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Abstract
This paper introduces a declarative framework to specify and reason about distributions of data
over computing nodes in a distributed setting. More specifically, it proposes distribution constraints
which are tuple and equality generating dependencies (tgds and egds) extended with node variables
ranging over computing nodes. In particular, they can express co-partitioning constraints and
constraints about range-based data distributions by using comparison atoms. The main technical
contribution is the study of the implication problem of distribution constraints. While implication is
undecidable in general, relevant fragments of so-called data-full constraints are exhibited for which
the corresponding implication problems are complete for EXPTIME, PSPACE and NP. These results
yield bounds on deciding parallel-correctness for conjunctive queries in the presence of distribution
constraints.
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1 Introduction

Distributed storage and processing of data has been used and studied since the 1970s and
became more and more important in the recent past. One of the most fundamental questions
in distributed data management is the following: how should data be replicated and partitioned
over the set of computing nodes? It is paramount to answer this question well as the placement
of data determines the reliability of the system and is furthermore critical for its scalability
including the performance of query processing.

On the one hand, despite the importance of this question and decades of research,
the placement strategies remained rather simple for a long time: horizontal or vertical
fragmentation of relations – or hybrid variants thereof [37]. These placement strategies often
require a reshuffling of the data for each binary join in the processed query which are commonly
based on a range or hash partitioning of the relevant attributes. Recently, however, more
elaborated schemes of data placement like co-partitioning, single hypercubes (for multiway-
joins) or multiple hypercubes (for skewed data) gained some attention [3, 12,30,39,41,45].
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13:2 Distribution Constraints: The Chase for Distributed Data

On the other hand, there is a long tradition in studying tuple- and equality-generating
dependencies (tgds/egds) as a simple but versatile tool to describe relationships among
relational data. The research on these dependencies focuses mainly on the implication1
problem. More precisely, since the implication problem in general is undecidable, several
fragments have been considered in an attempt to locate the boundaries of decidability and
complexity. Commonly, these fragments are defined by syntactical restrictions on the sets of
dependencies, like weak acyclicity, weak guardedness, stickiness, wardedness, . . . [15–17,23].

It seems desirable to connect these two strands of research. Being able to reason about
the placement of data offers database management systems additional optimisation potential,
for instance, when it comes to the placement of new data or when the cost of a query
execution plan is estimated. In the latter case, a reshuffling phase, which often dominates the
processing time, can sometimes be omitted completely because the query at hand is already
parallel-correct2 under the current distribution.

The goal of this paper is to make a first step towards a connection between existing
partitioning schemes and well-known reasoning frameworks. With this intent, we introduce
distribution constraints – a variant of tgds/egds that is specifically geared towards distributed
data – and study its implication problem. In particular, we identify fragments of distribution
constraints by the complexity of the associated implication problem. Although the implication
problem is certainly not the only – and, admittedly, not the most innovative – problem
related to reasoning about distributed data, it is yet a basic problem that is likely to have
connections to other algorithmical questions centering around this topic (like how to derive a
new distribution for the next query, making use of the current distribution?).

Contributions. We start by defining distribution constraints as tgds and egds with atoms of
the form R(x, y)@κ, in which κ is understood as a node variable with the intended meaning
that fact R(x, y) is at node κ. To achieve decidability, we further require that distribution
tgds are data-full, i.e., only node variables may be quantified existentially.

We demonstrate that distribution constraints can express several common distribution
schemes, incorporating range and hash partitionings [37], co-partitionings [21,25], hierarchical
partitionings (as used in Google’s F1 [39,41]), predicate-based reference partitionings [45],
hypercube distributions [3, 12], and multi-round communication.

I Example 1. As an example, consider the following set of distribution tgds, describing a
“derived horizontal” fragmentation [37] of relation Msg based on the Range-predicate and the
message’s sender id s:

Range(`, u)→ Range(`, u)@κ,

Msg(s, r)→ Msg(s, r)@κ,

Msg(s, r)@κ, Range(`, u)@λ, ` ≤ s, s ≤ u→ Msg(s, r)@λ

The first two rules enforce that, for every Range- and every Msg-fact, there is a responsible
node (indicated by the node variable κ). The third rule ensures that every Msg-fact can be
found at every node whose Range-bounds match the sender id. We remark that the above
set of constraints implies the following distribution tgd:

Msg(s1, r), Msg(s2, r), Range(`, u), ` ≤ s1, s1 ≤ u, ` ≤ s2, s2 ≤ u→ Msg(s1, r)@κ, Msg(s2, r)@κ,

1 Does a dependency τ always hold if a set Σ of dependencies is satisfied, Σ |= τ?
2 Parallel correctness is a basic notion of distributed query evaluation [7], also addressed in Section 3.3.
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which states that all pairs of messages with the same receiver can be found at a common
node if their senders fall in the same range. In other words, if the above set of constraints is
satisfied over a distributed instance, then so is the just mentioned dtgd.

On the technical level, we show that the implication problem is EXPTIME-complete for
these constraints in general, and we identify classes of distribution constraints where the
complexity drops to PSPACE or even NP and classes where this is not the case. These classes
are determined by simple syntactic criteria based on the amount of data associated with
node variables.

Since distribution constraints incorporate all full tgds (without existential quantification),
EXPTIME-hardness of their implication problem readily follows from an early result by
Chandra, Lewis and Makowsky [19]. However, the latter result relies on the use of relation
atoms of arbitrarily high arity, while the EXPTIME-hardness results in this paper already
hold for a fixed schema of maximum arity of 3 (or 2, w.r.t. data variables). The corresponding
upper bounds are established by an adaptation of the standard chase procedure [23,36].

The fragments studied here are defined depending on, first, the sizes of the node variables’
contexts (the data variables occuring together with the node variable in some atom) and,
second, on the distinction of data-collecting tgds and node-creating tgds (without/with
existentially quantified node variable in the head). For a fixed integer b, a node variable has
bounded context if its context size is at most b. Thanks to the obvious relationship between
distribution constraints and standard constraints, the complexity results in this paper can
also be viewed as results on fragments of standard tgds/egds.

