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namely visible area and invisible area. The visible area is separated by a cutting plane from 

the invisible area, and a cutting plane is also known as a splitting plane. The planes that 

contain s0,s1, and q in Figure 4.16 are examples of splitting planes.  

The splitting plane S splits a bounding box B into two partitions, and it intersects four edges 

of B. There are three possibilities of a view point to cut a polyhedron from an orthogonal 

view point as shown in Figure 4.16. The possibility is dependent on the existence and 

position of a gate point that is a point in segment line that lies between the view vertex and a 

closet vertex in B. If a closet vertex is visible from a view point, then gate point does not 

exist; otherwise, a gate point exists. Point g in Figure 4.16(b) is a gate point. If a gate point 

does not exist, then a splitting plane starts from the closet vertex to v; otherwise, a splitting 

plane starts from the intersection of line vg with an edge of the closet facet to v.   

Figure 4.16 also gives the three possible ways of a splitting plane to cut a bounding box. 

Figure 4.16(a) is a bounding box having a splitting plane that derived from the view point v. 

The splitting plane in the bounding box in Figure 4.16(b) has two planes that derived from 

view point v. v sees the bottom partially because the line vq is blocked by another object. 

 

 

 

 

 

Figure 4.16 One Edge of B is Shared by S in (a); 
There is no Edge of B Shared by S in (b) or (c) 

 

 

  

v   

q   
s 0 

  

s 1 
  

g 
  

c

 

v   

q   

s 0 
  

s 1 
  

g 
  

b

 

v   

s 0 
  

s 1 
  

q   

a



87 
 

A non-convex polyhedron can be decomposed into convex polyhedra. For a polyhedron P 

with n edges and r notches (features causing non-convexity in polyhedra), the algorithm 

produces a worst case optimal O(r2) polyhedra in O(nr2 + r7/2) [86].  

Bajaj and Pascucci proposed a locality-based algorithm for splitting a complex polyhedron 

with a hyperplane h. The algorithm is divided into three phases: (i) in the first phase, primary 

numerical computations are performed to classify vertex positions with respect to h; (ii) in the 

second phase, symbolic manipulations return the topological structure of the result; (iii) in the 

final phase, secondary numerical computations are used to detail the geometric structure of 

the result. [87]. 

4.4.2 The algorithm 

The algorithm to split a polyhedron P in a bounding box B by a splitting plane S that is 

derived from a view point v contains two main steps:  

1. Compute points that form the splitting plane equation. 

2. Split each polyhedron that is intersected by a splitting plane into two polyhedra.  

In the subsequent sections, some theories to support this algorithm are reviewed such as data 

structure for a polyhedron, primitive operations, and the theory of intersection line and plane. 

Finally, procedures are developed for performing some tasks, such as: forming a splitting 

plane from a view point, calculating the intersection between a plane and line segments, and 

splitting a polyhedron.  

Let P be a simple polyhedron having n vertices: {v1, v2, ..., vn}, m edges: {e1, e2, ..., em}, and 

q facets: {f1, f2, ..., fq}. P is represented by a collection of vertices, edges and facets. The list 

of vertices, edges, and facets of P are stored similarly to the star-edge representation of 

polyhedra as discussed in Chapter 2. To create some main procedures, it is better to have an 
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insight about some preliminary procedures that are known as primitive operations. Figure 

4.17 shows the definitions of some primitive operations. 

 

 

 

 

 

Figure 4.17:  Primitive Procedures and Functions for Splitting in a Bounding Box 

4.4.3 Intersection line and plane 

A splitting plane is formed from three points, and has the general equation Ax + By + Cz + D 

=0 [88]. Given three points  s0 (x1,y1,z1) s1(x2,y2,z2) and q(x3,y3,z3)  then the coefficients 

of the splitting plane equation are formulated as Equations (4.1), (4.2), (4.3), and (4.4) as 

follows: 

A= y1(z2-z3) +y2(z3-z1)+ y3(z1-z2)       (4.1) 

B=z1(x2-x3) + z2(x3-x1) + z3(y1-y2)       (4.2) 

C= x1(y2-y3) + x2(y3-y1)+x3(y1-y2)       (4.3) 

-D= x1(y2*z3-y3*z2) + x2(y3*z1-y1*z3) + x3(y1*z2-y2*z1)            (4.4) 

An edge of an orthogonal polyhedron has two ending points. Let P1(x1,y1,z1) and P2(x2,y2,z2) 

be the edge-ending points. So, by using a parameter u, a line equation for the edge P1P2 is  P 

= P1+ u(P2-P1) where P1 and P2 are vectors in R3 [88]. The intersection points should lie on 

FUNCTION InitPolyhedron() RETURN polyhedron 
{Returns an empty polyhedron} 
PROCEDURE ReadFacet(INPUT P: polyhedron; OUTPUT f : facet) 
{Reads next facet from a polyhedron P} 
PROCEDURE ReadEdge(INPUT f: facet; OUTPUT e : edge) 
{Reads next edge (pair of vertices) from a facet f} 
PROCEDURE PutEdge(INPUT vb,ve: ending vertices of an edge; OUTPUT P: polyhedron)  
{Appends to a polyhedron P an edge having end vertices vb and ve)  
PROCEDURE IsVisible(INPUT p,v: point in B and view point; OUTPUT status: Boolean 
variable whether p is block by v.)  
FUNCTION RltTo() RETURN group of polyhedron 
{Return Q if the last read edge belong to Q, or R for the other case} 
PROCEDURE ReadBoxPlane(INPUT B: bounding box; OUTPUT v1,v2,v3: vertices of B) 
{Read three vertices from each plane of B} 
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the line and the splitting plane as well. Hence, to get the intersection point, substitute P to the 

plane equation to get the following formula:  

 ࢛ = ஺(௫ଵ)ା ஻(௬ଵ)ା ஼(௭ଵ)ା ஽
஺(௫ଵି௫ଶ)ା஻(௬ଵି௬ଶ)ା஼(௭ଵି௭ଶ)

                           (4.5) 

The coordinate of intersection points are: 

x = x1+u(x2-x1); y = y1+u(y2-y1); z = z1+u(z2-z1)              (4.6) 

These concepts are very useful to find the intersection point in some relevant tasks in this 

thesis, such as an intersection between a line segment from a view point and a plane on the 

bounding box, and intersection between an edge of a polyhedron and a splitting plane. 

Constants A, B, C and D are processed by a primitive operation DetermineConstantofPlane 

procedure as follows:  

PROCEDURE DetermineConstantofPlane(INPUT v1,v2,v3; OUTPUT A,B,C,D)  

Meanwhile, the constant u is processed by a procedure that defines as:  

PROCEDURE DetermineConstantofLine(INPUT v,so; OUTPUT u) 

4.4.4 Computing a splitting plane 

Instead of splitting a bounding box, splitting plane simultaneously splits an affected 

polyhedron into two polyhedra. A splitting plane S is formed by three points that lie on a 

bounding box, and three points are necessary to make a plane equation. Two points of S lie 

on a segment line that is derived from a view point. If the closet point p0 of B is visible from v 

then make a segment line from v through p0 until it intersects with another edge of B. But if 

the closet point p0 is not visible from v then make a segment line from v through a gate point 
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g until it intersects with two edges of B at points p0 and p1, respectively. See Figure 4.16 to 

have a precise understanding about the splitting plane and the supporting points.  

The task to determine the closet vertex of bounding box to the view point is quite simple. Let 

Bi(xb,yb,zb) be a vertex in B, and let V(xv,yv,zv) be a view point, then the distance between V 

and B is determined by the following formula:  

ܦ = ඥ(ݔ௩ − ௕)ଶݔ + ௩ݕ) − ௕)ଶݕ + ௩ݖ) − ௕)ଶమݖ               (4.7) 

A procedure to get the smallest D value is written as follows:   

PROCEDURE theClosetVertex(INPUT Vi: vertices B; OUTPUT D: a vertex) 

Thus, the splitting plane procedure is described as follows:  

 Make a segment line s from the view point v to the shortest visible vertex s0 of a 

bounding box B, and extend s until it hits the next edge of B at q. If the vertex s0 is not 

visible from v, make the segment line through the gate point g until it intersects the 

first edge at s0 and the next edge at q.  

 Assign a point s1 such that the edge s0s1 is perpendicular to segment line vs0, and 

establish the plane equation Ax + By + Cz + D =0 through s0,s1,q.  

In detail, the procedure to compute the splitting plane is described in Figure 4.18.  
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Figure 4.18: Algorithm ComputingSplittingPlane for Computing a Splitting Plane 

4.4.5 Calculating the intersection points on an edge of a polyhedron 

An intersection point on a polyhedron is a point at which a splitting plane intersects with an 

edge of a polyhedron. A set of intersection points forms a new facet that will split the 

polyhedron into two polyhedra.  To get the intersection point, determine a point that lies both 

on the edge of the polyhedron and the splitting plane. The main steps are:   

 Input points that will form a splitting plane.  

 Input an edge of a facet of the polyhedron 

 Calculate constants A, B ,C ,D and u to get the intersection value and intersection 

status  

 The corresponding Intersection algorithm can be stated as the following figure. 

 

PROCEDURE: ComputingSplittingPlane (INPUT: v coordinate of a view point, eight coordinate of  the 
bounding box B, g coordinate of gate point; OUTPUT: list of splitting plane’s coordinates 
VAR 
 s0,s1,q v1,v2,v3 : points 
 staVis, staIntsc : Boolean variable 
 A,B,C,D,u : constants 
ENDVAR 
theClosetVertex(view point v, list of B coordinate, s0) 
{read the visible vertices, determine the closet vertex s0} 
IsVisible(v,s0, staVis) {s0 is visible from v if vs0 does not intersect with another boundary} 
If staVis =FALSE THEN GatePoint(v,g,s0) ENDIF 
ReadBoxPlane(B,v1,v2,v3) 
WHILE BoxPlane NOT EOF DO 

DetermineConstantaofPlane(v1,v2,v3,A,B,C,-D) 
DetermineConstantaofLine(v,s0,u) 
IntersectionPlaneLine(v,s0,u,q, staIntsc) 
IF staIntsc =TRUE THEN EXIT WHILE 
ReadBoxPlane(B,v1,v2,v3) 

ENDWHILE 
FindOtherPoint(s0,q,s1) 
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Figure 4.19: Algorithm IntersectionPoint for Determining Intersection Points 

4.4.6 Splitting a polyhedron into two polyhedra 

This section presents a procedure for splitting of a polyhedron P against a splitting plane S. It 

computes two resulting polyhedra Q and R, respectively.  

Splitting P along S is carried out by splitting facets which are intersected by S.  Suppose fi is 

such a facet which is to be split at v1
i, v2

i,..,vk
i that lie on the edges e1

i, e2
i,..., ek

i respectively 

where k is the number of intersection point in facet i.  

The splitting process is started by reading the first facet f1 of P, and then followed by reading 

an edge e1
1 on f1. e1

1, which contains two end points vb and ve is evaluated by procedure 

Intersection that has inputs vb and ve and the splitting plane S. The output of this procedure is 

Boolean variable status and intersection point vm. If status = TRUE, then put vb and vm in Q 

where vm is a new vertex that lies between vb and ve, and put vm and ve in R. If status = 

FALSE, then there is no new point, and put vb and ve in Q.  

Edges on a facet have a direction, because the facet has a cycle of edges. It means that the 

second vertex (ve) on a previous edge becomes the first vertex (vb) on the next edge. Hence 

PROCEDURE: Intersection 
Input  s0,s1,q: Splitting Plane points, ei

i: edge  
Output  vm : vertex, staIntsc: Boolean variable  
Var  

A,B,C,D : constants 
 p1,p2 : points 
ENDVAR 
Readpoint(ei

i,p1,p2) 
DetermineConstantaofPlane(s0,s1,q,A,B,C,-D) 
DetermineConstantaofLine(so,s1,u) 
Intersect(p1,p2,u,vm, staIntsc) 
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for the next edges, the group of polyhedra is determined by the group of vb in the previous 

edges. A function RltTo() is used to determine the group of edges.  

Figure 4.20 shows two facets f1 and f2 in the same polyhedron. f1 has a cycle of edges e1,e2,e3 

and e4. e1 has two end points vb
1 and ve

1. vb
1 is written instead of vb just to clarify that the 

vertex is the beginning point of e1; however, for a general case, it is shorten as vb only. f1 does 

not intersect with a splitting plane, so all vertices, edges and face are grouped as Q. 

Meanwhile f2 intersects with a splitting plane at p1 and p2, then edges that have at least one 

ending point at Q are grouped as Q; otherwise, they are grouped as R.  

 

Figure 4.20: Grouping Polyhedra 

According to the above explanation, the corresponding splitting polyhedron procedure can 

be stated as Figure 4.21. 
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Figure 4.21: Algorithm SplittingPolyhedron for splitting polyhedron 

If a bounding box has p polyhedra, then apply splittingpolyhedron procedure p times. 

