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A CONTINUATION METHOD FOR COMPUTING

GLOBAL ISOCHRONS

HINKE M. OSINGA∗ AND JEFF MOEHLIS†

Abstract. Isochrons are foliations of phase space that extend the notion of phase of a stable
periodic orbit to the basin of attraction of this periodic orbit. Each point in the basin of attraction
lies on only one isochron and two points on the same isochron converge to the periodic orbit with the
same phase. These properties allow one to define so-called phase models that reduce the dimension
of an oscillating system. Global isochrons, that is, isochrons extended into the full basin of attraction
rather than just a neighborhood of the periodic orbit, can typically only be approximated numerically.
Unfortunately, their computation is rather difficult, particularly for systems with multiple time scales.
We present a novel method for computing isochrons via the continuation of a two-point boundary
value problem. We view the isochron associated with a particular phase point γ on the periodic orbit
as the Poincaré section of the time-T return map that has γ as its fixed point; here, the time T is the
period of the periodic orbit. The boundary value problem set-up uses the orbit segment that defines
the periodic orbit starting at γ as the first known solution on the isochron; other solutions are found
by continuation along the linear approximation of the isochron in a prespecified small neighborhood
of the periodic orbit. This means that the computational error is fully controlled by the accuracy
settings of the boundary value solver and the maximal distance along the linear approximation.
This method can easily be implemented for two-dimensional systems, and we are able to compute
global isochrons of planar slow-fast systems in unprecedented detail. We show how complicated the
structure of isochrons can be already for such low-dimensional systems and discuss how the isochrons
determine the phase sensitivity of the system.

Key words. isochron, phase response curve, Hodgkin-Huxley, two-point boundary value prob-
lem, continuation method
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1. Introduction. Many biological systems produce rhythmic oscillations that
are self-sustained, with an internal source of energy being transformed into oscillations
of chemical concentrations and electrical and mechanical properties. Such biological
oscillators have a long, successful history of being modeled using ordinary differential
equations [26, 28]. A prototypical example of a biological oscillator is the stable
periodically firing action potential generated by the giant axon of a squid for a range
of constant bias currents [25]. This behavior was famously modeled by Hodgkin and
Huxley [25] using a four-dimensional system of coupled nonlinear ordinary differential
equations, representing the voltage difference across a neural membrane and three
gating variables related to ionic flow across the membrane.

A powerful technique for analyzing a biological oscillator is the rigorous reduction
to a phase model, with a single variable describing the phase of the oscillation with
respect to some reference state; see, for example, [3, 21]. This tremendous reduction
in the dimensionality and complexity of a system often retains enough information to
gain a useful understanding of its dynamics. Moreover, the analysis of the system is
greatly simplified, because phase models tend to depend only on a very small number
of parameters [3]. The reduction to a phase model is based on the notion of isochrons
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2 H. M. OSINGA and J. MOEHLIS

of the oscillator for the system. Isochrons are sets in phase space that correspond
to solution trajectories that asymptotically approach a stable periodic orbit Γ (the
oscillator) at identical phases. They are defined relative to Γ and make sense only
for points in the basin of attraction of Γ. The isochrons give a sense of how long a
trajectory spends in different regions of phase space: for example, a trajectory moves
slowly through regions of state space where isochrons that are equally spaced in phase
lie relatively close to each other.

The concept of an isochron is also important in power electronics. Power gen-
eration systems consist of several generating units that operate in parallel. Before
a new unit, for example, a wind turbine or solar panel, can be connected to a util-
ity network, one must ensure precise amplitude, frequency and phase conditions. In
particular, phase agreement between the voltages of the generator and the power sys-
tem at the instant of connection is critical because of the electromagnetic transients
that follow [20, 42]. Such grid synchronization problems essentially require that the
new unit be connected at the precise moment when its state vector is such that the
dynamics of the combined system starts with an initial condition on the isochron of
the phase that the system is in before the connection. While automatic synchroniza-
tion methods exist, their performance is not always reliable and most systems use a
combination of manual, semi-automatic, and automatic synchronizing schemes [40].

Isochrons of a stable periodic orbit Γ were first introduced by Winfree [43] in
1974. In this paper he provides formal definitions for the notions of asymptotic phase

(which Winfree calls latent phase) and isochron that we reformulate in Definitions 2.1
and 2.2 of the next section. Except for simple examples, isochrons cannot be calcu-
lated analytically and one has to resort to numerical approximations. Unfortunately,
biological oscillators typically give rise to models with multiple time scales, which are
rather sensitive to numerical integration. Therefore, research has been focused on
studying the phase-shift of an oscillation due to an infinitesimal, impulsive perturba-
tion [3, 16, 19, 23]. By considering the shift in phase as a function of the phase at which
the perturbation is applied, one obtains the infinitesimal phase response curve (PRC)
for the system [38]. Effectively, the infinitesimal PRC is defined by the linear approx-
imation of the isochrons in a neighborhood of the periodic orbit. Phase models and
PRCs are particularly useful for systems of weakly coupled oscillators [2, 33, 41, 44]
and oscillators subject to a stimulus [3, 6, 7, 23, 35].

The PRC only gives information related to infinitesimal perturbations. Recently,
interest has shifted to studying the effect of larger perturbation, which requires more
global knowledge of the isochrons so that their linear approximation alone is not
sufficient. We specifically mention Guckenheimer and Sherwood, whose work is, as yet,
only published as a PhD thesis [39], and Guillamon and Huguet, whose paper appeared
very recently [22]. Guckenheimer and Sherwood use backward integration methods
to approximate the isochrons. Guillamon and Huguet introduce the notion of a phase
response surface, based on the computation of isochrons via Fourier expansions; as
in [39], the global isochrons are obtained by extending the local approximation via
backward integration techniques. Unfortunately, the use of backward integration can
be very sensitive, particularly for systems with multiple time scales, and it can be very
hard, if not impossible, to compute arbitrarily large extensions of a local isochron.
In this paper we present a different method for computing global isochrons that is
based on the continuation of a suitably posed two-point boundary value problem; we
refer to [10] for an introduction on the continuation of boundary value problems. Our
approach is particularly well suited for systems with multiple time scales.
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We illustrate our continuation method with the example of a two-dimensional
reduced Hodgkin-Huxley model that was considered in [28, 34]. The one-dimensional
isochrons of this planar model, which are associated with a unique globally attracting
periodic orbit Γ, foliate the phase space in a remarkably complicated way. Winfree
poses a number of conjectures in [43] and, in particular, wonders about the geometry
of isochrons at the boundary ∂B of the basin of attraction of Γ. He argues that, under
suitable genericity conditions, each isochron must come arbitrarily close to any point
on ∂B, which he calls the phaseless set [43, Conjecture C in the Appendix]. With the
use of our method, we can compute each isochron and show up to unprecedented detail
its interaction with an equilibrium that is the only point not contained in the basin of
Γ. An important advantage of our method is the fact that we compute each isochron
via continuation, which automatically provides an arclength parameterization of it
that organizes phase space according to the notion of arclength distance to the periodic
orbit. As a result, we are able to visualize Winfree’s conjecture for this example.
Moreover, we find a bounded set of points in the interior of the basin of Γ with
properties that are very similar to those of a phaseless set.

This paper is organized as follows. In the next section we give formal defini-
tions and present a background of the computational methods for obtaining linear
approximations of the isochrons. Section 3 describes how we compute isochrons via
continuation of a two-point boundary value problem. The computations can be done,
for example, using the software package AUTO [11], and we give specific details on
how to formulate the two-point boundary value problem for this purpose. Section 4
discusses in detail the geometry of isochrons computed for a reduced Hodgkin-Huxley
model. We end with a discussion in section 5.