Related work. There is a rich literature on restrictions of (sets of) tgds that yield a decidable
(general and finite) implication problem [4,36]. We discuss how our distributed constraints
relate to classical constraints in Section 3. Restricting the use of existential variables in
tgds is a common approach to define fragments of tgds that yield a decidable implication
problem. Interestingly, the rather simple restriction to data-full dtgds studied here, is
orthogonal to prominent examples like weak acyclicity, weak guardedness, stickiness and
wardedness [15–17,23].

Dependencies with arithmetic comparisons have been used in the context of Data Exchange
[5, 43]. However, these papers mainly study full and weakly acyclic tgds and are thus
orthogonal to our framework. There is further work on dependencies with stronger arithmetic
constraints, e.g. [9, 11,22,33].

Declarative specifications for distributed data have also been studied before. Notable
examples are Webdamlog and the already mentioned Data Exchange setting (which can be
seen as a restricted form of distribution constraints with a global and a single local database).
We refer to the book [8] for a relatively recent overview of Data Exchange.

Our notation R(x)@κ for distributed atoms resembles that of Webdamlog, R@κ(x), a
dialect of datalog that was designed for distributed data management.3 Besides implementing
a system [2,34] based on this dialect, the theoretical research on this language has mostly
focussed on establishing a hierarchy among some of its fragments in terms of their express-
iveness [3]. Neglecting the notational similarities, there seems to be no overlap between
the research on Webdamlog – with its fixpoint evaluation mechanism (which even allows
facts to vanish) – and the results on distribution constraints that we present in this paper.

3 Annotated atoms have already been used before in Datalog dialects. For instance, in Dedalus [6], where
they describe timestamps.
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Particularly, Webdamlog seems to prohibit existential quantification of node variables and
assumes, accordingly, that the number of nodes is explicitly fixed with the input. Distribution
constraints, in contrast, do allow existential quantification of node variables, which affects
the modeling capabilities and the complexity of the reasoning process.

Organisation of this paper. After providing the necessary preliminaries in Section 2, we
formally define distribution constraints in Section 3, compare them with classical constraints,
and give examples of their versatility. In Section 4, we define the implication problem and
extend the standard chase to distribution constraints. In Section 5, we address the complexity
of the implication problem and, finally, conclude in Section 6.

Due to space limitations, most proofs and some examples will be given in a full version,
which we plan to publish on arXiv.

2 Preliminaries

In this section, we fix our notation for the basic concepts of this paper. Specific definitions
for our framework are given in Section 3.

2.1 Databases and queries
Let dom and var be disjoint infinite sets of data values and data variables, respectively. For
simplicity, we do not distinguish between different data types and assume that dom is linearly
ordered. We denote data variables as usual with x, y, z, . . . . A schema is a set S of relation
symbols, where each relation symbol R ∈ S has some fixed arity ar(R). We write ar(S) for
the maximum arity ar(R) of any R ∈ S. A relation atom over S is of the form R(t1, . . . , tk)
where R is a relation symbol of arity k and t1, . . . , tk ∈ dom ∪ var. A relation atom is a fact
if t1, . . . , tk ∈ dom. A comparison atom is of the form t < t′ or t ≤ t′ with t, t′ ∈ dom ∪ var.
The set of data values occuring in a set A of (relational or comparison) atoms is denoted
adom(A). Similarly, the set of variables in A is denoted var(A). Instances are finite sets of
facts over a given schema S.

A valuation for a set A of atoms is a mapping V : var(A) → dom. It satisfies A on
instance I if V (A) ∈ I holds for each relation atom A ∈ A and V (t)θV (t′) holds for each
comparison atom tθt′ in A. We often denote by V also the extension of V to dom defined by
V (a) = a for every a ∈ dom.

A conjunctive query Q is of the form S(x1, . . . , xm) :− R1(z1), . . . , R`(z`), where the
head of the query, headQ = S(x1, . . . , xm), has a relation atom S not in S and its body,
bodyQ = {R1(z1), . . . , R`(z`)}, is a finite set of relation atoms over S. In the following, all
queries are assumed to be safe, that is, each variable in the head occurs at least once in some
body atom. If V is a valuation that satisfies bodyQ, we say that V derives fact V (headQ).
The result Q(I) of query Q on instance I is the set of all derived facts.

2.2 Dependencies
A tgd σ is of the form A, C → A′, for sets A,A′ of relation atoms and a set C of comparison
atoms with var(C) ⊆ var(A). Here, A′ form its head, and A, C its body, denoted headσ = A′

and bodyσ = A ∪ C, respectively. We refer to A by rbodyσ. The tgd is called full if
var(A′) ⊆ var(A). An instance I satisfies a tgd σ if, for every valuation V of bodyσ that
satisfies bodyσ on I, there is an extension V ′ onto headσ that satisfies headσ on I.
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An egd σ is of the form A, C → x = y, for a set A of relation atoms and a set C
of comparison atoms with var(C) ∪ {x, y} ⊆ var(A). An instance I satisfies an egd σ if
V (x) = V (y) for every valuation V that satisfies bodyσ on I, where bodyσ is defined as for
tgds.

Sets of dependencies are satisfied by an instance if each dependency in the set is satisfied.
Satisfaction of a single dependency σ or a set Σ of dependencies by some instance I is denoted
I |= σ and I |= Σ, respectively.

A dependency τ is implied by a set Σ of dependencies, denoted Σ |= τ , if I |= Σ implies
I |= τ for every instance I. For more precise statements, we can mention the actual domain
in our notation. For example, we write I |=N τ if implication holds for all (finite) instances
over N.

We use the terms dependencies and constraints interchangeably.

2.3 Distributed Databases

We model a network of database servers as a finite set N of nodes and we denote its size by
|N |. We usually denote nodes by k and `. A distributed instance D = (G, I) consists of a
global instance G and a family I = (Ik)k∈N of local instances, one for each node of N , such
that

⋃
Ik ⊆ G. We denote G by global(D) and (Ik)k∈N by local(D).