4.4.7  Implementation of the algorithm 

The example below would explain the implementation of the algorithm. Let B be a bounding 

box, P1 and P2 are polyhedra in B, and v be a view vertex. See Figure 4.22(a) to describe B, 

P, and Figure 4.22(b) to describe v.  

 

Figure 4.22: Illustration of Splitting Polyhedron in a Bounding Box 

1) There are two polyhedra in B. Polyhedron P1 contains list of vertex, edge E, 

orientation O, and facet F as follows:  
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PROCEDURE SplittingPolyhedron (INPUT P: polyhedron, S: splitting plane;  OUTPUT Q, R : 
polyhedra 
VAR  Vb, Ve, Vm: point of polyhedron    ENDVAR 
Q:= InitPolyhedron(); R:=InitPolyhedron(); 
ReadFacet(P,fi) 
WHILE fi NOT EOF DO 
ReadEdge(fi,ej

i,vb,ve) 
 WHILE ej

i NOT EOF DO 
 Intersect(S,fi, ej

i,vb,ve,Vi,statusIntersect) 
 IF statusIntersect = FALSE 
  RltTo() 
  PutEdge(Ve,Ve,Q,R) 
 ELSE 
  RltTo() 
  PutEdge(Vb,Ve,Vm,Q,R) 
 ENDIF 
 ReadEdge(fi,ej

i,vb,ve) 
      ENDWHLE 
     ReadFacet(P,fi) 
ENDWHILE 
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V={v1,(0,0,0),(e1,e4,e5),v9,(0,0,2)(e1,e2,e6),v3,(0,4,0),(e3,e4,e7),v10,(0,4,2),(e2,e3,e8),v5,(4,0,0),(e

5,e6,e9),v7,(4,4,0),(e7,e8,e9)}, E={e1,(v1,v9,o1),e2,(v9,v10,o2),e3,(v3,v12),e4,(v1,v3),e5,(v1,v5), 

e6,(v5,v10),e7,(v3,v7),e8,(v7,v11},O={(o1,e1,f1,e2,v1,v9),(o2,e2,f1,e3,v9,v10), etc}, 

F={f1,(e1,e2,e3,e4), f2,(e1,e5,e6), f3,(e8,e2,e6,e9), (f4,(e3,e8,e7), f5,(e4,e7,e9,e5}; 

Polyhedron P2 contain V={v10,v2,v12,v4,v13,v6,v14,v8}. 

2) Compute a splitting plane from the view point v that has coordinates (-0.5,4,-1) by 

using ComputingSplittingPlane procedure. The closet point to v is v3, so relabel v3 as s0, and 

the line equation trough v and s0 is L=(-0.5,4,-1) + u(0.5,0,1). The line vs0 intersects the edge 

of bounding box B on the plane z=4 at coordinate q(2,4,4).   

3) Find the third point on edge or point of B. It is quite simple to get this point. Let s1 be 

the third point then segment line s0s1 must be perpendicular to s0q. This means s1 shares a 

plane with s0, but not with q. The next step is making a plane through the points s0,q, and s1 (a 

corner of B not having the same plane with s0 and q. By using Formula (1), the splitting plane 

equation S is 2x-z=0.  

4) Apply procedure SplittingPolyhedron to do splitting. Check all facets and determine 

whether the facet fi is intersected by the S or not. For example: check edges on the facet f1 

that has e1,e2,e3,e4 edges in cycle order. Use intersection procedure to get the status of 

intersection. If status is TRUE then the program will proceed to calculate intersection points 

p1 and p2. The return value of function RltTo is Q for the first facet; hence, the list of edges, 

(e1,e2,e3,e4) belong to Q.  

5)  From the above algorithm, the next facet nf depends on a sharing edge with the 

previous facet pf. The group of the first edge in nf is the same as that of the last edges in pf. If 

the last edge in pf is visited then visit the last two edges. This method guarantees that each 

edge belongs to the correct polyhedron.  
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6) Thus, the result of splitting polyhedra is shown in the Figure 4.23. Polyhedron is 

partitioned into polyhedra Q and R, see Figure 4.23(b). There is a new facet f12, and it is a 

property of Q and R.  

 

 

 

 

Figure 4.23: The Resulting of Splitting Polyhedra 

4.4.8 The time complexity analysis and discussion 

The time cost is calculated for each of the following activities:  

The points that form a splitting plane from a view point are computed as the following steps. 

First, calculate the distance between each vertex in B and v; second, determine the closet 

point to v. It takes O(1), because there are six vertices of B. Second, find the intersection 

points between a plane of B and line that formed by v or g. This step has to proceed with an 

iteration at the most six times, and the cost is O(1).  

The time complexity of splitting polyhedron procedure is determined by the number of facets 

and edges on the polyhedron. Let f be number of facets and m be the maximum edges in any 

facet, then the time complexity for splitting polyhedron is O(fm). Overall, the time 

complexity of the algorithm for splitting polyhedron in bounding box from a view vertex is 

O(1) + O(fm) = O(fm).  

 

 

a 

e1 

e2 

e3 

e4 

e12 

e11 

e15 e14 

e16 v1 

v9 

v3 

v10 v11 

v12 
v1 

v3 

v11 

v12 

v5 

v7 

e4 

e16 

e11 

e15 
e10 

e9 
e13 

e5 

e7 

b 

Q R 



97 
 

The time complexity for splitting polyhedron and orthogonal polyhedron is linear, as shown 

in [87] and [56], respectively. From the above algorithm,  fm is the number of inputted facets. 

Hence, the time complexity is linear as well. There is nothing improved in terms of time 

complexity; however, the proposed algorithm is suitable for separating a visible and an 

invisible area of a polyhedron from an outside view point of the polyhedron, and splitting 

several polyhedra simultaneously in bounding a box area.  

4.5 Summary 

This chapter has developed an algorithm for splitting an orthogonal polygon with a polyline, 

in which the algorithm works in two main steps: combining the vertices of an orthogonal 

polygon and a polyline, and grouping vertices into two smaller orthogonal polygons.  

This chapter has also developed an algorithm for splitting an orthogonal polyhedron with a 

polyplane. The algorithm involves two main steps, combining the vertices of an orthogonal 

polyhedron and a polyplane, and grouping vertices into two smaller orthogonal polyhedra. 

Finally, this chapter has developed an algorithm for splitting polyhedra in a bounding box, in 

which the splitting plane passes through a view point that partially sees the bounding box in 

an orthogonal direction. The developed algorithm has two main steps: compute the splitting 

plane derived from a view vertex, and if the splitting plane intersects with a polyhedron, then 

split each of the effected polyhedra into two polyhedra.   

The next chapter will develop an algorithm for guard placement for an orthogonal pseudo-

polyhedron. 
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CHAPTER 5 

PLACEMENT OF FIXED-POINT GUARDS IN 
AN ORTHOGONAL PSEUDO-POLYHEDRON 

 
 

 

In this chapter, procedures are developed for point guard placement to monitor the interior of 

an orthogonal pseudo-polyhedron (OPP).  

As mentioned in Chapter 1, in the Art Gallery problem, given a polygonal gallery and the 

goal is to guard the gallery’s interior with a number of guards that must be placed 

strategically on edges, or on corners, or any point inside of the gallery. A gallery is in a 3-

dimensional space, but its floor outline usually has enough information to place the guards. 

Therefore, the art gallery is modelled as a polygon.  

Earlier work on the art gallery problem assumed that the floor outline of any building 

provides the sufficient information for monitoring the building. However, such a floor outline 

does not always give us adequate information about the complex spatial structure of the 

building. In many applications, the knowledge of spatial structure of the building is essential 

in deciding how the building should be monitored.  Therefore, it is necessary to take into 

account the spatial information on the environment to determine the guard placement. We 

call this version of art gallery problem the 3-Dimensional Art Gallery Problem.  

An art gallery is modelled by an OPP, because this shape arises frequently in practice and 

deserves special attention due to the fact that most real life buildings and art galleries are 

largely orthogonal shaped.  

Work in 3D-AGP is less extensive. Bose et al. [33] and Urrutia [6] considered mobile guards 

along the edges to monitor the exterior of a polyhedron. Recently, Souvaine et al. [34] 
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introduced face guards: guards that roam over an entire interior face of a simple polyhedron, 

and they also established bounds for the number of face guards that are necessary and 

sufficient to observe the interior of a simple polyhedron and a simple orthogonal polyhedron. 

In contrast to work of Souvaine et al., this thesis consider guarding the interior of OPP using 

fixed point guard, not using moving guards. A reason of using fixed guards is related to a 

practical application in which most of cameras in buildings (e.g., art galleries, banks, and 

supermarket) work in fixed point. In other words, using moving guards for applications are 

not adequate, but fixed guard are fine.  In this work, a procedure is developed for calculating 

the guard placement in which the guards are placed in any point in an OPP. 

Partitioning is a useful first step for successful guard placement. However, compared to 

partitioning a polygon, partitioning a polyhedron is a lot more complex, e.g., not all non-

convex polyhedra can be tetrahedralized [61],  and  the number of tetrahedra in a 

tetrahedralization of a given polyhedron is not unique [62]. Therefore, it is important to find a 

partition scheme for orthogonal polyhedra in order to solve the 3D-AGP. One possible 

scheme is by decomposing a given OPP into a number of rectangular prisms instead of 

tetrahedralization. 

Once an OPP is decomposed into a set of rectangular prisms, then a guard can be deployed to 

monitor a rectangular prism. Of course, each guard also monitors several rectangular prisms. 

To get a smaller number of guards, the 3D-AGP can be solved by transforming the problem 

into the Minimum Set Cover (MSC) problem. The MSC problem is defined as follow: given 

a universe U of elements and a collection S of (non-empty) subsets of U, and the goal is to 

find the smallest of a subset S’  S which covers U [89].  
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In this chapter, a method is developed for point guard placement in an OPP. The key to this 

method is the mapping of the 3D-AGP into a Minimum Set Cover (MSC) problem. The 

method has three main steps: (1) decompose a given orthogonal polyhedron into a set of 

rectangular prisms, (2) construct a visibility subset for each corner point, and (3) map the 3D-

AGP into a MSC problem. To implement this method, a number of definitions and 

terminologies are required, and they will be introduced in Section 5.1.  

A number of procedures are developed for support guard placement method, namely 

procedure for decomposing an OPP and procedure for construction visibility subset. These 

procedures will be discussed in Section 5.4 and 5.5. Section 5.6 shows how to convert the 

3D-AGP into MSC problem. 

After discussing the time complexity of algorithm for guard placement in Section 5.8, a new 

algorithm for guard placement is developed in Section 5.9. This new algorithm has a purpose 

to reduce the number of guards that is achieved by the previous guard placement’s algorithm. 

5.1 Terminology and Related Research 

The complex shape of a polyhedron is often the reason for dividing the polyhedron into 

simpler shapes to make it easy to performing a variety of operations on the polyhedron. One 

such operation is OPP partitioning, which is the process of decomposing an OPP into a set of 

rectangular prisms that do not intersect each other except on their boundaries (see Chapter 3). 

Each partition is called a piece of the original OPP. The symbol  is used to represent the 

collection of all orthogonal prisms created from the partitioning of the OPP.   

 For each rectangular prism, there are eight corner points. Each corner point either 

corresponds to a vertex of the original OPP, or to an interior point of the original OPP. The 

former is called a vertex and the latter is called a partition point. Figure 5.1 depicts an OPP 
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which is partitioned into nine rectangular prisms. After the partitioning, v1 is a vertex, and u1 

is a partition point. Both v1 and u1 are also corner points of the same rectangular prism.  In 

addition, 1 and 2 are two pieces in the partition. 

 

 
 

 

 

Figure 5.1: (a) an OPP, (b) Partitioning of the OPP 

A guard can be placed at a certain point in an OPP to monitor the interior of the OPP. Each 

guard is capable of monitoring some parts of the OPP. To facilitate discussion, the following 

terms, some of which were introduced in [23], are defined. 

Definition 5.1. Two points x and y in an OPP are said to be visible from each other if and 

only if the segment xy does not intersect the boundary of the OPP. 

Definition 5.2. Let c be a point of an OPP, the visibility region of c, denoted  Vr(c), is the set 

of points of P that are visible from c. 

Definition 5.3. A piece  of an OPP is said to be totally visible from c if every point of  is 

visible from c (i.e.,   Vr(c)).   is said to be partially visible from c if some, but 

not all, points of  is visible from c. 