2. Definitions and background. Let us begin with a precise definition of an
isochron. Consider an autonomous vector field

dx

dt
= F (x), (2.1)

with solutions x = x(t) that satisfy x(0) = x0 ∈ R
n; here, R

n is the phase space
of (2.1). In this paper we consider planar vector fields, that is, n = 2, so that the
isochrons are one dimensional. In principle, it is not essential to have n = 2 in what
follows and we come back to this in section 5. We assume that F is sufficiently smooth,
that is, F is at least C1. The vector field (2.1) induces a flow Φ : R×R

n → R
n and we

will use the notations Φ(t,x0) = Φt(x0). We further assume that (2.1) has a orbit Γ
with period TΓ and Γ is a hyperbolic attractor, that is, all Floquet multipliers of Γ lie
inside the complex unit circle, except for the trivial multiplier 1 associated with the
direction tangent to Γ. We associate a phase with points on Γ as follows. Let γ0 ∈ Γ
be the point where the phase is zero; γ0 is typically chosen as the global maximum of
Γ with respect to the first coordinate. Then Γ = {Φ(t, γ0) | 0 ≤ t < TΓ} and a point
γt = Φ(t, γ0) has phase θ(γt) = t/TΓ. The phase θ(γt) takes values in [0, 1), which
follows the definition by Winfree [43], but other conventions, such as [0, 2π) or [0, TΓ),
can easily be obtained via rescaling.

Isochrons are closely related to an extended notion of phase that is also defined
for points that do not lie on Γ:

Definition 2.1 (Asymptotic phase). Let x0 ∈ R
n be an initial condition for (2.1)

that lies inside the basin of attraction of Γ. Then the unique asymptotic phase θ(x0)
of x0 is given by the condition

lim
t→∞

||Φ(t,x0) − Φ(t + θ(x0)TΓ, γ0) ||= 0.
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Hence, the orbit through x0 converges asymptotically to Γ in the precise sense that it

will be in phase with the point Φ(θ(x0)TΓ, γ0) on Γ.

The asymptotic phase is only defined for points x0 ∈ R
n that lie in the basin

B(Γ) of Γ. If Γ is a global attractor of a planar vector field, then B(Γ) is the entire
phase space, with the possible exception of one or more unstable equilibria. The
complement of B(Γ) is also called the phaseless set of Γ.

Definition 2.2 (Isochron). An isochron is a level set of the asymptotic phase

function θ : B(Γ) ⊂ R
n → [0, 1), that is, the collection of all points in the basin of

attraction of Γ with the same asymptotic phase. We tend to associate isochrons with

their corresponding phase points on Γ. More precisely, for γ ∈ Γ,

I(γ) = {x0 ∈ B(Γ) | θ(x0) = θ(γ)}.

Since I(γ) is a level set of the asymptotic phase θ, we know that the gradient ∇θ(γ)
evaluated at the base point γ is perpendicular to the tangent of I(γ) at γ; this gradient
is typically referred to as the phase response curve [38]. Definition 2.1 implies that
isochrons map to each other under the flow, that is, with a slight abuse of notation:

I(Φt(γ0)) = Φt(I(γ0)).

In particular, each isochron I(γ) is invariant under the time-TΓ map ΦTΓ(·), which
has γ as its fixed point.

We want to consider isochrons from a dynamical systems point of view. Around
the same time when Winfree developed his idea of isochrons, Hirsch, Pugh and Shub
developed the theory of compact normally hyperbolic invariant manifolds, which cul-
minated in the publication of their book [24] in 1977. For example, Winfree claims
in [43, Conjecture A] that isochrons are smooth (n−1)-dimensional submanifolds that
foliate the basin of attraction of Γ. Quoting from [43]:

“M. Hirsch assures me that this is proveable (pers. comm.), my
“isochrons” being known to topologists as the “stable manifolds” of
points on [Γ].”

The paper by Winfree [43] was followed by a publication of Guckenheimer [21] in
1975 that fully explained the questions posed by Winfree [43]. In terms of dynamical
systems theory, we may think of Γ as a normally hyperbolic manifold, because we as-
sume that only its trivial Floquet multiplier lies on the complex unit circle. Then the
tangent bundle of R

n over Γ can be split into a linear bundle tangent to Γ and a linear
stable normal bundle transverse to Γ that is invariant under the linearization of the
flow. Moreover, we can define vector directions associated with these two tangent bun-
dles in the tangent space of R

n at γ for each point γ ∈ Γ. Since Γ is a periodic orbit, it
is easy to find these vector directions: γ is a fixed point of the time-TΓ map ΦTΓ(·) and
the tangent and normal vector directions are the eigenvectors of the Jacobian matrix
DΦTΓ(γ) associated with the trivial and nontrivial Floquet multipliers, respectively.
The local theory of normally hyperbolic, invariant, compact manifolds [24, §4, Theo-
rem 4.1] ensures the existence of an n-dimensional stable manifold W s(Γ) = B(Γ) that
is invariantly fibered (foliated) by (n − 1)-dimensional submanifolds W ss(γ), γ ∈ Γ
that are as smooth as the function F that defines (2.1). Moreover, W s(Γ) is tangent to
the linear stable normal bundle of Γ and each W ss(γ) is tangent to the corresponding
linear stable eigenspace at γ. By definition, I(γ) = W ss(γ), γ ∈ Γ; see [21, 24, 43].

The interpretation of I(γ) as a leaf W ss(γ) of the invariant fibration of W s(Γ)
offers a natural way of computing isochrons as stable manifolds, which is precisely
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the approach that we take in this paper. Our method is based on the idea of comput-
ing stable manifolds via the continuation of orbit segments [15, 30], which assumes
knowledge of the periodic orbit Γ as well as the linear approximation of the stable
manifold. Before explaining our method, we summarize in the next section several
methods for obtaining a local approximation of the isochrons.

2.1. Linear approximations of isochrons. The development of computa-
tional methods for isochrons has mainly focused on their linear approximations [17,
18, 44]. Indeed, the linear approximation suffices for computing the phase response
curve. To our knowledge Guillamon and Huguet [22] are the first to use higher-order
approximation methods for the local approximation of isochrons. We briefly discuss
these methods here, but primarily focus on the approach that we take for the com-
putations in this paper.

The so-called direct method is based on the formal definition for ∇θ(γ) as the
limit

∂θ

∂xi

(γ) = lim
∆xi→0

θ(γ + ∆xi ~ei) − θ(γ)

∆xi

,

where x = (x1, x2, · · · , xn) and ~ei denotes the ith basis vector of R
n. The partial

derivatives ∂
∂xi

θ(γ), i = 1, 2, . . . , n are found by comparing the phase of a base point
γ ∈ Γ with the phases of solutions in the infinite-time limit starting from points that
are infinitesimally shifted from γ [3, 18, 44]. The direct method is a straightforward
method that mimics how phase differences are measured in experiments.

The so-called adjoint method views ∇θ(γ) as an eigenvector for the adjoint of
the Jacobian matrix of the time-TΓ map evaluated at γ. The classical derivation uses
Taylor expansions of the orbit through an infinitesimal perturbation of γ; see [3, 16, 26,
17, 27] for more details. However, this approach is essentially the same as computing
the linear stable normal bundle of Γ, which defines the linear approximation of I(γ),
γ ∈ Γ. Let us explain this briefly because it is directly related to the method we use
in this paper.