We note that distributions allow redundant placement of facts, which is often desirable.
Furthermore, it is not necessary to place all facts of the global instance on some node. A
fact f is skipped4 by D if f ∈ global(D) but f does not occur in local(D).

We write f@Dk to denote that a fact f occurs at some node k, that is, f ∈ Ik. We drop
D if it is clear from the context. We call f@Dk a distributed fact. Sometimes we say that a
set of facts meet in D when they all occur in the same local instance.

I Example 2. Consider a network N = {1, 2} of size 2 and a distributed instance D =
(G, {I1, I2}) with G = {R(a, b), S(b), S(c), S(d)}, I1 = {R(a, b), S(b)} and I2 = {S(b), S(c)}.
Then fact S(d) is skipped by D. The instance D can also be represented by the distributed
facts {R(a, b), S(b), S(c), S(d), R(a, b)@1, S(b)@1, S(b)@2, S(c)@2}.

2.4 Parallel-correctness

Building on the computation model of massively parallel communication (MPC) [12], the naive
evaluation of a conjunctive query Q over a distributed instance D evaluates Q separately for
each local instance in local(D). For local(D) = (Ik)k∈N , we write Qnaive(D) for

⋃
k∈N Q(Ik).

Following [7], we say that a query Q is parallel-correct on D, if the naive evaluation produces
the correct result, i.e., if Qnaive(D) = Q(global(D)).

3 Distribution constraints

We first introduce our framework for distribution constraints and afterwards give examples
for its use.

4 We note that allowing skipped facts makes the framework more flexible. They can be disallowed by
simple distribution constraints, as discussed in Subsection 3.2.3.
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3.1 Definition
Let nvar be an infinite set of node variables disjoint from dom and var. A distributed atom
A@κ consists of a relation atom A and a node variable κ in nvar. Recall that we refer to the
variables of A as data variables. For a set of (distributed) atoms A, we denote by nvar(A)
the set of node variables occurring in atoms in A. For a set A of relation atoms and a node
variable κ, A@κ denotes the set {A@κ | A ∈ A}.

Distribution tgds (dtgds) are defined just as tgds but they can additionally have distributed
atoms in their body and their head. Distribution egds (degds) are defined just as egds but can
have distributed atoms in their body. We do not allow node variables in comparison atoms
(but we do allow them in the equality atom of a head in the case of degds). A degd A, C → A′

is node-identifying if the equality atom A′ refers to node variables only and value-identifying
if, instead, A′ refers to data variables only. We do not consider equality atoms where a node
variable is identified with a data variable. We are particularly interested in data-full dtgds,
for which the data variables in the head all occur in the body.

By Tall we denote the class of all dtgds and by Tdf the class of data-full dtgds. By Eall
we denote the class of all degds.

Satisfaction of dtgds and degds is defined in the obvious way with generalised valuations
that may additionally map node variables to nodes. For a distributed atom A′ = A@κ, we
write V (A′) ∈ D, if V (A)@V (κ) is a distributed fact of D. For a relation atom A, we write
V (A) ∈ D if V (A) ∈ global(D).

I Example 3. Given a schema S with binary relation symbols R and S, the following
dtgd σ = R(x, y), S(x, y) → R(x, y)@κ, S(x, y)@κ is satisfied on a distributed instance D
if, whenever global(D) contains two facts R(a, b) and S(a, b), for arbitrary data values
a, b ∈ dom, they meet in some local instance.

Below, in Section 3.2, we illustrate how distribution constraints can model global, local
and global-to-local constraints.

I Example 4. The dtgd E(x, y)@κ,E(y, z)@κ,E(z, x) → E(z, x)@κ stipulates that every
computing node has “complete” information w.r.t. open triangles on a binary relation E.
That is, whenever a node contains two legs of a triangle, it also contains the closing leg if it
exists in the global database.

Clearly, the differentiation between node and data variables in dtgds/degds can be seen
as just syntactic sugar for standard relational schemas. The above restrictions (at most one
node variable, at a fixed position, data-fullness) can then be seen as restrictions of classical
constraints. In this sense, a dtgd like R(x)@κ, S(x)@µ→ T (x)@κ could be rewritten into a
standard tgd of the form R(κ, x), S(µ, x)→ T (κ, x). The restriction to data-full dtgds thus
translates to the restriction of existential quantification to these first attributes.

However, as the following example illustrates, our restriction to existential quantification
of node variables does not translate into any of the restricted fragments with low complexity,
which we are aware of.

I Example 5. Let Σ consist of a node-creating dtgd R(x)@κ → T (x)@µ and a data-
collecting dtgd T (x)@κ, T (y)@κ, T (z)@µ, T (w)@µ→ U(x, y, z, w)@κ. The corresponding set
of standard tgds

R(κ, x) → T (µ, x),
T (κ, x), T (κ, y), T (µ, z), T (µ,w) → U(κ, x, y, z, w),
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is neither sticky nor weakly guarded nor warded.5 The set Σ has, however, bounded context
(and its associated implication problem is shown to be in NP in Section 5).

Furthermore, the set consisting of R(x, y)@κ → S(x, y)@µ and S(x, x)@κ → R(x, x)@µ is
not weakly acyclic but data-full with bounded context.

3.2 Examples of distribution constraints
In the following, we provide examples illustrating the versatility of distribution constraints.
We begin with an examination of certain uses of distributed atoms. In principle, distributed
atoms can be used in the body and in the head of constraints, referring to multiple node
variables. Some more restricted uses seem particularly useful however.

We use the schema {Emp(name, title), Sal(title, salary), Addr(name, address)} as a run-
ning example for the remainder of this section.

3.2.1 Global dtgds and degds
We call distribution constraints global if they do not contain any distributed atom. These
constraints refer to the global instance of a distributed database only – irrespective of the
local databases. Formally, a dtgd (resp., degd) σ is a global constraint if σ is a tgd (resp.,
egd).