In this thesis, point guards are used instead of vertex guards because Seidel has proved that 

there exist orthogonal polyhedra which cannot be fully monitored even if a guard is placed at 

each and every vertex of the orthogonal polyhedra [4].  
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One can expect that placing a guard at each and every vertex of a polyhedron would cover the 

entire interior of the polyhedron. This would only be obvious if every polyhedron is 

tetrahedralizable. For then, every tetrahedron would have a guard in a corner and the guards 

in these tetrahedra would cover the whole interior of the polyhedron. In the absence of 

tetrahedralization, however, it would be less clear whether the interior is still completely 

covered by these vertex guards.  

Seidel gave an example of an orthogonal polyhedron in which guards placed at every vertex 

do not fully cover the interior, and he then provided an upper bound of the minimum number 

of guards for monitoring that special type of orthogonal polyhedra and stated that (n3/2) 

guards are necessary, where n is the number of vertices in the orthogonal polyhedron [4].  

If each rectangle prism is allocated one point guard, the whole OPP will be fully monitored 

by these point guards. However, placing a guard inside every rectangular prism seems an 

overkill. A guard placed on a partition point, for example, will monitor at least two rectangle 

prisms. This indicates that there is a method to reduce the number of such points for placing 

guard so that all the rectangular prisms are totally covered.  

Recall that in Minimum Set Cover problem, it is given a universe U of elements and a 

collection S of (non-empty) subsets of U. The task is to find the minimum cardinality of a 

subset S’  S which covers U [89]. 

The solution to the MSC problem, i.e., the subset S’ S with the minimum cardinality that 

covers  gives us valid guard placements, and the cardinality of S’ can be interpreted as the 

number of guards for guarding an orthogonal polyhedron. 

The Minimum Set Cover problem has important application in areas such as rail way and air 

line scheduling [90], logical analysis of data [91], and species differentiation [92]. Although 
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MSC problem is proven to be NP-hard [89], there are several practical solutions for that 

problem such as linear programming approach, greedy algorithm and backtrack algorithm.  

A trivial solution to the MSC problem required O(m2n) time where m is the number of 

elements in U and n is the number of subsets in S. Another solution of MSC problem is by 

disposing the problem into the Dominant Set Problem [89]. It is out of the scope of this thesis 

to try to give a comprehensive list of all effective algorithms for MSC including both 

heuristic approach and exact algorithm. Interested readers are referred to the survey by 

Caprara et al [93] and Buezas [92]. 

5.2  The Point Guards Placement Algorithm 

In this section, an algorithm on how to place guards in a given orthogonal polyhedron is 

described.  The following steps are used to generate a guards’ placement:  

 Step 1. Partition the orthogonal polyhedron into a set of rectangular prisms. 

 Step 2. Construct a visibility subset of each corner point of each rectangular prism. 

 Step 3. Map the 3D-AGP into the MSC problem and find either an exact solution, or 

an approximation solution to the MSC problem. The solution, whether exact or 

approximate, would provide a valid guard placement for the 3D-AGP. 

The guard placement algorithm relies on the following procedures. The first one is to 

partition a given OPP into a set of rectangular prisms. This procedure will be discussed in 

Section 5.3. The second procedure is to compute the visibility subsets for the corner points 

from these rectangular prisms. This will be discussed in Section 5.4. The last one is to reduce 

the number of guards by using the MSC problem as a means to calculate the minimum corner 

points required to cover the entire all pieces, hence the entire original OPP is covered. The 

conversion to the MSC problem will be described in Section 5.6. Section 5.7 provides a brief 
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introduction to the solution of the MSC problem. The input to the algorithm, which is also the 

input to the partitioning procedure, is in the form of extreme vertices, as described in Chapter 

2. 

5.3  Partitioning of an Orthogonal Pseudo-Polyhedron 

The purpose of partitioning an OPP is to decompose the OPP into a set of rectangular prisms 

 = {i | i is rectangular prism where i=1,...,m}, and m is the number of rectangular prisms. 

Figure 5.1 is an illustration of partitioning result of an OPP. 

As mentioned in Chapter 3 that Ayala and Rodriquez have proposed a technique of 

partitioning an OPP into a set of rectangular prisms [76]. In their partitioning technique, the 

number of rectangular prisms of partitioning an OPP in different directions is not unique, in 

which the number of rectangular prisms depends on the way to cut the OPP. Therefore, if 

their technique is applied to get the number of rectangular to solve the 3D-AGP, then the 

number of guards is not unique as well. Hence, it is better to develop a new technique of 

partitioning such that this technique always gives a unique number of rectangular prisms for 

partitioning an OPP. 

In this new technique, decomposing an OPP into a set of rectangular prisms rests on the 

following observations: i) each OPP has at least two planes of vertices that parallel to one of 

the three planes (i.e., XY-plane, XZ-plane, and YZ-plane). An OPP is a rectangular prism if 

the number of a plane of vertices that parallel to each plane of the three planes is exactly two; 

otherwise, the OPP is not a rectangular prism. ii) An OPP can be decomposed into a set of 

smaller objects by using a number of splitting planes, which split an OPP into two halves in 

which each half may contain one or more OPPs. A splitting plane is perpendicular to one of 

the three orthogonal directions and is represented by a plane equation. A splitting plane 

equation is a plane equation that passes through a plane of vertices. iii) Vertices in a plane of 
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vertices have the same coordinate X, Y or Z. 

The procedure of decomposition is called DecomposeOPP, and this procedure assumes: i) 

An OPP is represented by its extreme vertices that are sorted depending on the splitting 

plane’s perpendicularity.  If an OPP is split by a splitting plane that is parallel to the x-axis, 

then the OPP is YZX-sorted, and if an OPP is split by a splitting plane that is parallel to the y-

axis then the OPP is ZXY-sorted, and if an OPP is split by a splitting plane that is parallel to 

the z-axis then the OPP is XYZ-sorted. To sort several OPPs, sort vertices based on each 

group OPP before sorting in XYZ-sorted or another sorted  (ii) A splitting plane passed 

through vertices of planes of vertices that contain at least one non-V30 vertex (reflection 

vertex); therefore, the number of splitting plane along each axis depends on the number of 

planes of vertices.  

The procedure DecomposeOPP has two kinds of inputs and one output. The inputs are 

OPP and splitting plane equation, and the output is a set of rectangular prisms.  The splitting 

planes equations are derived from by the coordinate of each plane of vertices. For example, if 

the vertices of a plane of vertices have the same coordinate X, say coordinate X = x1, then the 

splitting plane equation is x = x1, where x1 is also called as the splitting plane value. To make 

a convenient splitting process, the splitting is processed in XYZ-processed that has a 

meaning:  the OPP is split first along the x-axis, then along y-axis, and then along z-axis.  The 

detail procedure is given Figure 5.2.  
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Figure 5.2: Algorithm rectangPrism  for Decomposing P into Rectangular Prisms 

To split an OPP into two halves, cut the OPP using a plane of vertices until it hits the 

boundary of the OPP, in which a splitting plane is perpendicular to the x-axis, then the 

procedure SplittingOPP is applied (see Figure 5.3).  

The procedure SplittingOPP  has two kinds of inputs, namely a splitting plane equation 

and the brinks of P that perpendicular to the splitting plane. This algorithm is considered to 

those brinks that are parallel to the x-axis, and they appear as consecutive couples of vertices 

in a YZX-sorted model. So, if the splitting plane equation is x = sx then the splitting plane will 

cut all brinks that parallel to the x-axis.  

To split an OPP at a splitting plane, the splitting plane value is compared with the coordinate 

two end points of a brink, and then the vertices of P will be grouped into two groups, Q and R 

respectively. The splitting continues until the last splitting equation on X-direction is applied.  

Procedure RectangPrism (INPUT P: OPP, SP: splitting plane equations; OUTPUT RP: a set of 
rectangular prisms) 
 
var si : splitting plane value 

dir : the direction of splitting plane equation movement  
  (1 = x-direction, 2 = y-direction, 3 = z-direction) 

Q,R,Q’  : OPP 
kdir : number of splitting plane equations at dir direction 

 
for (dir = 1 to 3){ 
 Q’= ; 

if (dir = 1) { Sort P according its group of OPP and XYZ-order} 
if (dir = 2) { Sort P according its group of OPP and YZX-order} 
if (dir = 3) { Sort P according its group of OPP and ZXY-order} 

 
 for (i = 1 to kdir){ 

ReadSplittingPlane(i,si) // read si, the ith splitting plane 
     equation in direction dir  
SplittingOPP(P,si,Q,R); 
P =  R; 
Q’ = Q’ + Q; 

 } 
 P = Q’; 
} 
RP = P; 
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 If a splitting plane is perpendicular to other axis then a suitable ABC-sorted must be applied 

to the model prior to this process. The procedure ReadBrink(P: OPP in YZX-

sorted model; vb,ve: a pair of vertices) reads as a next brink of the YZX-

sorted model. The procedure Intersect(end points of brinks,splitting 

plane equation;intersection vertex)  obtains vs as follows: Let the splitting 

plane equation s = sx, and vb = (vbx,y,z) and ve = (vex,y,z) be the beginning and ending vertices 

coordinate of a brink, then the coordinate of vs = (sx,y,z).   

 

 

 

 

 

 

 

 

 

 

Figure 5.3:  Algorithm for Splitting an OPP into Two Halves 

Similar splitting processes are also applied to Y-axis and Z-axis, but keep the parts resulted 

from the previous process together until all cut (x-cut, y-cut, or z-cut) are completed. 

 As an illustration, Figure 5.4 is the OPP in Figure 5.1after partitioning. Each corner point in 

the OPP is labelled.  

 

 

Precedure SplittingOPP(INPUT P: OPP in YZX-sorted, s=sx : splitting plane; OUTPUT Q,R: 
Orthogonal pseudo-polyhedron) 
// partition P by a splitting plane  
 
VAR: vb, ve  : end points of a brink 
 Vbx, vex  : x-coordinate of the end points 
  vsx  : point in the middle of a brink 
 k  : number of brinks 
 
Q = ; R =  
For (i=1 to k){ 

ReadBrink(P,vb,ve); 
IF vbx < sx    &&  vex <= sx  THEN Q = Q + (vb,ve) ENDIF 
IF vbx >= sx  &&  vex > sx    THEN R = R + (vb,ve) ENDIF  
IF vbx < sx    &&  vex > sx     THEN  

Intersect(vb,ve,sx,vs) 
Q = Q + (vb,vs) 
R = R + (vs,ve)  

 ENDIF 
ReadBrink(P,vb,ve); 

} 
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Figure  5.4: Corner Points on an Orthogonal Pseudo-Polyhedron 
 
 

5.4 Computing Visibility Subsets on an Orthogonal Pseudo-Polyhedron 

The purpose of computing the visibility subsets is to construct a collection non empty sets S = 

{ Sj | j=1,...,k }, where Sj = { |   and   Vr(cj)} is the visibility subset for corner point 

cj.  

The procedure of computing the visibility subsets from a corner point of a rectangular prism 

rests on the following observation:  i) each rectangular prism has six faces. These six faces 

can be divided into two types  A Type I face is also a face of the original OPP, a Type II 

face is completely made up of the interior points of the original OPP except possibly at the 

edges of the face. If an edge of a face is also an edge on the original OPP, the edge is said to 

be Type I edge. Otherwise the edge would consist of only interior points of the original OPP 

and is called Type II edge.  ii) for a given view point, a rectangular prism (the first rectangular 

prism) is totally visible from the view point if and only if there exists no other rectangular 

prism with a Type I face intersecting the line connecting the view point and a point in the first 

rectangular prism. 

 
The following algorithm assumes the availability of k corner points ci  ( i=1, 2, . . . , k) from m 

rectangular prisms rpj (j=1, 2, …, m) which are resulted from the partition of an OPP. Note 

that some corner points are shared by more than one rectangular prism, therefore k  8m. It 

attempts to construct k visibility subsets Si (i=1, 2, . . . , k). For each corner point, it checks 
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each rectangular prism to see whether it is completely visible from that corner point. If every 

point in the rectangular prism is visible from the corner point, the rectangular prism is said to 

be completely visible from the corner point. Otherwise it is said to be (fully or partially) 

blocked from the corner point. At the end of the outmost loop, Si would contain all 

rectangular prisms that are completely visible from corner point ci. See Figure 5.5 for detail. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.5: Algorithm for Constructing Visibility Subsets 

The function IsViewBlocked takes a corner point ci, and two rectangular prisms, rpj and rpl. It 

returns true if the view from ci to rpj is blocked in anyway by the presence of rpl. Otherwise it 

returns false. 