Consider the n × n Jacobian matrix of the time-TΓ map ΦTΓ(·) evaluated at γ.
Since we assume that Γ is hyperbolic, this matrix DΦTΓ(γ) has exactly one eigenvalue
equal to 1 — the associated eigenvector is the direction tangent to Γ at γ — and the
other n−1 eigenvalues (counted with multiplicity) are all inside the complex unit circle,
that is, they all have modulus less than 1. The (n−1)-dimensional hyperplane spanned
by the (generalized) eigenvectors associated with these eigenvalues with modulus less
than 1 is the linear approximation of I(γ). If n = 2 then the linear approximation
of I(γ) is simply given by the eigenvector associated with the only stable eigenvalue
of DΦTΓ(γ). As soon as n > 2, however, it is more natural to define this linear
approximation by a vector perpendicular to I(γ) at γ. Indeed, this perpendicular
vector is precisely ∇θ(γ), and it is given by the left eigenvector ~vγ associated with
the trivial eigenvalue 1 of DΦTΓ(γ). (Recall that a left eigenvector of a matrix is a
right eigenvector of its adjoint.)

The standard method for finding ~vγ for any base point γ ∈ Γ is the power method;
the eigenvalue 1 is the largest eigenvalue of (the adjoint of) DΦTΓ(γ), so an arbitrary
vector direction converges to ~vγ when multiplied iteratively with this matrix. The
Jacobian matrix DΦTΓ(γ) is approximated using finite differencing and the standard
method uses backward integration along the periodic orbit Γ. For example, XPP [16]
uses this method for finding phase response curves numerically, and Matlab code for
this approach can be found in [27, Chapter 10].
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2.2. Linear approximation as a two-point boundary value problem. We
want to advocate a more direct method for computing ~vγ and the associated family for
all γ ∈ Γ that defines the linear stable normal bundle. The idea is to compute Γ and
this associated vector bundle in a single two-point boundary value problem; see [12,
13, 32] and, in particular, [9, 19], where this idea is used in the particular context
of computing PRCs. Hence, we do not already assume knowledge of Γ. Instead, we
combine (2.1) with the first variational equation






dx

dt
= F (x),

d~v

dt
= adj[DF (x)] ~v.

(2.2)

Here, adj[DF (x)] is the transpose (or adjoint) of the Jacobian matrix DF of the flow
evaluated at a point x that varies in time according to the first equation of (2.2).
Of course, this first equation should define the periodic orbit Γ, so we impose the
boundary condition

x(TΓ) = x(0) =: γ, (2.3)

where the period TΓ of Γ is unknown. The first variational equation is the second
equation of (2.2). It is linear, but with a time-varying matrix, and its solution is a
vector bundle ~v = ~v(t). As initial condition, we require ~v(0) = ~vγ ∈ R

n. Note that
(2.3) automatically implies that DF (x) and, thus, its adjoint are also periodic; if the
linear bundle is orientable, this period is the (unknown) period TΓ, and if it is non-
orientable, we may set up the computation using period 2TΓ both for Γ and its normal
bundle. Consequently, the vector bundle ~v that is associated with an eigenvector of
DΦTΓ(γ) is periodic in the sense that the vector direction is mapped to itself after
one full period, which we denote TΓ for both orientable and non-orientable cases from
now on. Indeed, the length of ~vγ may shrink or expand by a factor that is equal to
the Floquet multiplier associated with this vector bundle. However, we are interested
in the vector bundle associated with the trivial Floquet multiplier, so we have

~v(TΓ) = ~v(0) =: ~vγ , (2.4)

and we assume that ~vγ is normalized to 1. The combined system (2.2)–(2.4) is well
posed and defines the solution up to a phase condition that fixes γ. Note that the
trivial bundle ~v ≡ 0 for Γ is a solution that coexists with the actual eigenvector bundle
we are after. Since the trivial bundle is a solution for any Floquet multiplier, one can
find the nontrivial vector bundle as a branching solution from the trivial family that
bifurcates at the particular Floquet multiplier 1; we refer to [12, 13, 32] for details.

We note here that for planar systems the vector bundle is always orientable.
Furthermore, it is just as easy to compute the linear stable normal bundle ~ns directly
by using






d~ns

dt
= DF (x) ~ns,

~ns(TΓ) = µTΓ ~ns(0),

(2.5)

combined with (2.1) and (2.3). Here, µ is the stable Floquet multiplier of Γ. (Note
that we use the Jacobian rather than its adjoint here.) Since µ can be extremely close
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to 0 in systems with multiple time scales, it can be advantageous to use a logarithmic
formulation in terms of the Floquet exponent: By setting µ = eλ and ~ns = eλt ~w, the
equation for the first variational part becomes






d~w

dt
= DF (x) ~w − λ ~w,

~w(TΓ) = ~w(0).

We again refer to [12, 13, 32] for details.

2.3. Higher-order local approximations of isochrons. We end with a brief
discussion of higher-order methods. As mentioned, the first such method in the
context of computing local approximations of isochrons was published only recently
in [22]. However, any higher-order method for computing local stable manifolds can
be adapted for this purpose. Guillamon and Huguet [22] use the so-called parameter-
ization method that is originally designed for computing invariant manifolds [4], that
is, they view the isochron I(γ) as a leaf of the invariant fibration of the stable mani-
fold of Γ at γ. The parameterization method uses Fourier expansions to represent the
manifold. It appears that Fourier expansions are not ideal for systems with multiple
time scales, because the convergence of the expansion is typically slow and many terms
are needed; see [22] for details. It should be expected that any higher-order approxi-
mation method will be applicable only in a (possibly large) neighborhood of Γ. Also
in [22] the parameterization method is only used for computing a local approximation
of I(γ), which is then extended by other means to obtain a global approximation of
the isochron.

3. Extending the isochrons. Globally, the isochrons are nonlinear (immersed)
manifolds formed by the leaves of the invariant fibration of the stable manifold of the
periodic orbit Γ [21, 24]. More precisely, the isochron I(γ) of a point γ ∈ Γ is the
stable manifold W ss(γ) that is invariant under the time-TΓ map ΦTΓ(·) that has γ
as its fixed point. The dynamics on I(γ) generated by ΦTΓ(·) is a contraction, that
is, I(γ) is an overflowing manifold and any local approximation can be extended by
inverse iterations of ΦTΓ(·). The methods described in Sections 2.1–2.3 can be used
to obtain a local approximation of I(γ) that is valid only in a small neighborhood
of Γ. Throughout this section we focus on planar vector fields, that is, I(γ) is one
dimensional. Then we can employ standard techniques for the computation of global
stable manifolds to compute global extensions of I(γ); see, for example, the discussion
of such methods in [29].

To our knowledge, iterates of the inverse of ΦTΓ(·) have thus far been computed
by numerical integration. The most straightforward way is to integrate the flow
backward in time [22, 39]. However, for systems with multiple time scales, backward
integration is numerically extremely sensitive. For this reason, forward integration
techniques using shooting have also been employed [5]. Both cases view the manifold
as a collection of (backward) iterates of a chosen fundamental domain on the local
approximation. A fundamental domain is a segment on the local approximation with
the property that one end point maps to the other end point, so that subsequent
backward iterates form a connected curve. Each extension is generated such that
its mesh is distributed uniformly or according to local curvature properties of the
manifold. Unfortunately, the dynamics of the system — and this applies in particular
to systems with multiple time scales — may depend sensitively on the initial condition.
Therefore, it becomes increasingly difficult to generate an accurate mesh on higher
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iterates of the fundamental domain, and methods using numerical integration tend
to break down after a relatively short number of iterations. In fact, also for single-
time-scale systems it can be difficult to generate an ordered sequence of points that
effectively parameterizes the isochron by arclength.