I Example 6. The following constraints are examples of a global dtgd and a global degd:
Emp(n, t) → Sal(t, s), and Sal(t, s), Sal(t, s′) → s = s′. Together they specify that every
employee has a unique salary.

3.2.2 Local dtgds and degds
Distribution constraints where every relation atom is a distributed atom and where all these
atoms refer to the same node variable are called local. These constraints specify conditions
that hold on every local instance, viewed on its own – irrespective of the global instance or
other local instances.

I Example 7. The following is a local dtgd expressing that whenever a fact Emp(a, b) occurs
at node k there is a fact Sal(b, c), for some element c in dom, that occurs at node k as well:
Emp(x, y)@κ→ Sal(y, z)@κ. The following local value identifying degd expresses that, relative
to each node, each employee (name) has a unique address. Addr(x, y)@κ, Addr(x, y′)@κ→
y = y′.

3.2.3 Global-Local dtgds
Lastly, we call a dtgd global-local if none of its body atoms is distributed while all its heads
atoms are distributed and refer to the same node variable.

I Example 8. The global-local constraint Emp(x, y), Sal(y, z) → Emp(x, y)@κ, Sal(y, z)@κ

expresses that if there is an Emp-fact and a Sal-fact with the same title-attribute then these
facts meet at some node. This means that the join condition between Emp and Sal induced
by the schema is maintained in the horizontal decomposition of the global database.

5 The set Σ′ is not sticky because the marked variable µ occurs more than once in τ ′. It is not (weakly)
guarded because a single atom cannot contain both variables κ and µ that occur in affected positions
of τ ′. Finally, it is not warded because the dangerous variable κ appears in more than one atom in the
body of τ ′.

ICDT 2020
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Global-local constraints can also express that the database has no skipped facts, i.e.,
facts f ∈ global(D) with f /∈ local(D). To this end, for each relation symbol R a global-local
constraint R(x1, . . . , xar(R))→ R(x1, . . . , xar(R))@κ can be added. Indeed, it is this ability of
distributed constraints to disallow skipped facts that made us allow them in first place. For
a schema S, we denote by U(S) the set of all global-local constraints that express that there
are no skipped facts.

By symmetry also local-global constraints can be defined. An example would be the
dtgd Emp(x, y)@κ, Sal(y, z)@κ → Addr(x, z′) (even though for this particular schema, the
constraint is rather contrived). Nevertheless, local-global constraints allow to state explicitly
that every local fact is also a global fact, by stating R(x1, . . . , xm)@κ→ R(x1, . . . , xm), for
every relation R (with m = ar(R)).

3.3 Applications of distribution constraints
We give some applications of distribution constraints like defining range, hash and co-
partitionings and testing for parallel-correctness. In the full version, we illustrate how
hypercube distributions can be incorporated and discuss query answering and multi-round
query evaluation. The paper [35] further explores the use of distribution constraints to
model distributed evaluation strategies for Datalog in the context of parallel-correctness and
parallel-boundedness in the multi-round MPC model.

3.3.1 Range and hash partitioning
Distribution constraints can easily incorporate the commonly used range and hash partition-
ings (see for example [31,37]). Example 1 already illustrates range partitionings.

The following two distribution constraints define a hash partitioning of the relation
Emp(name,dept) on the attribute department:

Emp(n, d)→ Emp(n, d)@κ

Emp(n, d)@κ, Emp(n′, d)→ Emp(n′, d)@κ

The first rule enforces that every Emp-tuple occurs at a node while the second rule ensures
that Emp-tuples within the same department are placed together. The above approach
where hash functions are implicit should be contrasted with the modeling of Hypercube
distributions, discussed in the full version, where hash functions are made explicit.

3.3.2 Co-partitioning
A popular way to avoid expensive remote join operations – already used in early parallel
systems – is to co-partition tables on their join key [21, 25]. Generalizations of the latter
technique where co-partitioning is determined by more complex join predicates have been
shown to be effective in modern systems as well [38, 39,41,45].

Consider, for instance, the following (simplified) relations from the TPC-H schema [1]:
Lineitem(linekey, orderkey), Orders(orderkey, custkey), and Customer(custkey, cname).

Zamanian, Binnig, and Salama [45] exemplify the following co-partitioning scheme:
Lineitem is hash-partitioned by linekey, Orders tuples are co-partitioned with Lineitem
tuples with the same orderkey, and Customer tuples are co-partitioned with Orders tuples
with the same custkey. As a consequence, the join Lineitem ./ Orders ./ Customer can be
evaluated without expensive remote joins. We note that the work in [45] is by no means
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restricted to single-round or communication-free evaluation of queries. Knowledge of co-
location of tuples is used to rewrite query plans and to determine those parts that can be
evaluated without additional reshuffling. Partitionings are also not considered to be static
but should adapt over time to changes in workload and the data (e.g., [32, 40]).

I Example 9. The following distribution constraints define the co-partitioning scheme
mentioned above:

Lineitem(`, o)→ Lineitem(`, o)@κ (1)
Orders(o, c)→ Orders(o, c)@κ (2)

Customer(c, n)→ Customer(c, n)@κ (3)
Lineitem(`, o), Lineitem(`, o′)@κ→ Lineitem(`, o)@κ (4)

Lineitem(`, o)@κ, Orders(o, c)→ Orders(o, c)@κ (5)
Orders(o, c)@κ, Customer(c, n)→ Customer(c, n)@κ (6)

Basically, Constraint (1) expresses that every Lineitem fact in the global database occurs
at some node; similarly for Constraints (2) and (3). Constraint (4) then expresses that
Lineitem facts are hashed on the first attribute: for every item ` with order o′ stored on
some server, every other order of that item is stored there too. Constraint (5) expresses that
Orders(o, c) facts are co-located with Lineitem(`, o) facts, while Constraint (6) expresses
that Customer(c, n) facts are co-located with Orders(o, c) facts. All together the distribution
constraints imply that the join condition between the three relations is maintained in the
horizontal decomposition of the global database.