  

for ( i = 1 to k ) { 
       Si  = ; 
       for ( j = 1 to m ) { 
  If (ci is a corner point of rpj ){ 
   Si  = Si  +  { rpj }; 
   continue; 
  } 
               blocked = false; 
              for (l = 1 to m) { 
                      if  (l != j )   
                            blocked = IsViewBlocked (ci, rpj, rpl); 
                       if  ( blocked )   
                            break; 
               } 
               if  ( not blocked )  
                       Si  = Si  +  { rpj }; 
       } 
} 
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Figure 5.6: Function IsViewBlocked for Blocking Determination 

For any given rectangular prism rpj and a point ci lying outside of rpj, there are between one 

and three faces of rpj that are visible from ci, depending on the position of the point relative 

to the rectangular prism. These visible faces and the corner point can form up to three 

rectangular pyramids, with the visible face at the base and the corner point at its apex. If 

another rectangular prism rpl blocks the view from ci to rpj, whether fully or partially, it must 

contain at least one Type I face or Type I edge. Otherwise the rectangular prism would 

consist of only interior points of the original OPP, hence it would be “transparent”.  

Rectangular prism rpl blocks the view from ci to rpj if and only if rpl contains a Type I face or 

Type I edge that intersects with one of the aforementioned rectangular pyramids. To see why 

this is a necessary condition, let’s assume that rpl does block the view from ci to rpj. This 

means that there exists at least one point s in rpj that is blocked by rpl. The line connecting ci 

and s would intersect with one or more points of rpl. One of these intersection points must lie 

on a Type I face or Type I edge, because otherwise all intersection points would be interior 

points of the original orthogonal polyhedron which are transparent and would not block the 

function IsViewBlocked (ci, rpj, rpl) 
{ 
 var edge, base, rectangle, pyramid; 
        for ( base = each of the rectangular faces of rpj that are visible from point ci ) { 
                if ( base is a Type I face )  
                        return true; 
                pyramid = the rectangular pyramid formed by point ci  and rectangle base; 
                for ( rectangle = each face of rp1 ) { 
   if (rectangle is a Type I face) 
                       if (rectangle intersects with pyramid )  
                                 return true; 
    else 
     return false; 
   for (edge = each of rectangle’s Type I edges ){ 
    if (edge intersects with pyramid) 
     return true; 
   } 
                } 
        } 
         return false; 
} 
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view. This proves that if rpl blocks the view from ci to rpj, then rpl must contain a Type I face 

or Type I edge that intersects with one of the rectangular pyramids. To see that the condition 

is also sufficient, we only need to take any intersection point s between the Type I face of rpl 

and one of the rectangular pyramids. Since s lies in the pyramid, the line from ci to s can be 

extended to the base of the pyramid, ending at point t. It is clear that point t on a face of rpj is 

not visible from ci because the sight is blocked by point s which is on a Type I face or Type I 

edge of rpl. This means that rpl blocks the view from ci to rpj.  

To determine whether a rectangle and a rectangular pyramid intersect with each other, one 

can check whether any of the four corner points of the rectangle lies in the pyramid. If one is 

found to be inside the pyramid, the rectangle and pyramid intersect with each other. If none 

of the corner points lies inside the pyramid, we still need to consider the case when the 

rectangle cuts through the pyramid however all corner points are outside of the pyramid. This 

can be easily verified by taking each of the eight edges of the pyramid and see whether any 

one of the edge intersects with rectangle. If one edge is found be intersecting with the 

rectangle, the pyramid and the rectangle intersect with each other. Otherwise they do not 

intersect with each other. 

It is relatively easy to determine whether an edge intersects with a rectangular pyramid. 

Firstly one can check each of the two end points of the edge. If at least one of the end points 

is inside the pyramid, the edge must intersect with the pyramid. If both end points of the edge 

lie outside of the pyramid, there is still possibility that the edge intersects with the pyramid. It 

is noticed that in such a scenario, the edge intersects with the pyramid if and only if the edge 

intersects with one of the five faces of the pyramid. Hence the intersection can be determined 

by checking whether the face of the pyramid intersects with the edge. 
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As an example of the visibility procedure result is presented in Table 5.1 that shows the 

visibility region of each corner point of partitioned OPP in Figure 5.4. Each visibility subset 

of a corner ci is kept in subset Si. 

Table 5.1: Corner Point and their Visibility Regions 
Subset Element of Subset  Subset Element of Subset  Subset Element of Subset  
S1 1, 2, 3, 5, 7, 8 S15  5, 6 S29 1, 3, 5, 7, 8, 9 
S2 1, 2, 3, 5, 7, 8 S16 1, 3, 4, 5, 6, 7, 8 S30 1, 3, 5, 7, 8, 9 
S3 1, 2 S17 1, 3, 4, 5, 6, 7, 8,  S31 8, 9 
S4 1, 2, 3, 5, 7, 8 S18  5, 6 S32 1, 3, 5, 7, 8, 9 
S5 1, 2, 3, 5, 7, 8 S19  4, 5 S33 1, 3, 5, 7, 8, 9 
S6 1, 2 S20  4, 5 S34 8, 9 
S7 1, 2, 3, 5, 7, 8 S21 1, 3, 4, 5, 6, 7, 8 S35 1, 3, 5, 7, 8, 9 
S8 1, 2, 3, 5, 7, 8 S22 1, 3, 4, 5, 6, 7, 8 S36 1, 3, 5, 7, 8, 9 
S9 1, 2 S23  5, 6 S37 8, 9 
S10 1, 2, 3, 5, 7, 8 S24 1, 3, 4, 5, 6, 7, 8 S38 1, 3, 5, 7, 8, 9 
S11 1, 2, 3, 5, 7, 8 S25 1, 3, 4, 5, 6, 7, 8,  S39 1, 3, 5, 7, 8, 9 
S12 1, 2 S26  5, 6 S40 8, 9 
S13 1, 3, 4, 5, 6, 7, 8 S27  4, 5   
S14 1, 3, 4, 5, 6, 7, 8 S28  4, β5   
 
 

 
5.5 Mapping 3D-AGP into MSC Problem 

Given an OPP, assume that it is partitioned into a set of m rectangular prism  = {i | i is 

rectangular prism and i=1,...,m}. The partition results in corner points from these m 

rectangular prisms. Section 5.5 described a procedure to construct k visibility subset Sj 

(j=1,2,...,k), each of which contains those rectangular prisms that are completely visible from 

a given corner point. A trivial guard placement can be obtained by placing one guard at each 

corner point. This is because each guard would cover a number of rectangular prisms and the 

k guards would cover all rectangular prisms hence the entire OPP, i.e., j=1 to k Sj =  = P. 

However the number of guards in the above trivial placement scheme is far too excessive. 

Many rectangular prisms are visible from multiple corner points. Furthermore some visibility 

subsets may contain all rectangular prisms from another visibility subset. Hence the number 
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of guards can be greatly reduces if a minimum number of visibility subset can be found that 

contain all rectangular prisms. 

As each corner point cj has an associated Sj, the above task is equivalent to the Minimum Set 

Cover (MSC) problem. Hence 3D-AGP problem can be mapped to the Minimum Set Cover 

problem by imposing U =  and S = {S1,S2,...,Sk}.The solution to the MSC problem, i.e., the 

subset S’ S with the minimum cardinality that covers  gives us a valid guards placement, 

and the cardinality of S’ can be interpreted as the number of guards in an OPP. 

Section 5.6 will show how the Integer Linear Programming gives a very close solution for the 

MSC problem.  

5.6 Solving the MSC Problem  An Example 

As mentioned above, the 3D-AGP can be converted to the MSC problem: given a universe U 

= {i | i is rectangular prism and i=1,...,m}, and a non-empty set S = {Sj | j=1,...,k}  where Sj 

= { |  U and  is totally visible from a corner point cj}, find a subset S’ of  S  with the 

minimum cardinality that covers all elements in U. 

There are a number of methods for solving the MSC problem, such as linear programming, 

heuristic algorithms, and exact algorithms [93].  

Linear programming is regarded a very important technique for the optimization of a linear 

objective function, subject to linear equality and inequality constraints. This method is used 

in many areas, one of it being business and economics due to the fact that problems like 

maximizing outcome can be straightforwardly stated and efficiently solved. 
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Linear programming is the problem of optimizing (minimizing or maximizing) a linear 

function subject to linear inequality constraint [94]. In their canonical form, linear programs 

are expressed as: 

Maximize / Minimize cTx 

Subject to Ax  b, 

where x is a vector of variables whose value must be determined, and c and b are vector of 

known coefficients. The expression cTx is to be maximized / minimized within the limit 

defined by Ax  b.  Linear programming problems can be solved using different very well 

known methods such as Simplex, Ellipsoid, and Interior Point. 

If each value of a vector whose value must be determined is an integer number then the above 

model is called integer linear programming. This is the problem of optimizing (minimizing or 

maximizing) a linear function subject to linear inequality constraint in which the possible 

value of each variable is restricted to be an integer number [94] .  

Another approach to solve the MSC problem is by using heuristic approach. Heuristic 

approach is used for algorithms which find solutions among all possible ones, but they do not 

guarantee that the best will be found, therefore they may be considered as approximately and 

not accurate algorithms [93]. A greedy algorithm for the MSC problem is an example of 

heuristic approach [94].  This algorithm always selects a set which cover the maximum 

number of yet uncovered elements, and it is a log M-approximation algorithm, where M is the 

number of sets. The greedy approach does not guarantee that, upon termination, a minimum 

cover will be found. However, this algorithm can be used in the minimization process to 

establish a first upper bound for the size of the minimum cover. 
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The last approach in this discussion is the exact approach. The most effective exact approach 

to MSC are branch and bound algorithm [93]. The main reason for this success is the fact that 

it is apparently very difficult to get significantly stronger lower bound by alternative methods 

which are computationally more expensive. 

5.6.1 Integer Linear Programming formulation of the MSC problem 

As an example of solving the MSC problem, this section will discuss the application of 

integer linear programming approach. The problem of MSC is formulated in integer linear 

programming model as follows: 

Given a Boolean matrix A having size m x k. Let M = {1,...,m} and K ={1,...,k}, then  column 

j  K is said to cover a row iM if Aij = 1.  The MSC problem calls for a minimum subset S 

 K of columns such that each row i  M is covered by at least one column j  S.  

The integer linear programming is defined as [95] :  

∑      ݁ݖ݅݉݅݊݅ܯ                    ܿ௜௡
௝ୀଵ  ௝ݔ

∑    ݋ݐ ݐ݆ܾܿ݁ݑܵ                    ܽ௜௝ݔ௝௡
௝ୀଵ ≥ ௜ܾ    ݅ = 1, … ,݉ 

௝ݔ                                                 {0,1}      ݆ = 1, … ,݇ 

The integer linear programming can be solved by the dual simplex algorithm [95]. 

All subsets in Table 5.1 can be processed using the dual simplex algorithm by inputting the 

component of vectors a, b and c as shown in Appendix 1. The component vector a consists of 

two numbers only, namely 0 and 1. 1 is used if a piece  is an element of subset Si, and 0 for 

the other case. Meanwhile, the number of component in vector b is equal with the number of 

pieces in , and all components are 1.  
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After processing these inputs by using the dual simplex algorithm as shown in the Appendix 

1 then a result is achieved as follows:  the variables x1, x13 and x29 have value 1, and the other 

variables have value 0. The objective value at the optimal point: z = 3. It implies that the 

number of guard is 3, and their positions are at c1, c13 and c29 as shown in the following 

Figure. 

 

 

 

Figure 5.7: The Guards Position after Deploying Integer Linear Programming 

5.7 Time Complexity of the Guard Placement Algorithm 

The time cost of the guard placement algorithm is calculated as follows. Firstly, the time 

complexity for decomposing an orthogonal polyhedron into a set of rectangular prisms is 

determined by the number of splitting planes, and the whole partition can be complete in 

polynomial time in n, the number of vertices in the orthogonal polyhedron. Secondly, 

visibility subsets can be constructed in O(m3) time as shown in the previous section. It can be 

establish that m < n3, hence the visibility subset can be constructed in polynomial time in n. 

However, the final step requires the solution of an MSC problem, which is NP-hard. 

Therefore, no matter how fast one can perform partitioning and construct visibility subsets, 

the overall time complexity for the guard placement algorithm is still exponential in n.  

Although finding the exact solution to the MSC problem will take exponential time, there are 

heuristic and approximation algorithms for the MSC problem [92]. These algorithms can 

produce solutions that are close to the true minimum in reasonable amount of time. As 
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discussed in Section 5.6 that even if a solution to the MSC is approximate, it still provides a 

valid guards’ placement. 

5.8 Reducing the Number of Guards 

It is still possible to reduce the number of guards for covering an OPP that are determined by 

guard placement algorithm. This possibility comes from a fact that some pieces could be 

covered by two or more guards cooperatively despite of covered totally by a guard. 

Therefore, the guard that covers totally a piece can be removed. For example: the piece 4 is 

totally visible from c13, but 4 is also partially visible from corner points c1 and c29. If both of 

corner points cover all the area of 4, then c13 can be deleted as a guard to achieve a smaller 

number of guards. 

In this section, a new guard placement procedure is proposed to reduce the number of guard. 