In the next section we propose a new method for computing global extensions
of isochrons based on the continuation of a two-point boundary value problem [30].
The accuracy of the method does not depend solely on the initial condition, but uses
information of the flow along entire orbit segments. Furthermore, the continuation
automatically generates a mesh parameterized by arclength.

3.1. Global isochrons as a family of orbit segments. The method we pro-
pose for computing global extensions of isochrons is also based on the idea of viewing
the isochron I(γ) of a point γ ∈ Γ as a stable manifold W ss(γ) of ΦTΓ(·). The set-up
is very similar to that in [15] for the computation of one-dimensional manifolds of the
fixed point of a Poincaré map that is associated with a periodic orbit of the underlying
vector field. Indeed, the isochron of a point γ on Γ is nothing but the Poincaré section
through γ of the time-TΓ return map ΦTΓ(·). In [15] the Poincaré section is known and
the associated Poincaré map is unknown, but defined implicitly as the (local) return
to this section. In the present setting, the Poincaré map is defined as the time-TΓ map
and the associated section is not known. If (2.1) were a periodically forced system
with forcing period TΓ, then the Poincaré section of the time-TΓ map would be the
phase space at fixed TΓ-periodic time intervals. Hence, for this special case both the
Poincaré map and the section are known explicitly. In general, however, the section
associated with the time-TΓ map is defined implicitly by the fact that points return
to it after precisely the period TΓ of Γ. This unknown Poincaré section is precisely
the isochron I(γ) that we wish to compute.

Just as for the integration methods mentioned above, we assume knowledge of a
first local approximation of the isochron I(γ). We find that the linear approxima-
tion is sufficient for finding good global approximations of I(γ) [29, 36]. Particularly
in the context of systems with multiple time scales, the contraction rates along the
manifolds are extremely strong, which means that one can start with a local approx-
imation in a very small neighborhood of Γ and still grow the manifold rapidly away
from Γ. We compute the linear approximation of I(γ) with the method described
in section 2.2. Let us assume that we have computed the vector direction ~vγ ∈ R

2

that is perpendicular to the linear approximation ~ns
γ ∈ R

2 of I(γ). We define the line
segment

Lη(γ) := {γ + δ~ns
γ | 0 ≤|δ |≤ η}, (3.1)

parameterized by δ. For η ≪ 1 this line segment gives a good approximation of I(γ),
and we denote points on it by Lη(γ; δ).

We view I(γ) as defined by a one-parameter solution family of a two-point bound-
ary value problem (BVP). In the notation of AUTO [11] this BVP is formulated as
follows. We consider orbit segments {u(t) | 0 ≤ t ≤ 1} that correspond to orbit
segments {x(t) | 0 ≤ t ≤ TΓ} of (2.1). That is, we consider orbit segments of the
rescaled vector field

u̇ = TΓ F (u). (3.2)

An orbit segment corresponds to a point on I(γ) if both u(0) and u(1) are on I(γ).
Note that the two points u(0) and u(1) are related, because we keep TΓ fixed. The
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idea is now to find u(0) such that u(1) lies on the numerical approximation of I(γ).
Initially, all we have is the linear approximation of I(γ), which leads to the boundary
condition

u(1) = Lη(γ; δ). (3.3)

for some δ with 0 ≤| δ |≤ η ≪ 1, where η is prespecified. The fact that we keep TΓ

fixed serves as a second condition, giving a unique solution for given δ. We can now
solve the BVP (3.2)–(3.3) by continuation, where we keep TΓ fixed and use δ as a free
parameter. The periodic orbit Γ starting at γ solves (3.2)–(3.3) for δ = 0. Hence, the
continuation can be started from the known solution

ustart := {u(t) | 0 ≤ t ≤ 1, u(0) = u(1) = γ}. (3.4)

We use AUTO [11] for the continuation and let δ vary from 0 to η. Since AUTO [11]
adapts the continuation step size automatically, we obtain a good distribution of
points along the isochron and can easily monitor the arclength of the approximation.
The major advantage of this method over the integration methods mentioned earlier
is the fact that AUTO [11] measures the variation between two orbit segments along
the entire orbit segment and not just at the initial value. This avoids the extreme
sensitivity on initial conditions that is so typical for multiple-time-scale systems. As
a result, we are able to compute isochrons up to unprecedented arclengths.

The continuation of the BVP (3.2)–(3.3) extends the isochron I(γ) from the linear
approximation Lη(γ) of arclength 2η ≪ 1 up to a longer nonlinear approximation that
typically has an arclength of order O(1) for multiple-time-scale systems. There are
two different techniques to extend I(γ) further. In the spirit of [15], one can change
the boundary condition (3.3) to restrict u(1) to the new longer approximation of I(γ).
This works well as long as the curvature along I(γ) does not grow very large. For
the example in section 4 we use a different technique: we perform continuation for
the time-(2TΓ) map, that is, we compute the family of orbit segments that return
to Lη(γ) after two full periods TΓ of Γ, then for the time-(3TΓ) map, and so on, as
follows. Suppose that after the continuation for the time-((k − 1)TΓ) map, we have
δ = η and the corresponding solution is

u⋆ := {u(t) | 0 ≤ t ≤ 1, u(1) = Lγ
η(η)}

= {x(t) | 0 ≤ t ≤ (k − 1)TΓ, x((k − 1)TΓ) = Lη(γ; η)}.

We then start a new continuation run, where we solve

u̇ = kTΓ F (u),

with the same boundary condition (3.3) as before. The continuation can be started
by concatenating the solutions u⋆ and ustart and rescaling them back to the [0, 1]
interval. That is, we define

u(t) =

{
u(t) = u⋆(k t), 0 ≤ t ≤ k−1

k
,

u(t) = ustart(k (t − 1) + 1), k−1
k

< t ≤ 1.
(3.5)

Of course, the concatenation contains a small discontinuity (or jump) at t = k−1
k

,
but as a seed solution for Newton’s method, this will typically converge to a proper
solution and successfully start the continuation. If the convergence fails because the
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Fig. 1. The stable periodic orbit Γ (blue) of the reduced Hodgkin-Huxley model (4.1). Panel (a)
shows the time series of the V -coordinate of Γ, which emphasizes the slow-fast nature of the model;
panel (b) shows Γ in phase space along with the V -nullcline (green) and the n-nullcline (red) that
intersect at the source.

discontinuity is too large, then more advanced techniques based on Lin’s method can
be employed; see [32] and references therein for details.

We used the new Python interface for AUTO [11] to implement our method such
that it automatically computes an arbitrary number of isochrons uniformly distributed
in time or arclength along the periodic orbit up to any prespecified number of returns.
We illustrate the performance of our method with the example in the next section.