3.3.3 Hierarchical partitioning schemes
Recent database systems like Google’s F1 [39,41] use hierarchical partitioning schemes to
provide performance while ensuring consistency under updates. Hierarchical partitioning
is a variant of the co-partitioning approach [42], introduced as predicate-based reference
partitioning [45]. This approach allows to formulate a hashing condition for a relation S,
given that a relation R is already distributed, in the following style: first, every S-fact has to
be distributed, and second, if an S-fact joins with an R-fact on a predefined set of attributes,
then the S-fact is distributed to every node where such an R-fact exists.

This is easily modeled by the following dtgds:

S(z)→ S(z)@κ,

R(y)@κ, S(z)→ S(z)@κ,

where variables y and z share some common variables x1, . . . , xn representing the join
predicate. Notice that Example 9 follows this scheme. Another example, illustrating Google’s
AdWord scenario, is given in the full version.

3.3.4 Parallel-Correctness
We show that parallel-correctness of a conjunctive query can be captured by a dtgd but not
always by a data-full one.

I Example 10. Let Q = H(n, s)← Emp(n, t), Sal(t, s) be a conjunctive query. Then, Q is
parallel-correct on a distributed instance D if every fact from Q(global(D)) is derived at
some node (due to the monotonicity of CQs, we do not need to check the converse statement).
This can be expressed by the dtgd Emp(x, y), Sal(y, z)→ Emp(x, y′)@κ, Sal(y′, z)@κ. We note
that in this dtgd κ and y′ occur only in the head. So, this dtgd is not data-full.
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4 Reasoning

We consider the implication problem for distribution constraints in Section 4.1, and adapt
the chase to degds and data-full dtgds in Section 4.2, as a means to solve it.

4.1 The implication problem

We stress that the implied dependency τ in the definition below, is not required to belong to
the class C. That is, τ can be an arbitrary distribution constraint.

I Definition 11. The implication problem Imp(C, d), parameterised by a class C of depend-
encies and a domain d asks, for a finite set Σ from C and a single distribution constraint τ ,
whether Σ |=d τ . Possible choices for d are N, Z and Q. If the choice of d does not matter
or is clear from the context, we also write Imp(C). For each α ≥ 1, we denote by Impα(C, d)
the restriction of Imp(C, d) to inputs (Σ, τ) in which the arity of each relation symbol (with
respect to data) is at most α.

Since every tgd is a dtgd and the implication problem for tgds without comparison atoms is
undecidable, we instantly get the following.

I Observation 12 ([13,19]). Imp(Tall) is undecidable.

To facilitate automatic reasoning, it thus makes sense to consider restricted kinds of constraints.
An immediate observation is that most of the examples in Section 3 only use data-full
distribution constraints. In the remainder of this paper, we therefore restrict our attention
to this class.

I Remark 13. A full tgd σ = A, C → {A′
1, . . . , A

′
p} can be transformed into an equivalent

set of tgds {A, C → A′
1, . . . ,A, C → A′

p} with a singleton head.6In particular, this applies to
dtgds without existential quantification. Similarly, data-full dtgds with existentially quantified
node variables can be decomposed into data-full dtgds with at most one node variable in their
head. We thus assume w.l.o.g. in upper bound proofs that all dtgds in Σ are decomposed in
this fashion.

Since data-full dtgds have at most one node variable in their head, we can distinguish three
kinds of data-full dtgds:

node-creating dtgds like R(x, y) → R(x, y)@κ, in which the one node variable in their
head is existentially quantified;
data-collecting dtgds like S(x)@κ, T (x)@λ → T (x)@κ, which are dtgds that have one
distributed head atom without existential quantification (they collect facts in a local
node); and,
global dtgds like R(x, y)→ U(x) or R(x, y)@κ, T (x)@κ→ S(y) that have one head atom
without node variable (they contribute global facts).7

For brevity, we sometimes refer to generating and collecting dtgds.
We call the unique node variable that occurs in the head of a node-creating or data-

collecting dtgd σ the head variable of σ.

6 This observation is used also used the context of normalised schema mappings [24,28].
7 The term global dtgd thus represents a superset of global and local-global dtgds from Section 3.2.
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4.2 The chase for distribution constraints

The classical way for deciding implication of tgds and egds builds on the chase procedure. In
the following, we adapt the chase from [23] for distribution constraints from Tdf and Eall.

I Definition 14 (chase step). A dtgd σ is applicable to a distributed instance D with a
valuation W if W satisfies bodyσ on D and there exists no valuation W ′ for σ identical to W
on bodyσ such that W ′(headσ) ⊆ D. Furthermore, if σ is node-creating then W (κ) must
be a node k not occurring in D, where κ is the head variable of σ. The result chase(c,D)
of applying c = (σ,W ) on D is the distributed instance D′ = D ∪W (headσ) and we write
D

c−→D′.

For instance, if a distributed database D consists of facts R(a)@1 and S(a, b)@2, then
dependency σ = R(x)@κ, S(x, y)@λ → R(x)@µ, S(x, y)@µ is applicable to D, as witnessed
by the valuation W where W (x, y) = (a, b) and W (κ, λ, µ) = (1, 2, 3). Application leads to
D′ = D ∪ {R(a)@3, S(a, b)@3}.

If σ is node-creating, we say that the chase step generates the new node W (κ) with an
initial set W (headσ) of facts. If σ is data-collecting, we say that the chase step collects the
facts from W (headσ) in node W (κ). If σ is global, we say that the chase step targets the
global database. The chase step contributes the set W (headσ) of global facts.

IDefinition 15 (chase sequence). Let Σ be a set of distribution constraints and D a distributed
instance. A chase sequence for D with Σ is a sequence D = D0, D1, . . . of distributed instances
with D0 = D and Di

(σi,Wi)−−−−−→Di+1, for every i ≥ 0 and some σi ∈ Σ and valuation Wi. We
write chase(D) for the final instance of D, if D is finite.

A chase sequence D fails, if there is a degd σ ∈ Σ with a head t = t′ and a valuation W ,
such that W satisfies bodyσ on chase(D) and W (t) 6= W (t′). It is successful, if it is finite,
does not fail and chase(D) has no applicable chase step.