Basically, the new guard placement algorithm is quite similar with the previous guard 

placement algorithm. The only different is the new algorithm used the result of the previous 

as inputs and a rectangular prism may be monitored cooperatively by several guards. 

The input of new guard placement algorithm is the result of the previous guard placement 

algorithm that is a collection of corner points that can cover all pieces in an OPP. Meanwhile, 

the output is the smallest number of corner points for covering an OPP in which number of 

corner points implies the number of guards.  

The procedure of the new algorithm consists of several activities namely: (i) identify pieces 

that are partially visible from at least two resulting guards, (ii) partitioning each piece in 

rectangular prism which is called as a bounding box into polyhedra, (iii) determine the 

minimum set of corner points for covering all pieces. 
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The following definitions are introduced to support the proposed the new guard placement 

algorithm: 

Definition 5.4. Rectangular prism partitioning is splitting a rectangular prism or polyhedron 

in a bounding box into visible area and non-visible area from a view point. Both resulting 

areas are polyhedra.  

If a view point does not see the whole surface of an orthogonal prism , then  is said 

partially visible from c. In another word,  is visible by section from c. It might happen 

several view-points see cooperatively the whole surface of .  This fact leads us to the 

following definition.  

Definition 5.7. A piece  is visible by sections if it is covered by several visibility sections 

cooperatively. 

Let C’ be a set of corner points in an OPP in which all guards are lain as a result of the 

previous guard placement algorithm, then new guard placement algorithm  has main steps as 

follows:  

 Step 1.   Determine D that is partially visible pieces from at least two corner points of 

element C’. 

 Step 2. Decompose each element of D into polyhedra by using cutting planes that are 

derived from all element of C’.  Put each resulted polyhedron and undecomposed 

orthogonal prisms into a new set of pieces  = {i | i is rectangular prism or 

polyhedra, and i = 1,..., m} 

 Step 3.  Construct S’ = {Sj’ | j=1,...,k}, where Sj’ = { |    and  Vr(cj)}. m and k 

are the number of pieces and corner points of  a partitioned OPP respectively. 

 Step 4. Determine the minimum subset Sj”  Sj’ that cover  
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The first step of algorithm is determining a subset D that partially visible from at least two 

corner points in C’. It is necessary to say that each element D must be partially visible from 

at least two corner points, because at least two corner points may see a piece cooperatively, 

and it cannot do by a single corner point.  A function CountedVisibility is created to 

retrieve D during counting the visibility subsets in a partitioned OPP.  

The second step of algorithm is decomposing each piece of D into a number of polyhedra. 

Each element of D  is regarded as a bounding box which has a form as rectangular prism. 

The purpose of this step is to decompose the original piece into several polyhedra. To achieve 

a set of polyhedra in a bounding box, a number of splitting operations may be carried out, and 

it depends on the number of cutting plane. The number of cutting planes is at most equal with 

the number of dominant corner points. The algorithm for Splitting Polyhedra in a Bounding 

Box from a view Point in Chapter 4 is recalled to do the task of partitioning. All polyhedra 

and the rectangular prisms become elements of set of partition . 

The third step is determining pieces that are totally visible from each corner point c C’, and 

store it in Sj’.  

Finally, the last step is determining the minimum subset Sj”  Sj’ that covers . This step is 

similar with the last step of the previous guard placement algorithm by transferring the 

problem into MSC problem.  The inputs are U =  and S = Sj’, and the result is the minimum 

set Sj” that covers all pieces in . The cardinal number of element of Sj” implies the number 

of guards to cover the interior of P. By using the dual simplex method, the MSC problem as 

mapping of 3D-AGP is solved.  

As implementation, the new guard placement algorithm will be applied to reduce the number 

of guards for example in Section 5.7. Initially, based on the result of the previous guard 
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placement algorithm,  = {1, 21, 22, 23 , 3, 41, 42, 43, 5, 61, 62, 63, 7, 8, 91, 92, 

93} and S’ = { S1, S13, S29 } as shown in Figure 5.8.  

 

 

 

 

 

Figure 5.8: Partitioning in Pieces that are Visible by Sections 

In this figure, a corner point c1 see a set of pieces S1’ = {1, 21, 22, 23 , 3, 42, 43, 5, 62, 

63, 7, 8, 91}.  Each element of S’ has the visibility region listed in Table 5.2, which shows 

the visibility region of each corner point that is kept in subset Si. To simplify the notation, 

each element is relabeled, and they start from i = 1 to m, where m is the total number of 

pieces in . 

Table 5.2: Corner Points and their Visibility Region 
Subset Relabelled of 

Subset 

Element of Subset  Relabelled of element 

S1’ S1’ 1, 21, 22, 23 , 3, 42, 43, 5, 62, 

63, 7, 8, 91 

1, 2, 3, 4 , 5, 7, 8, 9, 11, 12, 

13, 14, 15 

S13’ S2’ 1, 21, 22, 3, 41, 42, 43, 5, 61, 62, 

63, 7, 8, 91, 92 

1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12,  

13, 14, 15, 16 

S29’ S3’ 1, 21, 3, 41, 42, 5, 61, 62, 7, 8, 

91, 92, 93 

1, 2, 5, 6, 7, 9, 10, 11, 13, 14, 

15, 16, 17 

 

After processing these inputs by using the dual simplex algorithm as shown in the Appendix 

2 then a result is achieved as follows:  the variables x1 and x3 have value 1, and variable x2 
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have value 0. The objective value at the optimal point: z = 2. It implies that the number of 

guard is 2, and their positions are at c1 and c29. 

5.9  Summary 

This chapter has discussed the procedure of the point guard placement for monitoring the 

interior of an orthogonal pseudo-polyhedron. The main steps are: partitioning a given OPP 

into a set of rectangular prisms, counting visibility subsets of each corner point, and transfer 

the 3D-AGP into the MSC problems.  

The procedure for partitioning OPP and counting visibility subsets can be constructed in 

polynomial time in n. However, the final step requires the solution of an MSC problem, 

which is NP-hard. Therefore, in overall, the point guard placement for solving the 3D-AGP is 

NP-hard.  

The contributions of this chapter are: 

 The procedure of point guard placement in an OPP is proposed. 

 A new technique of partitioning an OPP into set of rectangular prism has been 

presented. 

 The procedure for counting the visibility subset of each corner point in a partitioned 

OPP is also proposed. 

 A method has been proposed to reduce the number of point guards for monitoring the 

interior of an OPP. 

The upper bound number of guards for monitoring the interior of an orthogonal 

polyhedron is dealt with in the next chapter. 
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CHAPTER 6 

AN UPPER BOUND ON THE NUMBER OF FIXED-POINT GUARDS 
FOR ORTHOGONAL POLYHEDRA 

 
 

 

6.1 Introduction 

In this chapter, the dominant pieces around various types of vertex configurations in any 

orthogonal polyhedra are identified. A technique is also proposed to reduce the number of 

data inputs for the minimum set cover (MSC) problem. The main contribution of this chapter 

is in the establishment of an upper bound of fixed-point guards for any orthogonal polyhedra.  

As discussed in Chapter 5, rectangular prisms produced by partitioning on an orthogonal 

pseudo-polyhedron were used as input data for two procedures: calculating the visibility 

subsets and the solution to the MSC problem. The rectangular prisms, which are also called 

pieces in this chapter can be grouped as dominating pieces and dominated pieces. The 

grouping of the pieces is based on the observation that is described below: 

Let an orthogonal polyhedron be partitioned into three pieces, as depicted in Figure 6.1. The 

piece 1 is totally visible from the corner points in the pieces 1 and 2, the piece 2 is totally 

visible from the corner points in the pieces 1, 2 and 3. The piece 3 is totally visible from 

the corner points in the pieces 3 and 2. All corner points that can see 1 can also see 2. 

However, not all corner points that can see 2 can see 1. For example, the corner points in 3 

can see 2, but not all corner points in 3 can see 2.  In this situation, 1 is said to be 

dominant over 2. Using the same observation for pieces 2 and 3, 3 can be seen to be 

dominant over 2. 
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Figure 6.1: Dominant Pieces Shared by the V31 Vertex 

Based on these observations, the set of all dominant pieces of an orthogonal polyhedron can 

represent all the pieces in that orthogonal polyhedron. The number of dominant pieces in any 

orthogonal polyhedron is used to determine the upper bound number of fixed-point guards for 

monitoring the interior of an orthogonal polyhedron. 

6.2  Determining the Dominant Pieces 

Recall that the piece  of an orthogonal polyhedron is said to be totally visible from a point, 

c, if every point of  is visible from c, and  is said to be partially visible from c if some, but 

not all, points of  are visible from c. Note that if a piece  is totally visible from a point c, 

then the point c is visible from every point of the piece . Hence in this case, the point c is 

also said to be totally visible from the piece . The concept of  a dominant piece is defined 

below. 

Definition 6.1: Let Gi and Gj be two set of corner points, which are derived from a 

rectangular-prism decomposition of an orthogonal polyhedron, that are totally visible from 

the piece i and j, respectively. Then, the piece i is said to be dominant over a piece, j, if 

Gi  Gj. If Gi = Gj then i is said to be equivalent to j and vice versa.  

As an example, the dominant pieces in Figure 6.1 are obtained by Definition 6.1 as follows. 

G1 = {c1, c2, c3, c4, c5, c6, c8, c9, c11, c12, c14, c15}, G2 = { c1, c2, c3, c4, c5, c6, c7, c8, c9, c10,  
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c11, c12, c13, c14, c15, c16}, and G3 = c5, c6, c7, c8, c9, c10,  c11, c12, c13, c14, c15, c16}. G1  G2 

and G3  G1; therefore, 1 and 3 are the dominant pieces over 2. 

A vertex on an orthogonal polyhedron is either be a reflex vertex or a convex vertex. An 

arbitrary vertex is a corner point of any pieces in a partitioned orthogonal polyhedron that is 

neither a reflex vertex nor a convex vertex. The pieces that are totally visible from any 

vertices can be grouped as two groups of pieces:  around pieces and remote pieces. An 

around piece, ,  is a piece that is visible from at least one vertex, v, and v is a corner of . A 

remote piece, , is a piece that is visible from at least one vertex but all corner points of  are 

arbitrary vertices. The partitioned orthogonal polyhedron in Figure 6.2 has eight vertices: c1, 

c2, c3, c4, c13, c14, c15 and c16. The pieces 1 and 3 are around pieces, and 2 is a remote piece.  

Subsection 6.2.1 will identify dominant pieces at around pieces and remote pieces. 

 

 

 

Figure 6.2: Around Pieces and Remote Pieces 

6.2.1 Around pieces of various types of vertex 

Vertices are differentiated by their vertex configurations. Chapter 3 defined six kinds of 

vertex configurations on orthogonal polyhedra: V30, V31, V32, V33, V42, and V63. The first 

digit of a vertex label represents the number of edges meeting at the vertex, and the second 

digit represents the number of concave dihedral angles at the vertex. 

Figure 6.3 depicts all six vertex configurations. Each orthogonal polyhedron is decomposed 

into a set of rectangular prisms (pieces) by cutting them at the reflex vertices. Some vertex is 
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shared by between three, four, five, and seven different pieces. For example, the V32 vertex 

is shared by five pieces, so there are five around pieces of the V32 vertex. The following list 

shows the number of around pieces for each type of vertex in orthogonal polyhedra. 

 A V30 vertex is shared by one piece. 

 A V31 vertex is shared by three pieces. 

 A V32 vertex is shared by five pieces. 

 A V33 vertex is shared by seven pieces. 

 A V42 vertex is shared by four pieces. 

 A V63 vertex is shared by four pieces. 

 

 

 

 
 
 
  
 

Figure 6.3: Around Pieces of Vertices of Orthogonal Polyhedra 
 

There are two kinds of around pieces of a vertex: dominant pieces and dominated (non-

dominant) pieces. A dominant piece is less totally visible than a dominated piece from a 

number of corner points.  There are a number of around pieces for a V31 vertex, V32 vertex, 

V33 vertex, V42 vertex, and V63 vertex. A V30 vertex is not considered to have a dominant 

piece because there is only one around piece of a V30 vertex. By using Definition 6.1, the 

dominant pieces of each orthogonal polyhedron in Figure 6.3 can be identified. The results 

are described as follows: 

1. The number of dominant pieces sharing each V31 vertex is two. 
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There are three around pieces sharing the same V31 vertex, namely 1, 2, and 3. 1 

is dominant over 2, and 3 is also dominant over 2. But 1 and 3 are not equivalent; 

hence, the number of dominant pieces sharing each V31 vertex is two. 

2. The number of dominant pieces sharing each V32 vertex is two. 

There are five around pieces sharing the V32 vertex, namely 1, 2, 3, 4 and 5. The 

pieces 1, 2 and 4 are equivalent, and they are dominant over 3. 5 is also dominant 

over 3. Therefore, the number of dominant pieces sharing the V32 vertex is two. 