4. Isochrons of the reduced Hodgkin-Huxley model. To illustrate the
method for computing isochrons, we consider a two-dimensional reduced model of
the Hodgkin-Huxley equations [25]. The model is based on the dynamical interplay
between ionic conductances and electrical activity using the voltage V , and three
gating variables, denoted m, n, and h, for the conductance channels. In the reduced
planar model the gating variable m is replaced by its quasi-steady-state function
m∞(V ), and the gating variable h is replaced by 0.8−n, which is a good approximation
of its average value; see [27, 28, 34]. The reduced model of the Hodgkin-Huxley can
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then be written as the vector field






V̇ =
1

C

[
Iapp − ḡNa [m∞(V )]3 (0.8 − n) (V − VNa)

−ḡK n4 (V − VK) − gL(V − VL)
]
,

ṅ = αn(V ) (1 − n) − βn(V )n,

(4.1)

where

αn(V ) =
0.01(V + 55)

1 − exp[−(V + 55)/10]
, βn(V ) = 0.125 exp

(
−(V + 65)

80

)
,

αm(V ) =
0.1(V + 40)

1 − exp[−(V + 40)/10]
, βm(V ) = 4 exp

(
−(V + 65)

18

)
,

m∞(V ) =
αm(V )

αm(V ) + βm(V )
,

and the parameters are given by

ḡNa = 120, ḡK = 36, gL = 0.3, Iapp = 10,
VNa = 50, VK = −77, VL = −54.4, C = 1.

System (4.1) has a stable periodic orbit Γ with period TΓ ≈ 11.8463; it is shown in
Figure 1. Panel (a) gives the time series of Γ for the V -coordinate. The time series
illustrates that Γ is a relaxation oscillation organized by the much slower dynamics
of n relative to the dynamics of V . Panel (b) shows Γ in (V, n)-space along with the
nullclines V̇ = 0 and ṅ = 0 in green and red, respectively. The nullclines intersect
approximately at x∗ := (V, n) ≈ (−59.6044, 0.4026), which is the only equilibrium
of (4.1). This equilibrium is a source with complex eigenvalues.

The slow-fast nature of (4.1) also has an effect on the location of the isochrons.
Figure 2 shows the isochrons of one hundred points γi = ΦθiTΓ(γ0) ∈ Γ with phases
θi = i

100 , for i = 0, 1, . . . , 99. Here, we associate zero phase with the point γ0 :=
(V, n) ≈ (44.7064, 0.4597) on Γ where V is maximal; note that γ0 must then lie on
the V -nullcline. As can be seen in Figure 2, most isochrons start at points on Γ that
are located close to the left branch of the V -nullcline (Γ intersects the left branch of
the V -nullcline at only one point); this means that the phase changes most rapidly
with respect to arclength along this segment of Γ.

Each isochron in Figure 2 has two branches, one on the outside of Γ and one on
the inside. The branches on the outside of Γ go off to infinity with asymptotes that
are almost horizontal. Indeed, the dynamics of points outside and far away from Γ
is dominated by the V -velocity and their asymptotic phase is mostly determined by
their n-coordinates. Since the isochrons foliate the entire basin of Γ, which is the plane
except for the equilibrium x∗, the branches of the isochrons inside Γ must end up at
x∗, which is the phaseless set of (4.1). However, Figure 2 seems to show isochrons
that bend away from x∗ and the accumulation onto x∗ is not at all obvious. In the
next section we focus on the specific behavior of a single isochron to investigate this
seeming contradiction.

4.1. The 0-phase isochron. The isochron branches inside Γ do end up at the
equilibrium x∗, but the accumulation process is rather complicated. Figure 3 shows
the 0-phase isochron of Γ, that is, for the point γ0 with maximal V that lies on the
intersection of Γ with the V -nullcline. The linear approximation of the isochron is
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Fig. 2. A total of 100 isochrons (dark blue) uniformly distributed in time along the stable
periodic orbit (blue) of the reduced Hodgkin-Huxley model (4.1). The V -nullcline (green) and the
n-nullcline (red) are included for reference.

almost horizontal here and we found ~vγ0
:= (0.99999988,−0.00013711). Figure 3(a)

shows the isochron I(γ0) computed up to the time-(4TΓ) map for a maximum distance
of δ = η = 10−4 on the linear approximation. By moving a point along I(γ0) starting
at γ0, we illustrate with the accompanying animation anim-hhiso00.gif how the
inside branch approaches x∗. The equilibrium x∗ is not labeled in the figure, but it lies
at the intersection of the two nullclines. In panel (b), the n-coordinate along I(γ0) is
plotted versus its arclength, where the arclength is 0 at γ0. We see that I(γ0) initially
stays almost horizontal (it is roughly linear) until it comes close to the V -nullcline.
Then, instead of approaching x∗ directly, I(γ0) bends around and moves away from
x∗ while it closely follows the V -nullcline. At some maximum value n ≈ 0.6802, where
the arclength of I(γ0) is a little over 100, the isochron bends back virtually on top of
itself towards x∗. We call this behavior of the isochron an ‘excursion.’ After this first
excursion, I(γ0) makes a counter-clockwise loop around x∗ before moving back up
along the V -nullcline. During this second excursion, I(γ0) does not come as high as
during the first, reaching n ≈ 0.5517. On the way down I(γ0) first makes a clockwise
loop around x∗ before turning around making a counter-clockwise loop and moving
back up for the third excursion. Figure 3(c) shows an enlargement near x∗, where we
can see the switches to counter-clockwise loops as relatively sharp turns, which we call
‘boomerang turns,’ The continuation up to the time-(4TΓ) map gives three excursions
and three boomerang turns that form a spiral pattern that converges to x∗. We find
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Fig. 3. The 0-phase isochron I(γ0) (dark blue) of the point γ0 on the stable periodic orbit
(blue) of the reduced Hodgkin-Huxley model (4.1). Panel (a) shows I(γ0) in the phase plane, where
the V -nullcline (green) and the n-nullcline (red) are included for reference; panel (b) shows the n-
coordinate of I(γ0) versus its arclength; panel (c) is an enlargement to illustrate the accumulation
onto the equilibrium x∗ (not labeled); panel (d) shows the value of V̇ along I(γ0) versus its arclength,
where V̇ > 0 below the V -nullcline (green) in panel (c) and V̇ < 0 above it. The associated animation
anim-hhiso00.gif shows a point moving along the inside branch of I(γ0).

more excursions that involve an increasingly larger number of clockwise-loops before
a boomerang turn if we perform continuation for the time-(kTΓ) map with k > 4.
Panel (d) shows the value of V̇ versus the arclength of I(γ0) to illustrate that I(γ0)
does not actually lie on the V -nullcline. In fact, it only intersects the V -nullcline when
it loops around x∗; the V -nullcline is the horizontal 0-axis (green) in Figure 3(d).

4.2. Global properties of the 0-phase isochron. The fact that we are able
to compute the isochron I(γ0) to great accuracy as a one-dimensional curve allows
us to study its properties in unprecedented detail. The excursions of I(γ0) create
curve segments that are extremely close to each other. By definition, each point on
these curve segments arrives under the flow on the linear approximation Lη(γ0) with
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Fig. 4. Pairs of jump-right and jump-left orbits at V = −45.0 and V = −40.0 on the 0-
phase isochron (dark blue) of the reduced Hodgkin-Huxley model (4.1). All four orbit segments lie
on Lη(γ0) with η = 10−4 after one period. Panel (a) shows the phase plane; panel (b) is an en-
largement illustrating that a jump-left orbit lies to the right of the V -nullcline (green); panel (c)
shows the time series of V for these four orbit segments over one period, overlaid on the corre-
sponding time series for the periodic orbit (blue). The associated animations anim-hhPOiso04.gif

and anim-hhPOiso06.gif show the in-phase convergence of a jump-right orbit at V = −40.0 and a
jump-left orbit at V = −45.0, respectively.