The following easy observation is crucial for our results.

I Proposition 16. For each distributed database D and each set Σ of constraints from Tdf
and Eall, there are no infinite chase sequences for D.

For classical tgds and egds, to test Σ |= τ , the chase is basically applied to a “canonical
database” V (rbodyτ ), for some one-one valuation V . Due to comparison atoms, this does
not suffice in our setting. Instead, we consider a set of canonical databases, which allows
for all possible linear orders on the variables of bodyτ . It depends on the general domain
d which we allow to be one of N, Z, Q. More precisely, it is defined over a set dom(Σ, τ, d)
of data values that contains all constants of Σ and τ and, between each pair of successive
constants all intermediate values from d or as many intermediate values as there are variables
in bodyτ . The set of canonical databases then consists of all databases of the form V (rbodyτ )
for valuations whose range is in dom(Σ, τ, d).

Towards a formal definition, c1 < · · · < c` denote the constants in Σ∪{τ} and letm be the
number of data variables in bodyτ . If d = Q then dom(Σ, τ, d) consists of c1, . . . , c`, all values
c1−m, . . . , c1− 1, all values c` + 1, . . . , c` +m and all values of the form ci + j

m+1 (ci+1− ci),
for i ∈ {1, . . . , ` − 1} and j ∈ {1, . . . ,m}. If d = Z, it consists of c1, . . . , c`, all values
c1 − m, . . . , c1 − 1, all values c` + 1, . . . , c` + m and all values of the form ci + j, for
i ∈ {1, . . . , `− 1} and j ∈ {1, . . . ,m} with ci + j < ci+1. If d = N, it is defined as for d = Z
with the additional constraint that elements of the form c1 − j must be non-negative.
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By D(Σ, τ, d) we denote the set of all distributed databases V (rbodyτ ), for which V maps
data variables to values in dom(Σ, τ, d) and node variables one-one to an initial segment of
(a disjoint copy of) the natural numbers.

The following result shows that, to decide implication, it suffices to apply the chase to all
databases in D(Σ, τ, d).

I Proposition 17. Let Σ ∪ {τ} be a set distribution constraints from Tdf and Eall and let d
be one of N, Z, Q. Then the following statements are equivalent.
(1) Σ |=d τ .
(2) For every database D = V (rbodyτ ) in D(Σ, τ, d) and every successful chase sequence D

for D with Σ, there is an extension V ′ of V that satisfies headτ on chase(D).
(3) For every database D = V (rbodyτ ) in D(Σ, τ, d) there exists a chase sequence D for

D with Σ, that fails or for which there is an extension V ′ of V that satisfies headτ on
chase(D).

The straightforward proof is given in the full version.

5 Complexity

In this section, we study the complexity of the implication problem for data-full dtgds
(and arbitrary degds). In general, this problem turns out to be in EXPTIME, in fact as
EXPTIME-complete. We then study restrictions of dtgds and degds that lower the complexity
of the implication problem. In fact, we identify fragments whose implication problems are
Πp

2-complete (NP-complete without comparison atoms) or PSPACE-complete. To wrap up
the picture, we finally identify fragments that already yield EXPTIME-hardness.

For most practical cases, the relevant complexity is Πp
2 or even NP: the former is the case,

e.g., if the database schema (or at least its arity) is fixed and if the number of atoms (or at
least the number of variables) is bounded by some a-priori constant. The latter is the case if,
additionally, there are no comparison atoms. In particular, the “natural” generalisations of
our examples have at most Πp

2 (or NP) complexity.
The first result of this section states that Imp(Tdf) is EXPTIME-complete. The upper

bound is very simple but shows that the problem is not harder than implication of full
(non-distributed) tgds. On the other hand, in the distributed setting, EXPTIME-hardness
already holds for fixed schemas with small arity, whereas this problem is easily seen to be
in Πp

2 for (non-distributed) full dependencies.

I Theorem 18. Imp(Tdf ∪ Eall) is EXPTIME-complete. The lower bound already holds for a
fixed schema of arity 2.

Proof sketch. The lower bound follows from Theorem 26, which is shown in Subsection 5.3
and offers a collection of types of distributed constraints that make the implication problem
EXPTIME-hard.

The upper bound uses Proposition 17. Since dom(Σ, τ, d) has polynomial size in |Σ|+ |τ |,
the set D(Σ, τ, d) contains only exponentially many databases, from which the chase needs
to start. Furthermore, each constraint in Σ can be applied at most an exponential number
of times, since there are only exponentially many different valuations, and each of them can
fire at most once. Therefore, each chase sequence is of at most exponential length. J

Intuitively, EXPTIME-hardness for the class Tdf of data-full dtgds (and even without
degds) follows from the need to keep track of an exponential number of nodes, as can be
seen from the proof of the lower bound of Theorem 26.



G. Geck, F. Neven, and T. Schwentick 13:13

In the following two subsections, we turn to restricted classes with lower complexity8 for
the implication problem. The fragments that we study are not motivated from practical
considerations (since there we already have “low” complexity). They were rather obtained
by considering syntactic properties under which the chase behaves better than in general.

First of all, these fragments require a fixed bound on the arity of relations. Furthermore,
they bound the amount of data that is associated with a single node in a dtgd, in various
ways. To state this more precisely, we use the following notions.

I Definition 19 (bounded context). The context contκ(A) of a node variable κ in a set A
of atoms is the set of (data) variables occurring in atoms referring to κ. The context
contκ(σ) of κ in a dtgd σ is contκ(rbodyσ ∪ headσ). The context contκ(σ) of κ in a degd σ
is contκ(rbodyσ).

A node variable κ has b-bounded context in σ if |contκ(σ)| ≤ b. It has b-bounded body
context if |contκ(rbodyσ)| ≤ b.