3. The number of dominant pieces sharing sharing each V33 vertex is three. 

There are seven around pieces sharing the same V33 vertex, namely 1,..., 7. The 

number of dominant around pieces sharing the V33 vertex is three, and they are 2, 3 

and 7 

4. The number of dominant pieces sharing each V42 vertex is two. 

There are four around pieces sharing the same V42 vertex, namely 1,..., 4. The 

number of dominant pieces sharing the same V42 vertex is two, and they are 2 and 

4 

5. The number of dominant pieces sharing each V63 vertex is three. They are 1, 3 and 

4. 

 

6.2.2 Remote pieces 

As defined in Section 6.2, a remote piece is visible from at least one vertex of an orthogonal 

polyhedron and all corner points of the remote piece are arbitrary point. A remote piece lies 

at least between two around pieces.  

Lemma 6.1:  A remote piece is dominated by an around piece.  
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Proof : As a remote piece lies at least between two around pieces, then a remote piece has at 

least two arbitrary boundaries that is a kind of boundary having arbitrary point as corner 

points. It is obvious that the number of vertices see a remote piece is more than the number of 

vertices see an around piece. By definition 6.1, an around piece is less visible than a remoter 

piece; therefore, an around piece is dominant over a remote piece. � 

 

6.3 Reducing the Number of Input Data for the MSC Problem 

The number of pieces input in the MSC problem can be reduced by excluding the dominated 

pieces. Based on the definition of a dominant piece, one can conclude that if guards monitor 

the dominant pieces, then the guards also monitor the dominated pieces. Therefore, the 

dominated pieces can be neglected as inputs in the MSC problem. Thus, a corner point that 

only sees dominated pieces can also be removed as an input in the MSC problem. 

Given an orthogonal polyhedron P, assume that P is partitioned into a set of an m rectangular 

prism  = {i | i is a rectangular prism and i=1,...,m}. The k visibility subset Sj (j=1,2,...,k), 

each of which contains those rectangular prisms that are totally visible from a given corner 

point, can be transformed into a collection of subsets Gi(i = 1, 2,...,m), each of which 

contains those corner points that are visible from any point on a rectangular prism, . To 

identify the dominant pieces, the rule in Definition 6.1 is applied. All the dominated pieces 

and the corner points that only see the dominated pieces are removed as input in the MSC 

problem. 

After removing the dominated pieces, there is a set of an m dominant rectangular prism  = 

{i | i is a dominant rectangular prism and i=1,...,m}, and  k visibility subset Sj (j=1,2,...,k), 

where Sj = { |   and   Vr(cj)} is the visibility subset for corner point cj, and cj are 

corner points that are only visible from dominant pieces. 



128 
 

6.4 Upper Bound of Point Guards for an Orthogonal Polyhedron 

After the partitioning, a guard can be deployed at each piece of an orthogonal polyhedron 

such that the whole interior of the orthogonal polyhedron is totally covered. However, 

considering the total number of pieces as an upper bound number of guards on the orthogonal 

polyhedron seems overkill.  

Seidel stated that not every orthogonal polyhedron can be covered by all its vertices [4].  This 

idea can provide a starting point to calculate the upper bound number of guards. It implies 

that there could be a point in some orthogonal polyhedra that is not visible from any vertex. A 

piece  is totally visible from a vertex v if all points in  are visible from v, and a piece  is a 

partially visible piece if there is a point in the piece that is not visible from any vertex. Thus, 

there are two groups of pieces in terms of visibility from any vertex: a group of totally visible 

pieces and a group of partially visible pieces. 

The number of guards is not more than the number of dominant pieces. Hence, to obtain an 

upper bound number of guards, the following steps are applied: The upper bound of dominant 

pieces is first determined (Subsection 6.4.1), and followed by counting the number of 

partially visible pieces (Subsection 6.4.2). They are then combined into a single number, and 

the formula is represented by the n parameter, where n is the number of vertices of the 

orthogonal polyhedron (Subsection 6.4.3).  

6.4.1 Counting the number of dominant visible pieces 

Section 6.2 discussed how to obtain the dominant pieces from a partitioned orthogonal 

polyhedron that is visible from at least one vertex of the orthogonal polyhedron. The number 

of dominant pieces can be considered as the upper bound of the guard to cover the visible 

pieces from any vertices inside an orthogonal polyhedron. 
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When determining the upper bound number of guards for monitoring the visible pieces from 

any vertex in an orthogonal polyhedron, it should be noted that that each reflex vertex is 

always adjacent to at least one adjacent vertex. Two adjacent vertices share the same 

dominant piece; therefore, it is sufficient to count one reflex vertex only. 

Observation: Each reflex vertex has an adjacent reflex vertex.  

Based on the above description, the highest number of dominant around pieces of any vertex 

is three, and each reflex vertex has an adjacent reflex vertex; therefore, there are at most 3R/2 

number of dominant visible pieces, where R is the number of reflex vertices. If the value of R 

= 0, then the orthogonal polyhedron is a rectangular prism; hence, the number of guards is 

one. The next step is calculating the number of partially visible pieces. 

6.4.2 Counting the number of partially visible pieces 

A dominant piece will not be visible if it is placed among six dents, in which each dent has at 

least four reflex vertices. Figure 6.4 presents an illustration of a partially visible piece  

which is bounded by six dents d1, d2, d3, d4, d5 and d6. The position of d5 is under d6. 

  

 

 

 

    a    b 

Figure 6.4: Illustration of a Partially Visible Piece  Position in 3D (a) and 2D (b) 

 

The problem of finding an upper-bound number of partially visible pieces is defined as 

follows: 

 

d3 d4 

 

d1 

d2 

d6 d5 
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Definition 6.2 : Let D be the number of dents. Then, a function f(D)  is the maximum number 

of partially visible pieces that can be created by D dents.  

The function f(D) is calculated based on the following: 

1. Each partially visible piece is bounded by six dents 

This fact implies that each dent may bound one or more partially visible pieces. If each 

dents bounds only one partially visible piece then the total number of dents with m 

partially visible pieces is given by the formula: D = 6m. However, if one or more dents 

are shared by a number of partially visible pieces then the formula is D < 6m. Therefore, 

to obtain the minimum number of dents from m partially visible pieces then a partitioned 

orthogonal polyhedron  must have shared dents as many as possible. 

Lemma 6.1 : If the number of dents of m partially visible pieces is less than 6m, then 

there is at least one shared dents. 

Proof: Let Dk = { Dxlk, Dxrk, Dylk, Dyrk, Dzlk, Dzrk} be a set of dents around a piece k 

where Dxlk and Dxrk are dents in the left and the right of k,  respectively, and each 

element is not empty. Otherwise k is visible piece from a vertex. Two partially visible 

pieces i and j share a dent if one element of Di is the same as that with Dj. If all 

elements of Di are different from the element of Dj then Di+Dj = 12, and if, at least one, 

element of Di is the same with element of Dj then Di + Dj < 12. 

2. Two partially visible pieces may share at most three dents. 

There are two positions of a shared dent with two partially visible pieces: between the 

two partially visible pieces and in the same side of the two partially visible pieces (see 

Figure 6.5 as an illustration) 
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Figure 6.5:  The Partially Visible Pieces 1 and 2 Share Three Dents d1, d2 and d3 

This fact implies that if each partially visible piece shares three dents then the total 

number of dents bound to m partially visible pieces is minimum. 

Definition 6.3: A partially visible piece 1 is adjacent to a partially visible piece 2 if 1 

shares three dents with 2.  

Theorem 6.1: To get a maximum number of adjacent pieces a from m partially visible pieces 

then all partially visible pieces are arranged in a cube form.  

Proof: A piece may be adjacent to several numbers of pieces, perhaps from one to six. If the 

partially visible pieces’ layout is a line form (Figure 6.6(a)), then the total number of group 

adjacent pieces is m-1, and each partially visible piece belongs to at least one group of 

adjacent pieces and at most two groups of adjacent pieces. Meanwhile, if the partially visible 

pieces’ layout is a plane form (Figure 6.6(b)), then each partially visible piece belongs to at 

least one group of adjacent pieces and at most four groups of adjacent pieces. Finally, if the 

partially visible pieces’ layout is a cube form (Figure 6.6(c)), then each partially visible piece 

belongs to at least one group of adjacent pieces and at most six groups of adjacent pieces. � 

 

  

 
  a   b   c  

Figure 6.6 : Illustration of Adjacent Pieces among Several Formats 
 

The maximum number of adjacent pieces suggests the minimum number of dents. 

1 2 

d1 

d2 

d3 
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Let L, W, and H be the length, the width, and the high, respectively, of a cube form that 

contains m number of partially visible pieces. m is achieved by multiplication L, W and H; 

therefore L = W = H = m1/3. 

The number of adjacent pieces a can be calculated in several ways. Two different methods 

are described below: 

1. Method 1 

Slice the cube of m into m1/3 layers in any direction. Let a1, a2, and am
1/3 be the 

number of adjacent pieces in each layers. Then 

a1 = 2(m1/3 -1) + 2 (m1/3 -1)2 
a2 = 2(m1/3 -1) + 2 (m1/3 -1)2 
... 
am1/3 = 2(m1/3 -1) + 2 (m1/3 -1)2 

The number of adjacent pieces a is equal to the number of pieces in each layer plus 

the number of adjacent pieces between the layers. Therefore, 

a = m1/3(2(m1/3-1) + 2(m1/3 -1)2) + (m1/3 – 1)m2/3 OR 
a = 3m – 3m2/3 
 

2. Method 2 
Separating the cube of m into two parts such that one of the partitions is a smaller 
cube, yields the set-up shown in Figure 6.7.  
 
 
 
 
 
 
 
 
 
 

Figure 6.7: Cube of m where m = 27 
 

(i) The number of adjacent pieces along the x, y and z axes is represented by a 
solid black circle: aaxis = 3m1/3 -2 
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(ii) The number of adjacent pieces in the three planes is represented by a white 
circle: aplane = 3(m1/3 – 1)2 + 3(m1/3-1)2 

(iii) The number of adjacent pieces in the remained cube is represented by a grey 
circle: aremainder = (m1/3-1)3 

So, the total number of adjacent pieces is a compound of the aaxis, the aplane and the 
aremainder as shown in the following formula: 

a = 3m1/3 -2 + 3(m1/3 – 1)2 + 3(m1/3-1)2 + 3(m1/3-1)3 
a = 3m – 3m2/3 

As mentioned above, the number of dents is equal with each having six partially visible 

pieces minus the number of deductions due to each adjacent piece sharing a dent. Therefore, 

the relationship between m and D is derived as follows: 

D  = 6m – number of deductions due to the shared dent of each 
adjacent piece. 

D  = 6m – (3.3(m1/3 -1) + 3.3(m1/3 – 1)2 + 2.3(m1/3-1)2 + 3(m1/3-
1)3 + 2(m1/3-1)3 + (m1/3-1)3). 

D   = 3m1/3 + 3m2/3. 

Let x = m1/3, then 3x2 + 3x –D=0. 

The abc formula is applied to obtain the value of x. Therefore, x = -3 + ((9 
+12D)1/2)/6. 

x  (D/3)1/2 or m1/3 = (D/3)1/2. 

m = (D/3)3/2 Or f(D) = (D/3)3/2. 

As each dent has eight reflex vertices, 8D  R or D  R/8 

Therefore, m = (R/24)3/2. 

6.4.3 Relationship between the number of all vertices  and reflex vertices 

The relationship between the number of reflex vertices R and the number of vertices n on an 

orthogonal polyhedron can be simply derived as follows: 

Let P be an orthogonal polyhedron, and let PV30, PV31, PV32, PV33, PV42, and PV63 denote the 

number of vertices having V30, V31, V32, V33, V42, and V63 configurations respectively, 
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let n be the number of vertices, and let R be the number of reflex vertices where R = PV31+ 

PV32+ PV33+ PV42+ PV63. Then, the relationship between n and R is:  

n = PV30 + R           (6.1). 

As every orthogonal polyhedron has at least eight PV30 vertices, then 

n  8 + R  or  R  n - 8        (6.2). 

As mentioned above, the upper bound number of guards g for covering an orthogonal 

polyhedron is the upper bound number of dominant pieces that are totally visible from 

vertices added to the upper-bound number of partially visible pieces from vertices, and g is 

written as the following formula: 

g   3R/2  + (R/24)3/2         (6.3). 