η = 10−4 at exactly the same time modulo the period TΓ. Hence, each points identifies
a unique orbit segment in the one-parameter family of orbit segments that solves the
BVP (3.2)–(3.3). Figure 4 shows four such orbit segments associated with four points
along I(γ0); they form two pairs, one with V = −45.0 and one with V = −40.0,
that lie on corresponding pairs of segments of the first excursion. The phase portrait
in panel (a) illustrates that one of the orbit segments in each pair suddenly moves
to the left as it converges to Γ, while the other moves to the right; we call them
jump-left and jump-right orbits, respectively. This does not necessarily mean that
their initial conditions must lie on opposite sides of the V -nullcline, as is illustrated in
Figure 4(b) for the pair with V = −45.0. Indeed, the jump-left orbit closely follows
the V -nullcline and moves to the right until it crosses the V -nullcline before making
the jump. Figure 4(c) shows the time series of the orbit segments; here, the jump-right
orbits move up and the jump-left orbits move down before converging to Γ. These
moves are indeed very fast in time, which is why we refer to them as jumps. The
initial plateaus in panel (c), particularly of the jump-left orbits, illustrate how the
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orbit segments linger close to the repelling branch of the V -nullcline in order to jump
at exactly the right moment to meet Lη(γ0) after period TΓ; see also the animations
anim-hhPOiso04.gif and anim-hhPOiso06.gif.

Figure 4(b) shows that pairs of jump-right and jump-left orbits that start with
the same V -coordinate do not straddle the repelling branch of the V -nullcline. How-
ever, they must straddle the corresponding repelling slow manifold. A repelling slow
manifold Sr

ε consists of all points with forward trajectories that stay O(ε) close to the
repelling branch of the critical manifold for O(1) time, delimited by folds with respect
to the fast flow; here, 0 < ε ≪ 1 represents the (local) ratio between the slow and
fast time scales and for the reduced Hodgkin-Huxley model (4.1) the critical mani-
fold is the one-dimensional V -nullcline, with the repelling branch in between its local
maximum and minimum. We refer to [1, 14] for more details on slow manifolds and
their effects on the dynamics of the system. Since a slow manifold has the same di-
mension as the corresponding critical manifold, (4.1) has a one-dimensional repelling
slow manifold Sr

ε that consist of a single orbit segment very close to the repelling
branch of the V -nullcline. Hence, Sr

ε is an orbit segment, and neither jump-left nor
jump-right orbits can cross it. The 0-phase isochron I(γ0) winds around Sr

ε , with
jump-left orbits starting from points on I(γ0) that lie to the left of Sr

ε and jump-right
orbits starting from points on I(γ0) that lie to the right of it. Note that the points
that correspond to jump-left orbits must lie closer to Sr

ε than those that correspond
to jump-right orbits, because they linger near the V -nullcline for longer.

The second excursion of I(γ0) consists of two segments that lie even closer to
Sr

ε . Points on these segments correspond to orbit segments that reach Lη(γ0) after
two periods TΓ. This is illustrated in Figure 5. Panels (a) and (b) show phase
portraits of two pairs of jump-right and jump-left orbits at V = −55.0 and V = −50.0,
respectively. These orbits must follow Sr

ε for a relatively longer time, so that they
only reach Lη(γ0) after the second full period; see their time series shown in panel (c).
As in Figure 4(c), the jump-right orbits have the longest plateaus in Figure 5(c) and
the jump-left orbits almost reach Lη(γ0) already during the first period.

The change from jump-right to jump-left orbits is continuous, by which we mean
that the segments on I(γ0) that correspond to jump-right and jump-left orbits are
separated by short segments along which the concept of a left or right jump is not
well defined. Indeed, close to the maximum of an excursion I(γ0) intersects Sr

ε . The
repelling slow manifold Sr

ε is really a segment of an orbit xr = xr(t) that converges
to Γ. While it is not clear where xr ceases to correspond to Sr

ε , the points on I(γ0)
near its intersection with Sr

ε correspond to orbits that closely follow xr and they do
not really ‘jump.’

As I(γ0) loops around x∗, there is no nearby repelling slow manifold, although
the orbit xr that corresponds to Sr

ε continues all the way backward in time to x∗. The
points on segments of I(γ0) near x∗ also correspond to orbit segments that cannot
easily be distinguished as jump-right or jump-left orbits. Figure 6 illustrates the
behavior of the orbits generated from points on a part of I(γ0) that loops around x∗.
We picked four orbit segments that all start on I(γ0) with V = −59.2 and end on
Lη(γ0) with η = 10−4 after two periods TΓ; the orbit segments are colored purple,
magenta, brown, and orange in the order of their initial conditions on I(γ0). The orbit
segments are shown in Figure 6(a), with an enlargement near x∗ in panel (b) and their
time series in panel (c). Particularly in Figure 6(c) it is hard to decide whether the
orbit segments actually jump. Their initial conditions are shown in Figure 6(b); note
that even in this enlargement the first (purple) and last (orange) of these points lie
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Fig. 5. Pairs of jump-right and jump-left orbits at V = −55.0 and V = −50.0 on the 0-phase
isochron (dark blue) of the reduced Hodgkin-Huxley model (4.1). All four orbit segments lie on
Lη(γ0) with η = 10−4 after two periods. Panel (a) shows the phase plane, with an enlargement
in panel (b); panel (c) shows the time series of V for these four orbit segments over two peri-
ods, overlaid on corresponding time series for the periodic orbit (blue). The associated animations
anim-hhPOiso16.gif and anim-hhPOiso18.gif show the in-phase convergence of a jump-right orbit
at V = −55.0 and a jump-left orbit at V = −50.0, respectively.

virtually on top of each other. Following I(γ0) down from the top-right (which is
covered by orange from the last orbit), the first (purple) orbit starts at the end of
the first excursion just before I(γ0) makes a counter-clockwise loop around x∗; this
segment of the first excursion corresponds to jump-left orbits. The purple orbit does
turn to the left, but it only makes a small loop around x∗ before moving to the
right instead. Similarly, the second (magenta) orbit starts immediately after the first
boomerang turn of I(γ0) and makes a left turn in the sense that it loops around
x∗ before moving right. The third (brown) orbit segment starts into the counter-
clockwise loop and traces I(γ0) back for a while before making a right jump; see
Figure 6(a). One could say that this (brown) orbit closely follows the orbit xr and, in
fact, apart from the boomerang turns on I(γ0), there is a clear spiraling curve that
seems to trace xr . Indeed, part of the last (orange) orbit segment lies almost on top
of the brown orbit segment, but its starting point lies only past the loop around x∗.
This orbit segment has the distinct features of a jump-right orbit, marking the start
of the second excursion.

The second excursion of I(γ0) must necessarily intersect the repelling slow man-
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Fig. 6. The transition from jump-left to jump-right orbits as the 0-phase isochron (dark blue)
of the reduced Hodgkin-Huxley model (4.1) loops around the equilibrium. Four orbit segments are
shown, each with V = −59.2. All four orbit segments lie on Lη(γ0) with η = 10−4 after two periods.
Panel (a) shows the phase plane, with an enlargement in panel (b); panel (c) shows the time series
of V for these four orbit segments over two periods, overlaid on the corresponding time series for
the periodic orbit (blue).

ifold Sr
ε , or more precisely, xr, at a point that lies exactly one period TΓ earlier on

xr than the intersection point of the first excursion of I(γ0) with xr. We can deduce
from Figure 6 that the transition from the second excursion to the third excursion
of I(γ0) will happen in much the same way as the transition illustrated in Figure 6
for the first excursion. Note that the second boomerang turn on I(γ0), shown in
Figure 6(b), is a rotated and contracted version of the first boomerang turn; similar
transitions with similar further rotated and contracted boomerang turns happen for
all subsequent excursions.