For instance, in the two following constraints,
dtgd σ1 = R(x, y, z), S(y)@κ→ T (x)@κ and
degd σ2 = S(x)@κ, S(y)@κ,R(x, y, z)@λ→ κ = λ,

node variable κ has context {x, y} and thus 2-bounded context. The body context of κ in σ1
is even 1-bounded. Note that, in σ2, node variable λ has 3-bounded body context and that,
since there is no other node variable, the body context of this constraint is bounded by
3 = max{2, 3} in general.

We sometimes simply speak of bounded context if b is clear from the, well, context.

5.1 Classes with Πp
2-reasoning

In this subsection, we consider two fragments which allow reasoning in Πp
2 in general, and

in NP, if there are no comparison atoms.
The first fragment requires only one restriction (besides the usual arity restriction).

The bounded generation fragment T bbg allows all global and data-collecting dtgds but only
node-creating dtgds, in which the head variable has b-bounded context. We refer to the
latter as node-creating dtgds of Type (G1), cf. Table 1.

I Theorem 20. For fixed α ≥ 1 and b ≥ 1, problem Impα(T bbg ∪ Eall) is
1. Πp

2-complete in general and
2. NP-complete, if restricted to inputs without comparison atoms.

Proof idea. The lower bounds follow by reductions from the containment problem for
conjunctive queries (with or without comparisons) [20,44]. For two queries Q and Q′ of the
respective classes, query Q is contained in Q′ if and only if {σ} |= τ , where σ = bodyQ′ →
headQ′ and τ = bodyQ → headQ are considered as global data-collecting dtgds (with or
without comparisons).

The proofs of the upper bounds use Condition (3) from Proposition 17 and rely on the
fact that, in each chase sequence, thanks to the (G1)-restriction only a polynomial number
of nodes is generated and thanks to the arity restriction, each can carry only a polynomial
number of facts. The Πp

2 upper bound can be almost directly inferred from the quantifier
structure of Condition (3). The NP upper bound follows since, essentially, only one initial
database needs to be considered. Below, we provide the details.

8 This statement holds under the common assumption that Πp
2 and PSPACE are smaller than EXPTIME.
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We begin by showing that all possible chase sequences have polynomial length. Let Σ be
a set of dependencies in T bbg∪Eall and τ be a distribution constraint. We recall that the chase
applies a node-creating chase step with a dtgd σ and a valuation W only if no node with
the facts from W (headσ) exists. However, for each σ ∈ Σ, the number of variables in headσ
occurring in atoms related to κ is at most b and thus the number of different valuations of
headσ (with the initial values derived from Dτ ) is at most |dom(Σ, τ, d)|b, and thus polynomial.
Therefore, the number of chase steps using a σ of Type (G1) is polynomially bounded. In
particular, the chase generates only a polynomial number of nodes. Since data-collecting
dtgds have only one atom in their head and α is a bound on the arity of atoms, there can only
be a polynomial number of chase steps using data-collecting dtgds, for each node. Similarly,
there can only be a polynomial number of chase steps using global dtgds. Altogether there can
be only a polynomial number of chase steps in each chase sequence. As mentioned before, the
Πp

2 upper bound follows from Condition (3) in Proposition 17. Universal quantification is over
all databases in D(Σ, τ, d), the chase sequence D is existentially quantified and that it fails
or there exists an appropriate extension can be verified by further existential quantification.

If there are no comparison atoms in Σ and τ it suffices to start the chase from one
canonical database of the form V (bodyτ ), for some one-one valuation V that does not map
any variables of bodyτ to constants of bodyτ . However, the chase needs to be defined in a
slightly different fashion: if a degd with a head of the form t = t′ is applicable via a valuation
W then in the result W (t) and W (t′) are identified, unless they are different constants from
bodyτ . If the latter is the case, the chase fails. For this version of the chase, Proposition 17
holds as well.

The NP upper bound then follows, since only one initial database needs to be used and
only one chase sequence of polynomial length needs to be guessed. J

The other class of dtgds considered in this subsection allows node-creating dtgds with head
variables with unbounded context. The simple argument of the proof of Theorem 20 therefore
does not work anymore. However, it turns out that there are simple (and still generous)
restrictions that guarantee a Πp

2 (NP) upper bound for the implication problem. To this end,
we define the bounded context fragment T bbc of dtgds as follows (cf. Table 1).

I Definition 21 (bounded context dtgds). A node-creating dtgd σ is in T bbc, if
(G1) its head variable has b-bounded context, or
(G2) all node variables in its body have b-bounded context.
A data-collecting dtgd σ is in T bbc, if
(C1) its head variable has b-bounded body context, or
(C2) all other node variables have b-bounded context.
For instance, all global dtgds and degds are in T bbc.

The bounded context fragment Ebbc of degds is defined similarly.

I Definition 22 (bounded context degds). A degd σ with only data variables in its head is in
Ebbc. A degd σ = A → κ = µ is in Ebbc, if
(E1) κ and µ have b-bounded context, or
(E2) µ and all node variables that do not occur in the head have b-bounded context.
The degds of Ebbc are illustrated in Table 1. In degds of Type (E2), we call κ (but not µ) the
head variable.

We can now state the second result of this subsection.
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I Theorem 23. For fixed α ≥ 1 and b ≥ 1, problem Impα(T bbc ∪ Ebbc) is
1. Πp

2-complete in general and
2. NP-complete, if restricted to inputs without comparison atoms.

Proof idea. For the upper bounds, we show that any chase sequence for T bbc ∪ Ebbc can be
normalised such that only a polynomial number of witness nodes are needed to trigger any
chase steps. Since every node has only a polynomial number of facts, this implies that it
suffices to consider chase sequences of polynomial length. The remaining arguments are then
as for Theorem 20. The lower bounds follow by the same reduction as in Theorem 20. J

5.2 Classes with PSPACE-reasoning
In this subsection, we consider a fragment of distribution constraints that does not guar-
antee polynomial-length chase sequences but, intuitively, sequences of polynomial “width”.
Consequently, their implication problem turns out as PSPACE-complete.

The fragment T bwbc is defined as follows (cf. Table 1).