Finally, substituting the equation (6.2) with (6.3) yields: 

g   3(n-8)/2 + (n-8)/24)3/2  n3/2 

 

6.5 Summary 

This chapter has discussed a method to obtain an upper bound of point guards for monitoring 

the interior of an orthogonal polyhedron. The upper bound of fixed-point guards was obtained 

by determining the upper bound of dominant visible pieces from any vertex of an orthogonal 

polyhedron and the upper bound of partially visible pieces from any vertex of an orthogonal 

polyhedron. The upper bound number of fixed-point guards is the sum of the dominant pieces 

and partially visible pieces, in which the upper bound of the fixed-point guards for any 

orthogonal polyhedron having n vertices is (n3/2). 
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CHAPTER 7 

CONCLUSION AND FUTURE RESEARCH 
 

 

7.1 Conclusion 

This thesis aims to provide a solution to the 3-dimensional art gallery problem, which is the 

natural extension to the classical art gallery problem. There has been extensive research on 

the classical art gallery problem, but relatively less research has been done on the 3-

dimensional version of the problem. Part of the reason for this lack progress in the 3-

dimensional version of the problem is the difficulty in the tetrahedralisation of polyhedra. 

However, the 3-dimensional version of the problem is important in many real-world 

applications. This is obvious when one considers the extensive use of surveillance cameras in 

supermarkets, banks, and many public places. In this type of applications one has to take the 

spatial structure of the buildings, not just the floor outline of the building, into consideration 

in order to provide adequate monitoring. 

Current solutions to the 3-dimensional art gallery problem use mobile guards that are 

required to move either around faces and along the given edges in order to provide full 

coverage of the interior of a simple polyhedron. While this type of guards may be useful in 

some applications, such as deployment of human guards in an art gallery, they are not 

adequate in many other applications where fixed-point guards are required. This thesis 

presented our attempt to the 3-dimensional art gallery problem. The approach adopted in this 

thesis differs from the existing work in two ways: it uses fixed-point guards instead of mobile 

guards and it uses orthogonal pseudo-polyhedron, rather than simple orthogonal polyhedron 

which is a small subset of orthogonal pseudo-polyhedron, as the model for buildings. 
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This thesis has presented a new algorithm for determining and placement of fixed-point 

guards for any orthogonal pseudo-polyhedron. The algorithm involves the following steps: 

1. Partition an orthogonal pseudo-polyhedron into a set of rectangular prisms. 

2. Construct a visibility subset for each corner point of each rectangular prism. Each 

corner point can be a candidate position to station a point guard. 

3. Computing the minimum number of visibility subsets that include all rectangular 

prisms from the above step. The computation in this step is equivalent to the 

Minimum Set Cover (MSC) problem, including both exact algorithm and 

approximated algorithms. 

4. After the reduction of the number of visibility subsets in Step 3, there are still rooms 

to further reduce the number of guards for covering an OPP. This possibility comes 

from the fact that some rectangular prism could be covered by two or more guards 

cooperatively even though it is already covered totally by an allocated guard. In this 

case this allocated guard may be removed without affecting the coverage of that 

rectangular prism. 

The result of the last two steps is the reduced number of visibility subsets, each of which 

corresponds to one corner point of a rectangular prism. By placing one fixed-point guard in 

each of these corner points, either every rectangular prism would be visible from at least one 

such guard, or each point in reach rectangular prism is visible from at least one such guard.  

Hence the entire interior of the original orthogonal pseudo-polyhedron is covered by this set 

of guards. This algorithm is the first algorithm known so far for covering any orthogonal 

pseudo-polyhedron with fixed-point guards. 
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The thesis has also shown that no more than O(n3/2) fixed-point guards are required to 

provide full coverage of the interior of any orthogonal polyhedron. This is the lowest known 

upper bound for the number of fixed-point guards for any orthogonal polyhedron. 

The above results are superior to those of other studies on the 3D-AGP for several reasons. 

First, the proposed method uses fixed-point guards. This means our method is suitable to 

many situations where mobile guards are not adequate. Second, our algorithm not only 

determines the number of guards but also provide guard placement. In contrast, for example, 

Souvaine et al. [34] provided only an upper and lower bound of the required number of face 

guards without any procedure for their placement. Third, Souvaine et al. work in [34] is only 

applicable to a simple orthogonal polyhedron, i.e., an orthogonal polyhedron with genus 0; in 

contrast, our method is applicable to any orthogonal pseudo-polyhedron in which is the 

superset of simple orthogonal polyhedron. Finally, this study shows that the upper bound for 

the number of fixed-point guards required for covering any orthogonal polyhedron having n 

vertices is (n3/2 ); meanwhile, Seidel proposed the same upper bound, but it was only 

applicable to one special case of simple orthogonal polyhedra [4]. 

The key to the 3-dimensional art gallery problem is in the handling of pseudo-polyhedron, or 

orthogonal pseudo-polyhedron which is the focus of this thesis. To this end, the thesis 

proposed a new way, which is called vertex configuration, to characterise different types of 

vertex in an orthogonal pseudo-polyhedron. It has shown that there are no more than 16 

different vertex configurations in any orthogonal pseudo-polyhedron. We believe this result is 

useful in the study of orthogonal pseudo-polyhedron and it can be used as a tool in the 

analysis of orthogonal pseudo-polyhedron. Furthermore, we have proposed the following 

conjecture, known as Vertex Configuration Conjecture, which characterises the quantative 

relationship between different vertex configurations in any orthogonal pseudo-polyhedron: 
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(NV30 + NV33 + 0NV412 + NV431+   2NV541+ 4NV606 + 3NV633 + 2NV660) 

 – (NV31+ NV32 + 3NV401 + 2NV420 + 2NV501 + NV603 + 6NV600 + 2NV630) = 8 

Where  NV30, NV31, NV32, NV33, NV401, NV412, NV420, NV431, NV501, NV541, NV600, NV603, NV606, 

NV630, NV633, and NV660 denote the number of vertex V30, V31, V32, V33, V40-1, V41-2, 

V42-0,V43-1, V50 and V54-1, V60 -01, V60-3, V60-6, V63-0, V63-3, and V66-0 are the 

number of vertices of the 16 different vertex configurations.  

Some evidences supporting this conjecture has been provided in the thesis. 

In addition, the thesis has developed a procedure for splitting an orthogonal polygon using as 

polyline, a procedure for splitting an orthogonal polyhedron using a polyplane. These 

procedures may be useful in some application such as metal fabrication. 

7.2 Future Research 

The following is a list of open problems for future research: 

Open Problem 1: The proof of the Vertex Configuration Conjecture 

Although some evidences supporting the validity of the conjecture are provided in this thesis, 

we have not been able to prove it. If the conjecture is proven to be true, it could be a very 

useful tool for studying orthogonal pseudo-polyhedron.  

Open Problem 2: What is the upper-bound for our fixed-point guard placement algorithm? 

In this thesis, a new algorithm has been presented for determining the number of fixed-point 

guards to cover any orthogonal pseudo-polyhedron. The algorithm involves two steps of 
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optimisation in order to reduce the number of guards. However, we have not been able to 

establish a non-trivial upper bound for the number of fixed-point guards from this algorithm. 

It is interesting to know what is the upper bound of this algorithm. Such kind of upper bounds 

would also be useful in the measurement of the quality of the algorithms. 

For orthogonal polyhedron we have established that (n3/2) fixed-point guards required for 

monitoring the orthogonal polyhedron. It would be interesting to compare this upper bound 

with that for orthogonal pseudo-polyhedron. 
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APPENDIX 1 
 
The solution of 3D-AGP case (input as Table 5.1)  by using dual simplex algorithm 
 
>> dsimplex(type,c,a,b) 
 Initial tableau 
a = 
   Columns 1 through 20  
 
    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1     0    -1    -1     0     0     0 
    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1     0     0     0     0     0     0     0     0 
    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0    -1    -1     0    -1    -1     0    -1    -1 
    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1    -1    -1    -1    -1    -1    -1 
     0     0     0     0     0     0     0     0     0     0     0     0    -1    -1    -1    -1    -1    -1     0     0 
    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0     0     0 
    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 
 
  Columns 21 through 40  
 
    -1    -1     0    -1    -1     0     0     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
    -1    -1     0    -1    -1     0     0     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0 
    -1    -1     0    -1    -1     0    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0 
    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0 
    -1    -1    -1    -1    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
    -1    -1     0    -1    -1     0     0     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0 
    -1    -1     0    -1    -1     0     0     0    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1 
     0     0     0     0     0     0     0     0    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1 
     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1 
 
  Columns 41 through 50  
 
     1     0     0     0     0     0     0     0     0    -1 
     0     1     0     0     0     0     0     0     0    -1 
     0     0     1     0     0     0     0     0     0    -1 
     0     0     0     1     0     0     0     0     0    -1 
     0     0     0     0     1     0     0     0     0    -1 
     0     0     0     0     0     1     0     0     0    -1 
     0     0     0     0     0     0     1     0     0    -1 
     0     0     0     0     0     0     0     1     0    -1 
     0     0     0     0     0     0     0     0     1    -1 
     0     0     0     0     0     0     0     0     0     0 
 
 Press any key to continue ... 
 
 
 pivot row-> 1 pivot column-> 1 
 Tableau 1 
a = 
  Columns 1 through 20  
 
     1     1     1     1     1     1     1     1     1     1     1     1     1     1     0     1     1     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     1     1     0     1     1     0     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0    -1    -1     0    -1    -1     0    -1    -1 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0    -1     0     0    -1    -1    -1 
     0     0     0     0     0     0     0     0     0     0     0     0    -1    -1    -1    -1    -1    -1     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     0     0     0     0     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     1     1     1 
 
  Columns 21 through 40  
 
     1     1     0     1     1     0     0     0     1     1     0     1     1     0     1     1     0     1     1     0 
     1     1     0     1     1     0     0     0     1     1     0     1     1     0     1     1     0     1     1     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
    -1    -1     0    -1    -1     0    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0    -1     0     0    -1    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0 
    -1    -1    -1    -1    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
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     0     0     0     0     0     0     0     0     0     0    -1     0     0    -1     0     0    -1     0     0    -1 
     0     0     0     0     0     0     0     0    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1 
     0     0     1     0     0     1     1     1     0     0     1     0     0     1     0     0     1     0     0     1 
 
  Columns 41 through 50  
 
    -1     0     0     0     0     0     0     0     0     1 
    -1     1     0     0     0     0     0     0     0     0 
    -1     0     1     0     0     0     0     0     0     0 
     0     0     0     1     0     0     0     0     0    -1 
    -1     0     0     0     1     0     0     0     0     0 
     0     0     0     0     0     1     0     0     0    -1 
    -1     0     0     0     0     0     1     0     0     0 
    -1     0     0     0     0     0     0     1     0     0 
     0     0     0     0     0     0     0     0     1    -1 
     1     0     0     0     0     0     0     0     0    -1 
 
 Press any key to continue ... 
 pivot row-> 4 pivot column-> 13 
 Tableau 2 
a = 
 
  Columns 1 through 20  
 
     1     1     1     1     1     1     1     1     1     1     1     1     0     0     0     0     0     0    -1    -1 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0    -1    -1 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     1     1     0     1     1     0     1     1 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0    -1     0     0    -1    -1    -1 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0    -1     0     0    -1     1     1 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     0     0     0     0     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     1     1     1 
 
  Columns 21 through 40  
 
     0     0     0     0     0     0    -1    -1     1     1     0     1     1     0     1     1     0     1     1     0 
     0     0     0     0     0     0    -1    -1     1     1     0     1     1     0     1     1     0     1     1     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     1     1     0     1     1     0     1     1     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0    -1     0     0    -1    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0    -1     0     0    -1     1     1     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0    -1     0     0    -1     0     0    -1     0     0    -1 
     0     0     0     0     0     0     0     0    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1 
     0     0     1     0     0     1     1     1     0     0     1     0     0     1     0     0     1     0     0     1 
 
  Columns 41 through 50  
 
    -1     0     0     1     0     0     0     0     0     0 
    -1     1     0     1     0     0     0     0     0    -1 
    -1     0     1     0     0     0     0     0     0     0 
     0     0     0    -1     0     0     0     0     0     1 
    -1     0     0     0     1     0     0     0     0     0 
     0     0     0    -1     0     1     0     0     0     0 
    -1     0     0     0     0     0     1     0     0     0 
    -1     0     0     0     0     0     0     1     0     0 
     0     0     0     0     0     0     0     0     1    -1 
     1     0     0     0     0     0     0     0     0    -1 
 
 Press any key to continue ... 
 
 
 pivot row-> 2 pivot column-> 19 
 Tableau 3 
a = 
  Columns 1 through 20  
 
     1     1     1     1     1     1     1     1     1     1     1     1     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     1 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     1     1     0     1     1     0     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0    -1     0     0    -1     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0    -1     0     0    -1     0     0 
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     0     0     1     0     0     1     0     0     1     0     0     1     0     0     0     0     0     0     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     1     0     0 
 