4.3. Properties of all global isochrons. The previous two sections described
the behavior of the single isochron for the point γ0 with zero phase, and the associated
orbit segments. Any other point γ on the periodic orbit Γ of the reduced Hodgkin-
Huxley model (4.1) will have a different isochron associated with a different phase
θ(γ). However, the isochrons are a foliation of the stable manifold of Γ, which means
that they are diffeomorphic transformations of I(γ0). Indeed, if γ = ΦθTΓ(γ0), then

I(ΦθTΓ(γ0)) = ΦθTΓ(I(γ0)).
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Fig. 7. The isochron I(γ30) (dark blue) of the point γ30 with phase θ30 = 30

100
on the periodic

orbit (blue) of the reduced Hodgkin-Huxley model (4.1). Panel (a) shows I(γ30) in the phase plane,
along with the V -nullcline (green) and the n-nullcline (red); panel (b) shows the n-coordinate of
I(γ30) versus its arclength; panel (c) is an enlargement to illustrate the accumulation onto the
equilibrium x∗ (not labeled); panel (d) shows the value of V̇ along I(γ30) versus its arclength;
compare also Figure 3. The associated animation anim-hhiso03.gif shows a point moving along
the inside branch of I(γ30).

In other words, I(γ) can be obtained by integrating each point on I(γ0) for the fixed
time θ TΓ, where θ = θ(γ) is the phase of γ. Note that forward integration leads
to a contraction towards Γ. Since I(γ0) is computed up to a finite arclength, the
transformation of I(γ0) under the flow ΦθTΓ will lead to an approximation of I(γ)
that has a shorter arclength. For θ close to 1, the shortening is O(1) due to the large
difference in time scales of the system.

We compute all isochrons I(γ) in the same way as I(γ0), that is, we compute
the stable manifold W ss(γ) as the invariant manifold of the time-TΓ map that in-
tersects the point γ on Γ. This means that the accuracy of I(γ) is the same as
that of I(γ0) and, in particular, we start with the linear approximation Lη(γ) at
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γ using the same bound η = 10−4. Figure 7 shows an example of the isochron
I(γ30) with γ30 = Φθ30TΓ(γ0), where θ30 = 30

100 = 0.3; this means that γ30 :=
(V, n) ≈ (−72.7092, 0.5480), and the linear approximation is given by the direction
~vγ30

:= (−0.99999972, 0.00075031). As for I(γ0), we perform continuation up to the
time-(4TΓ) map. The figure is organized in the same way as Figure 3. Panel (a)
shows I(γ30) in (V, n)-space along with the nullclines V̇ = 0 (green) and ṅ = 0 (red).
The accompanying animation anim-hhiso03.gif illustrates how the inside branch of
I(γ30) approaches the equilibrium x∗ at the intersection of the two nullclines; see also
the enlargement in panel (c). Figure 7(b) shows the n-coordinate of I(γ30) versus its
arclength. The isochron first moves towards x∗, but then it makes a counter-clockwise
loop around x∗ and starts making similar excursions as I(γ0) that closely follow the
V -nullcline, or more precisely, the slow manifold Sr

ε that lies exponentially close to
the V -nullcline. The first two excursions are clearly seen in Figure 7(b); the first peak
reaches n ≈ 0.5860, which lies in between the peaks from the first (n ≈ 0.6802) and
second (n ≈ 0.5517) excursions of I(γ0), and the second peak reaches n ≈ 0.4669.
We observe in Figure 7(c) similar rotations around x∗ and boomerang turns marking
transitions from clockwise to counter-clockwise rotations as shown in Figure 3(c) for
I(γ0). Figure 7(d) shows the value of V̇ versus the arclength of I(γ30). This figure
also helps to understand the behavior, in particular near x∗ in panel (c); below the
V -nullcline in panel (c) we have V̇ > 0, and V̇ < 0 on the other side of the V -nullcline.
Note that the first two crossings of the V -nullcline in Figure 7(d) happen at points on
I(γ30) that lie before the points shown in Figure 7(c). That is, I(γ30) starts from γ30

in Figure 7(a) in the regime V̇ < 0 and it crosses the V -nullcline for a short arclength
just before it enters a neighborhood of x∗. The first counter-clockwise loop around
x∗ is the first downward peak in Figure 7(d) after about arclength 30 of I(γ30).

We calculated all one hundred isochrons I(γi) that are shown in Figure 2 in the
same way; here γi = ΦθiTΓ(γ0), where θi = i

100 for i = 0, 1, . . . , 99. These isochrons all
have properties similar to those for I(γ0) and I(γ30), namely, apart from the initial
approach to x∗ each isochron makes a series of excursions followed by boomerang
turns as it converges to x∗.

4.4. Fundamental domains of isochrons. There clearly is a strong inter-
action between the isochrons of the reduced Hodgkin-Huxley model (4.1) and its
repelling slow manifold Sr

ε . Each isochron makes a series of excursions that involve
oscillations around Sr

ε . In this section we study this interaction in detail.
Let us focus again on the isochron I(γ0) shown in Figure 3 and consider the

location of the excursions of I(γ30), shown in Figure 7, relative to those of I(γ0).
As mentioned before, the first excursion of I(γ30) reaches a maximum n ≈ 0.5860
that lies in between the maxima n ≈ 0.5517 and n ≈ 0.6802 of the second and first
excursions of I(γ0), respectively. Due to the steepness of the V -nullcline here, we
can assume that the intersection points of I(γ0) and I(γ30) with Sr

ε lie quite close to
these maxima. Recall that Sr

ε is, in fact, a segment of the (special) orbit xr = xr(t)
that comes from x∗. Let us denote the first three intersection points of I(γ0) with
xr(t) by r1, r2 and r3, and let us assume that time along xr(t) is chosen such that
r2 = xr(0). Then we have

r1 = xr(TΓ) = ΦTΓ(r2) and

r3 = xr(−TΓ) = Φ−TΓ(r2).

The first two intersection points of any isochron I(γ) with xr(t) are then easily found
using the phase θ(γ) = θ of γ, namely, these are ΦθTΓ(r2) and Φ(θ−1)TΓ(r2). Note
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Fig. 8. The isochrons I(γ0) (orange) and I(γ30) (blue) of the reduced Hodgkin-Huxley equa-
tions (4.1) together with the orbit segment bxr (black) that contains the repelling slow manifold Sr

ε .
Panel (a) shows the isochrons and bxr in the phase plane and panel (b) shows an enlargement near
the equilibrium x∗ (not labeled).

that this holds for any θ ∈ [0, 1]. Hence, the segment between xr(0) and xr(TΓ)
defines a fundamental domain that consists of intersection points of all isochrons of
Γ. Similarly, the segment between xr(−TΓ) and xr(0) is such a fundamental domain,
but now all isochrons of Γ will also pass this entire segment exponentially close twice
in order to reach the first fundamental domain. In fact, we may define the entire orbit
segment x̂r := {xr(t) | − ∞ < t ≤ 0} as a curve along which all isochrons of Γ pass
exponentially close at least twice.

