4,095 research outputs found

    Constrained Query Answering

    Get PDF
    Traditional answering methods evaluate queries only against positive and definite knowledge expressed by means of facts and deduction rules. They do not make use of negative, disjunctive or existential information. Negative or indefinite knowledge is however often available in knowledge base systems, either as design requirements, or as observed properties. Such knowledge can serve to rule out unproductive subexpressions during query answering. In this article, we propose an approach for constraining any conventional query answering procedure with general, possibly negative or indefinite formulas, so as to discard impossible cases and to avoid redundant evaluations. This approach does not impose additional conditions on the positive and definite knowledge, nor does it assume any particular semantics for negation. It adopts that of the conventional query answering procedure it constrains. This is achieved by relying on meta-interpretation for specifying the constraining process. The soundness, completeness, and termination of the underlying query answering procedure are not compromised. Constrained query answering can be applied for answering queries more efficiently as well as for generating more informative, intensional answers

    Towards Intelligent Databases

    Get PDF
    This article is a presentation of the objectives and techniques of deductive databases. The deductive approach to databases aims at extending with intensional definitions other database paradigms that describe applications extensionaUy. We first show how constructive specifications can be expressed with deduction rules, and how normative conditions can be defined using integrity constraints. We outline the principles of bottom-up and top-down query answering procedures and present the techniques used for integrity checking. We then argue that it is often desirable to manage with a database system not only database applications, but also specifications of system components. We present such meta-level specifications and discuss their advantages over conventional approaches

    Computing only minimal answers in disjunctive deductive databases

    Full text link
    A method is presented for computing minimal answers in disjunctive deductive databases under the disjunctive stable model semantics. Such answers are constructed by repeatedly extending partial answers. Our method is complete (in that every minimal answer can be computed) and does not admit redundancy (in the sense that every partial answer generated can be extended to a minimal answer), whence no non-minimal answer is generated. For stratified databases, the method does not (necessarily) require the computation of models of the database in their entirety. Compilation is proposed as a tool by which problems relating to computational efficiency and the non-existence of disjunctive stable models can be overcome. The extension of our method to other semantics is also considered.Comment: 48 page

    Intensional Updates

    Get PDF

    Distribution Constraints: The Chase for Distributed Data

    Get PDF
    This paper introduces a declarative framework to specify and reason about distributions of data over computing nodes in a distributed setting. More specifically, it proposes distribution constraints which are tuple and equality generating dependencies (tgds and egds) extended with node variables ranging over computing nodes. In particular, they can express co-partitioning constraints and constraints about range-based data distributions by using comparison atoms. The main technical contribution is the study of the implication problem of distribution constraints. While implication is undecidable in general, relevant fragments of so-called data-full constraints are exhibited for which the corresponding implication problems are complete for EXPTIME, PSPACE and NP. These results yield bounds on deciding parallel-correctness for conjunctive queries in the presence of distribution constraints
    corecore