  Columns 21 through 40  
 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     1     1    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     1     1     0     1     1     0     0     0     1     1     0     1     1     0     1     1     0     1     1     0 
     0     0    -1     0     0    -1     0     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0 
     0     0    -1     0     0    -1     0     0     1     1     0     1     1     0     1     1     0     1     1     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0    -1     0     0    -1     0     0    -1     0     0    -1 
     0     0     0     0     0     0     0     0    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1 
     0     0     1     0     0     1     0     0     1     1     1     1     1     1     1     1     1     1     1     1 
 
  Columns 41 through 50  
 
     0    -1     0     0     0     0     0     0     0     1 
     1    -1     0    -1     0     0     0     0     0     1 
    -1     0     1     0     0     0     0     0     0     0 
    -1     1     0     0     0     0     0     0     0     0 
     0    -1     0    -1     1     0     0     0     0     1 
    -1     1     0     0     0     1     0     0     0    -1 
    -1     0     0     0     0     0     1     0     0     0 
    -1     0     0     0     0     0     0     1     0     0 
     0     0     0     0     0     0     0     0     1    -1 
     0     1     0     1     0     0     0     0     0    -2 
 
 Press any key to continue ... 
 pivot row-> 6 pivot column-> 41 
 Tableau 4 
a = 
  Columns 1 through 20  
 
     1     1     1     1     1     1     1     1     1     1     1     1     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0    -1     0     0    -1     1     1 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     1     1     1     1     1     1     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0    -1     0     0    -1     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     1     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     1     0     0 
 
  Columns 21 through 40  
 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0    -1     0     0    -1     1     1     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     1     0     0     1     0     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0 
     1     1     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0    -1     0     0    -1     0     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0 
     0     0     1     0     0     1     0     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0 
     0     0     1     0     0     1     0     0    -1    -1     0    -1    -1     0    -1    -1     0    -1    -1     0 
     0     0     1     0     0     1     0     0    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1 
     0     0     0     0     0     0     0     0    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1    -1 
     0     0     1     0     0     1     0     0     1     1     1     1     1     1     1     1     1     1     1     1 
 
  Columns 41 through 50  
 
     0    -1     0     0     0     0     0     0     0     1 
     0     0     0    -1     0     1     0     0     0     0 
     0    -1     1     0     0    -1     0     0     0     1 
     0     0     0     0     0    -1     0     0     0     1 
     0    -1     0    -1     1     0     0     0     0     1 
     1    -1     0     0     0    -1     0     0     0     1 
     0    -1     0     0     0    -1     1     0     0     1 
     0    -1     0     0     0    -1     0     1     0     1 
     0     0     0     0     0     0     0     0     1    -1 
     0     1     0     1     0     0     0     0     0    -2 
 
 Press any key to continue ... 
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 pivot row-> 9 pivot column-> 29 
 Tableau 5 
A = 
  Columns 1 through 20  
 
     1     1     1     1     1     1     1     1     1     1     1     1     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0    -1     0     0    -1     1     1 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     1     1     1     1     1     1     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0    -1     0     0    -1     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     1     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0 
     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0     1     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     1     0     0 
 
  Columns 21 through 40  
 
     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0    -1     0     0    -1     1     1     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     1     0     0     1     0     0     0     0     1     0     0     1     0     0     1     0     0     1 
     1     1     1     1     1     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0    -1     0     0    -1     0     0     0     0     1     0     0     1     0     0     1     0     0     1 
     0     0     1     0     0     1     0     0     0     0     1     0     0     1     0     0     1     0     0     1 
     0     0     1     0     0     1     0     0     0     0     1     0     0     1     0     0     1     0     0     1 
     0     0     1     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
     0     0     0     0     0     0     0     0     1     1     1     1     1     1     1     1     1     1     1     1 
     0     0     1     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0 
 
  Columns 41 through 50  
 
     0    -1     0     0     0     0     0     0     0     1 
     0     0     0    -1     0     1     0     0     0     0 
     0    -1     1     0     0    -1     0     0    -1     2 
     0     0     0     0     0    -1     0     0     0     1 
     0    -1     0    -1     1     0     0     0    -1     2 
     1    -1     0     0     0    -1     0     0    -1     2 
     0    -1     0     0     0    -1     1     0    -1     2 
     0    -1     0     0     0    -1     0     1    -1     2 
     0     0     0     0     0     0     0     0    -1     1 
     0     1     0     1     0     0     0     0     1    -3 
 
 Press any key to continue ... 
 Problem has a finite optimal solution 
 Values of the legitimate variables: 
 
 x(1)= 1.000000  
 x(2)= 0.000000  
 x(3)= 0.000000  
 x(4)= 0.000000  
 x(5)= 0.000000  
 x(6)= 0.000000  
 x(7)= 0.000000  
 x(8)= 0.000000  
 x(9)= 0.000000  
 x(10)= 0.000000  
 x(11)= 0.000000  
 x(12)= 0.000000  
 x(13)= 1.000000  
 x(14)= 0.000000  
 x(15)= 0.000000  
 x(16)= 0.000000  
 x(17)= 0.000000  
 x(18)= 0.000000  
 x(19)= 0.000000  
 x(20)= 0.000000  
 x(21)= 0.000000  
 x(22)= 0.000000  
 x(23)= 0.000000  
 x(24)= 0.000000  
 x(25)= 0.000000  
 x(26)= 0.000000  
 x(27)= 0.000000  
 x(28)= 0.000000  
 x(29)= 1.000000  
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 x(30)= 0.000000  
 x(31)= 0.000000  
 x(32)= 0.000000  
 x(33)= 0.000000  
 x(34)= 0.000000  
 x(35)= 0.000000  
 x(36)= 0.000000  
 x(37)= 0.000000  
 x(38)= 0.000000  
 x(39)= 0.000000  
 x(40)= 0.000000  
 
 Objective value at the optimal point:  z = 3.000000 
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APPENDIX 2 
 
The solution of 3D-AGP case (input as Table 5.2)  by using dual simplex algorithm 
 
>> dsimplex(type,c,a,b) 
 Initial tableau 
a = 
  Columns 1 through 21  
 
    -1    -1    -1     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 -1 
    -1    -1    -1     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 -1 
    -1    -1     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0 -1 
    -1     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0 -1 
    -1    -1    -1     0     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0 -1 
     0    -1    -1     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0 -1 
    -1    -1    -1     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0     0 -1 
    -1    -1     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0 -1 
    -1    -1    -1     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0 -1 
     0    -1    -1     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0 -1 
    -1    -1    -1     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0 -1 
    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0 -1 
    -1    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0 -1 
    -1    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0 -1 
    -1    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0 -1 
     0    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0 -1 
     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1 -1 
     1     1     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 0 
 
 
 Press any key to continue ... 
 pivot row-> 1 pivot column-> 1 
 Tableau 1 
a = 
  Columns 1 through 21  
 
     1     1     1    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 1 
     0     0     0    -1     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 0 
     0     0     1    -1     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0 0 
     0     1     1    -1     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0 0 
     0     0     0    -1     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0 0 
     0    -1    -1     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0 -1 
     0     0     0    -1     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0     0 0 
     0     0     1    -1     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0 0 
     0     0     0    -1     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0 0 
     0    -1    -1     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0 -1 
     0     0     0    -1     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0 0 
     0     0     1    -1     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0 0 
     0     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0 0 
     0     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0 0 
     0     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0 0 
     0    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0 -1 
     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1 -1 
     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 -1 
 
 
 Press any key to continue ... 
 pivot row-> 6 pivot column-> 2 
 Tableau 2 
a = 
  Columns 1 through 21  
 
     1     0     0    -1     0     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0 0 
     0     0     0    -1     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 0 
     0     0     1    -1     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0 0 
     0     0     0    -1     0     0     1     0     1     0     0     0     0     0     0     0     0     0     0     0 -1 
     0     0     0    -1     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0 0 
     0     1     1     0     0     0     0     0    -1     0     0     0     0     0     0     0     0     0     0     0 1 
     0     0     0    -1     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0     0 0 
     0     0     1    -1     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0     0 0 
     0     0     0    -1     0     0     0     0     0     0     0     1     0     0     0     0     0     0     0     0 0 
     0     0     0     0     0     0     0     0    -1     0     0     0     1     0     0     0     0     0     0     0 0 
     0     0     0    -1     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0     0 0 
     0     0     1    -1     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0     0 0 
     0     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0     0 0 
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     0     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0     0 0 
     0     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     1     0     0 0 
     0     0     0     0     0     0     0     0    -1     0     0     0     0     0     0     0     0     0     1     0 0 
     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1 -1 
     0     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0 -1 
 
 
 Press any key to continue ... 
 pivot row-> 4 pivot column-> 4 
 Tableau 3 
a = 
 
  Columns 1 through 21  
 
     1     0     0     0     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     0     0 1 
     0     0     0     0     1     0    -1     0    -1     0     0     0     0     0     0     0     0     0     0     0 1 
     0     0     1     0     0     1    -1     0    -1     0     0     0     0     0     0     0     0     0     0     0 1 
     0     0     0     1     0     0    -1     0    -1     0     0     0     0     0     0     0     0     0     0     0 1 
     0     0     0     0     0     0    -1     1    -1     0     0     0     0     0     0     0     0     0     0     0 1 
     0     1     1     0     0     0     0     0    -1     0     0     0     0     0     0     0     0     0     0     0 1 
     0     0     0     0     0     0    -1     0    -1     1     0     0     0     0     0     0     0     0     0     0 1 
     0     0     1     0     0     0    -1     0    -1     0     1     0     0     0     0     0     0     0     0     0 1 
     0     0     0     0     0     0    -1     0    -1     0     0     1     0     0     0     0     0     0     0     0 1 
     0     0     0     0     0     0     0     0    -1     0     0     0     1     0     0     0     0     0     0     0 0 
     0     0     0     0     0     0    -1     0    -1     0     0     0     0     1     0     0     0     0     0     0 1 
     0     0     1     0     0     0    -1     0    -1     0     0     0     0     0     1     0     0     0     0     0 1 
     0     0     0     0     0     0    -1     0    -1     0     0     0     0     0     0     1     0     0     0     0 1 
     0     0     0     0     0     0    -1     0    -1     0     0     0     0     0     0     0     1     0     0     0 1 
     0     0     0     0     0     0    -1     0    -1     0     0     0     0     0     0     0     0     1     0     0 1 
     0     0     0     0     0     0     0     0    -1     0     0     0     0     0     0     0     0     0     1     0 0 
     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     1 -1 
     0     0     0     0     0     0     1     0     1     0     0     0     0     0     0     0     0     0     0     0 -2 
 
   
 
 Press any key to continue ... 
 pivot row-> 17 pivot column-> 3 
 
 Tableau 4 
 
a = 
 
  Columns 1 through 21  
 
     1     0     0     0     0     0    -1     0     0     0     0     0     0     0     0     0     0     0     0     0 1 
     0     0     0     0     1     0    -1     0    -1     0     0     0     0     0     0     0     0     0     0     0 1 
     0     0     0     0     0     1    -1     0    -1     0     0     0     0     0     0     0     0     0     0     1 0 
     0     0     0     1     0     0    -1     0    -1     0     0     0     0     0     0     0     0     0     0     0 1 
     0     0     0     0     0     0    -1     1    -1     0     0     0     0     0     0     0     0     0     0     0 1 
     0     1     0     0     0     0     0     0    -1     0     0     0     0     0     0     0     0     0     0     1 0 
     0     0     0     0     0     0    -1     0    -1     1     0     0     0     0     0     0     0     0     0     0 1 
     0     0     0     0     0     0    -1     0    -1     0     1     0     0     0     0     0     0     0     0     1 0 
     0     0     0     0     0     0    -1     0    -1     0     0     1     0     0     0     0     0     0     0     0 1 
     0     0     0     0     0     0     0     0    -1     0     0     0     1     0     0     0     0     0     0     0 0 
     0     0     0     0     0     0    -1     0    -1     0     0     0     0     1     0     0     0     0     0     0 1 
     0     0     0     0     0     0    -1     0    -1     0     0     0     0     0     1     0     0     0     0     1 0 
     0     0     0     0     0     0    -1     0    -1     0     0     0     0     0     0     1     0     0     0     0 1 
     0     0     0     0     0     0    -1     0    -1     0     0     0     0     0     0     0     1     0     0     0 1 
     0     0     0     0     0     0    -1     0    -1     0     0     0     0     0     0     0     0     1     0     0 1 
     0     0     0     0     0     0     0     0    -1     0     0     0     0     0     0     0     0     0     1     0 0 
     0     0     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0     0    -1 1 
     0     0     0     0     0     0     1     0     1     0     0     0     0     0     0     0     0     0     0     0 -2 
 
 
 Press any key to continue ... 
 Problem has a finite optimal solution 
 Values of the legitimate variables: 
 x(1)= 1.000000  
 x(2)= 0.000000  
 x(3)= 1.000000  
 Objective value at the optimal point: 
 z= 2.000000 
 