I Definition 24 (weakly bounded distribution tgds). Let b ≥ 1. A dtgd σ is in the class T bwbc
of weakly bounded distribution tgds if it is in T bbc or it obeys the following restriction:
(G3) σ is node-creating and exactly one of its node variables does not have b-bounded body

context.

I Theorem 25.
1. Impα(T bwbc ∪ Ebbc) is in PSPACE, for every α ≥ 1 and b ≥ 1.
2. Impα(T bwbc) is PSPACE-hard for α ≥ 1 and b ≥ 0. This lower bound even holds without

comparison atoms.

Proof idea. The lower bound (2) is shown similarly as PSPACE-hardness of the implication
problem for inclusion dependencies over schemas of unbounded arity [4, 18]. In a nutshell, in
this reduction each node carries one tuple, encoded with unary relations.

For the upper bound, unlike for Tbc, we do not have a polynomial length bound for
chase sequences for Twbc. In fact, it might be the case that a chase sequence generates an
exponential number of nodes. However, we can still use a polynomially bounded set Z of
witness nodes for the bounded node variables of (G3) dtgds and for all other constraints.
They do not account for the unbounded node variables in (G3) constraints, but we show that
those only need to occur in linear succession. The basic idea of the algorithm is to guess Z
(and the facts on nodes from Z) and to verify in polynomial space, for each node in Z, that
it is produced by a chase sequence. These verifying computations all assume the same set Z.
We use a kind of timestamps to avoid cyclic reasoning. The details of this proof are given in
the full version. J

5.3 Classes with EXPTIME-hard reasoning
In this subsection, we turn to combinations of constraints that yield an EXPTIME-hard
implication problem. In particular, we complete the proof of Theorem 18. To this end, we
consider the following additional types of constraints:
(G4) node-creating dtgds with two unbounded node variables;
(C3) data-collecting dtgds with two unbounded node variables;
(E3) degds with two unbounded node variables; and,
(E4) degds with three unbounded node variables.
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I Theorem 26. Imp(Tdf) is EXPTIME-hard. This statement holds already without comparison
atoms and with only the following combinations of constraint types allowed:
(a) Node-creating dtgds of Type (G2) and data-collecting dtgds of Type (C3);
(b) Node-creating dtgds of Type (G2) and (G4);
(c) Node-creating dtgds of Type (G2) and degds of Type (E4);
(d) Node-creating dtgds of Types (G2) and (G3), and degds of Type (E3).
In all cases, schemas with (at most) binary relations suffice.

The four EXPTIME-hard fragments are illustrated in Table 1. The reductions use an
alternating Turing machine with linearly bounded space.

5.4 Parallel-correctness revisited
We lift parallel-correctness to the setting of distribution constraints. In particular, we say that
a query Q is parallel-correct w.r.t. a set of distribution constraints Σ if Q is parallel-correct
on every database that satisfies Σ.

As parallel-correctness of a conjunctive query can be expressed as a dtgd, the results of
the present section lead to the following:

I Corollary 27. For a CQ Q and a set of distribution constraints Σ, the complexity of
deciding parallel-correctness of Q w.r.t. Σ is in EXPTIME. Furthermore, it is in Πp

2 (or NP,
without comparsion atoms) and PSPACE if Σ ⊆ T bbc ∪ Ebbc and Σ ⊆ T bwbc ∪ Ebbc, respectively,
for a fixed b and a fixed bound α on the maximal arity of relation symbols.

6 Conclusion

In this work, we introduced a novel declarative framework based on classical tgds and egds with
comparison atoms to specify and reason about classes of data distributions. We illustrated
our framework by various examples and performed an initial study of the complexity of
the implication problem. As an application, we derived bounds (in Corollary 27) for the
complexity of parallel-correctness of conjunctive queries.

Of course, there are many immediate general directions for extending the line of work
started in this paper. For instance, one could study the implication problem for more
expressive distribution constraints than data-full ones. There is a plethora of work on
fragments of dependencies for improving the complexity of decision problems (e.g., [10,14,
16, 36]). It could be investigated if any of these or others lead to a decidable implication
problem. Another direction for future work is to study parallel-correctness w.r.t. distribution
constraints for more expressive query languages than conjunctive queries. Some possibilities
are unions of conjunctive queries [7], conjunctive queries with negation [26] or Datalog [29].

Example 9 and Section 3.3.3 illustrate how co-partitioning schemes can be translated into
distribution constraints. It would be interesting to investigate the converse direction. That is,
by design, distribution constraints specify in a declaratively way which properties a horizontal
partitioning should satisfy. They do not provide a direct operational way to compute an
actual partitioning. A natural question is to find an optimal partitioning satisfying a given
set of distribution constraints.

Section 3 mentions a translation of distribution constraints to classical tgds and egds by
increasing the arity of relations by one to take the node variables into account. It would be
interesting to see whether the resulting fragment of dependencies is worthwhile to study it
on its own in the classical setting.
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Table 1 Illustration of restricted classes of dtgds and degds. Node variables that have to be
bounded are shaded, others may be unbounded. The columns indicate the complexity of (some)
combinations of fragments.

Πp
2 (NP) PSPACE EXPTIME

(G1) λ1 ··· λr → κ X X X

(G2) λ1 ··· λr → κ X X X X X

(G3) λ1 ··· λr µ → κ X X

(G4) λ µ → κ X

Unrestricted data-collecting dtgds X

(C1) κ λ1 ··· λr → κ X X

(C2) κ λ1 ··· λr → κ X X

(C3) κ λ → κ X

Unrestricted degds X

(E1) κ µ λ1 ··· λr → κ = µ X X

(E2) κ µ λ1 ··· λr → κ = µ X X

(E3) κ λ → κ = λ X

(E4) κ λ µ → κ = λ X

Theorem 20 23 25 26(a) 26(b) 26(c) 26(d)

The main technical challenge left open from this work is whether the EXPTIME-hardness
result in Theorem 26(c) can be extended to rules of Type (E4) that contain two rather than
three unbounded node variables.
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