125 research outputs found

    Higher order approximation of isochrons

    Full text link
    Phase reduction is a commonly used techinque for analyzing stable oscillators, particularly in studies concerning synchronization and phase lock of a network of oscillators. In a widely used numerical approach for obtaining phase reduction of a single oscillator, one needs to obtain the gradient of the phase function, which essentially provides a linear approximation of isochrons. In this paper, we extend the method for obtaining partial derivatives of the phase function to arbitrary order, providing higher order approximations of isochrons. In particular, our method in order 2 can be applied to the study of dynamics of a stable oscillator subjected to stochastic perturbations, a topic that will be discussed in a future paper. We use the Stuart-Landau oscillator to illustrate the method in order 2

    Ruelle-Pollicott Resonances of Stochastic Systems in Reduced State Space. Part II: Stochastic Hopf Bifurcation

    Get PDF
    The spectrum of the generator (Kolmogorov operator) of a diffusion process, referred to as the Ruelle-Pollicott (RP) spectrum, provides a detailed characterization of correlation functions and power spectra of stochastic systems via decomposition formulas in terms of RP resonances. Stochastic analysis techniques relying on the theory of Markov semigroups for the study of the RP spectrum and a rigorous reduction method is presented in Part I. This framework is here applied to study a stochastic Hopf bifurcation in view of characterizing the statistical properties of nonlinear oscillators perturbed by noise, depending on their stability. In light of the H\"ormander theorem, it is first shown that the geometry of the unperturbed limit cycle, in particular its isochrons, is essential to understand the effect of noise and the phenomenon of phase diffusion. In addition, it is shown that the spectrum has a spectral gap, even at the bifurcation point, and that correlations decay exponentially fast. Explicit small-noise expansions of the RP eigenvalues and eigenfunctions are then obtained, away from the bifurcation point, based on the knowledge of the linearized deterministic dynamics and the characteristics of the noise. These formulas allow one to understand how the interaction of the noise with the deterministic dynamics affect the decay of correlations. Numerical results complement the study of the RP spectrum at the bifurcation, revealing useful scaling laws. The analysis of the Markov semigroup for stochastic bifurcations is thus promising in providing a complementary approach to the more geometric random dynamical system approach. This approach is not limited to low-dimensional systems and the reduction method presented in part I is applied to a stochastic model relevant to climate dynamics in part III

    Radiative heat transfer from an arbitrary plane source to a semi-infinite aerosol /

    Get PDF

    Sensitivity analysis of oscillator models in the space of phase-response curves: Oscillators as open systems

    Full text link
    Oscillator models are central to the study of system properties such as entrainment or synchronization. Due to their nonlinear nature, few system-theoretic tools exist to analyze those models. The paper develops a sensitivity analysis for phase-response curves, a fundamental one-dimensional phase reduction of oscillator models. The proposed theoretical and numerical analysis tools are illustrated on several system-theoretic questions and models arising in the biology of cellular rhythms

    Mathematical models and tools to understand coupled circadian oscillations and limit cycling systems

    Get PDF
    The circadian rhythm refers to an internal body process that regulates many body processes including the sleep-wake cycle, digestion and hormone release. The ability of a circadian system to entrain to the 24-hour light-dark cycle is one of the most important properties. There are several scenarios in which circadian oscillators do not directly receive light-dark forcing. Instead they are part of hierarchical systems in which, as \peripheral oscillators, they are periodically forced by other \central circadian oscillators that do directly receive light input. Such dynamics are modeled as hierarchical coupled limit cycle systems. Those models usually have a large population, and are non-autonomous. In this dissertation, a coupled Kuramoto model and a coupled Novak-Tyson model are developed to study the entrainment of hierarchical coupled circadian oscillators. Direct simulations usually are incapable of revealing the full dynamics of such models. One goal of this dissertation is to apply proper mathematical methods to simplify the original systems. A phase reduction method is applied for reducing the original system to phase model. A parameterization method is introduced for simplifying such systems, and it is also applied for computing invariant manifolds of some biological oscillators. A novel tool, entrainment map, is developed and extended to a higher dimensional situation. Compared with direct simulations, the map has the advantages of describing the conditions for existence and stability of the limit-cycle solutions, as well as studying forcing and coupling strength dependent bifurcations. It is also more practical to calculate the entrainment times by just iterating the map rather than by direct simulations
    corecore