Figure 8 shows both isochrons I(γ0) and I(γ30) in one figure together with an
approximation of x̂r (black curve). The isochron I(γ0) is colored orange and I(γ30) is
colored dark blue, as before. The view in panel (a) shows that large parts of the two
isochrons lie very close together virtually on top of x̂r. Indeed, even the enlargement in
Figure 8(b) hardly distinguishes the curves; only the boomerang turns that correspond
to transitions from clockwise to counter-clockwise rotations are different. Moreover,
both isochrons make at least two excursions along x̂r and the second excursion begins
and ends (well) before the first (orange) boomerang turn of I(γ0). Hence, what seems
to be a single curve that leaves Figure 8(b) below the V -nullcline through the side
V = −58.2 are, in fact, at least four curves, not counting x̂r. We can identify the
segment just before the first (orange) boomerang turn of I(γ0) (which corresponds to
the end of its first excursion) and the segment immediately after the first clockwise
rotation of I(γ0) around x∗ (which corresponds to the start of its second excursion)
as marking a strip that contains all these curves.

We can give similar arguments for any isochron I(γ) with phase θ(γ) = θ. Indeed,
this isochron must reach the point Φ(θ−1)TΓ(r2), associated with its phase θ, that lies
in between r3 and r2 on x̂r. Moreover, in doing so it cannot intersect another isochron.
Therefore, all isochrons must pass through the strip bounded by the first and second
excursions of I(γ0). This means that the seemingly single curve that leaves Figure 8(b)
below the V -nullcline through the side V = −58.2 consist of infinitely many curves!

Figure 9 presents a different illustration of the phenomenon. Shown are two
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Fig. 9. A total of 20 isochrons (dark blue) uniformly distributed in time along the stable periodic
orbit (blue) of the reduced Hodgkin-Huxley model (4.1). Shown are two successive enlargements near
the equilibrium x∗ (not labeled). The black curve represents the orbit segment bxr.

successive enlargements near the equilibrium x∗ of Figure 2, where we plot only twenty
isochrons, that is, every fifth isochron in Figure 2. The approximation of x̂r (black
curve) is overlaid in both panels. We observe a self-similar structure of the isochrons
in this neighborhood of x∗, and the foliation of the phase space by the isochrons
appears to be organized by a contracting transformation that is reminiscent of a λ-
lemma [37]; certainly, the successive points Φ−kTΓ(r2) contract to x∗ in accordance
with the λ-lemma.

Winfree conjectures in [43, Conjecture C in the Appendix] that any isochron must
come arbitrarily close to any point in the phaseless set, that is, the boundary ∂B of
the basin of attraction B(Γ) of Γ. For our example, this means that all isochrons come
arbitrarily close to the equilibrium x∗, which is the only point in the phaseless set.
Figure 8 illustrates that x̂r, which lies in the interior of B(Γ) is an ‘almost phaseless
set,’ because all isochrons come exponentially close to x̂r , rather than arbitrarily close.
Our findings do not contradict Winfree’s conjecture, but they do show that extreme
phase sensitivity can occur on a codimension-one set in the interior of B(Γ).

To be more precise, while all isochrons are exponentially close to (the left of) the
segment on x̂r in between xr(0) and xr(TΓ), they are even closer (on both sides) to
the segment in between xr(−TΓ) and xr(0), and again even closer to the segment
in between xr(−2TΓ) and xr(−TΓ), and so on. Of course, these segments on x̂r in
between xr(−kTΓ) and xr(−(k − 1)TΓ) for k = 1, 2, . . . , become successively shorter
and lie successively closer to x∗. However, the arclength of the segment in between
xr(−TΓ) and xr(0) decreases with the ratio ε of the slow and fast time scales and is
zero in the limit ε → 0. Note that a change in the ratio between two time scales alters
the slow manifold Sr

ε — it lies closer to the V -nullcline as ε decreases. For each ε we
can define a corresponding orbit segment xr

ε(t) such that xr
ε(0) is equal to the second

intersection of I(γ0) with xr
ε(t). It is important to realize that the first intersection of

I(γ0) with xr
ε(t) will always be well away from x∗; in fact, this point will move further

away in arclength along xr
ε(t), rather than closer to x∗ as ε decreases. If we consider

an ε-dependent family of the reduced Hodgkin-Huxley equation, then for arbitrary
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distance ρ and arbitrary k ∈ N, we can choose 0 < ε ≪ 1 such that all isochrons will
pass within distance ρ of any point on the segment {xr

ε(t) | −∞ < t ≤ −kTΓ}.

5. Discussion. We have presented a numerical method for the computation of
global isochrons in planar systems. It is based on two-point boundary value contin-
uation and implemented in the latest version of AUTO [11]. We compute a global
isochron I(γ) as the global stable manifold of the fixed point γ of the time-TΓ map,
where TΓ is the period of the underlying periodic orbit. Based on the method in [15],
we view the isochron as a one-parameter family of orbit segments with one end point
on the approximation computed so far, and the other tracing new parts of the global
manifold. Each continuation step uses global information about the variation along
the entire orbit segment to control the accuracy of the computation. Hence, the ex-
treme sensitivity of initial conditions that is typical for slow-fast systems is spread
effectively along the entire orbit segment. Furthermore, the adaptive step selection
of AUTO ensures that the continuation generates a nicely distributed mesh along
each isochron that automatically parameterizes the curves by arclength. The Python
scripting interface of AUTO [11] allows one to select and compute automatically an ar-
bitrary number of isochrons along a periodic orbit that are uniformly spaced in time
or arclength. The numerical accuracy and convergence properties of this approach
allow the computation of one-dimensional isochrons up to unprecedented arclengths.

We illustrated the algorithm with the example of a reduced Hodgkin-Huxley
model that was considered in [28, 34]. We found that the isochrons of this planar
slow-fast system are organized in a remarkably complex structure, a phenomenon
that we believe is not specific to this example. As predicted by the theory [21, 43],
the isochrons foliate the plane, with one side extending to infinity and the other con-
verging to the sole singularity at the equilibrium x∗ of the reduced Hodgkin-Huxley
model. However, the convergence to this phaseless set is by no means immediate. The
isochrons make several ‘excursions’ along the repelling slow manifold of the reduced
Hodgkin-Huxley model. During each such excursion, the isochron passes both to the
left and the right of the repelling slow manifold, corresponding to trajectories that
converge to the periodic orbit via a left or right jump along the fast direction of the
system, respectively.

The geometry of the isochrons in a neighborhood of the equilibrium x∗ for the
reduced Hodgkin-Huxley model nicely illustrates the extreme phase sensitivity that
exists in the neighborhood of a phaseless set. Such sensitivity was postulated by
Winfree [43], who noted that a system near a phaseless set could have its phase
randomized by small noise, an idea which has been applied, for example, in [8] to
desynchronize a population of neurons; in particular, the phase of each neuron is
altered randomly after the system is driven to the phaseless set using minimal-time
optimal control with an amplitude-constrained input current. Winfree also considered
the case where the attracting periodic orbit is not a global attractor and its basin has
a one-dimensional boundary ∂B. This boundary is also a phaseless set and the phase
sensitivity in a neighborhood of ∂B is also extreme in the sense that all isochrons
come arbitrarily close to ∂B.

We found that the neighborhood of the repelling slow manifold for the reduced
Hodgkin-Huxley model is also a region of phase space which will display phase sen-
sitivity, even though it is not a true phaseless set. Indeed, our calculations illustrate
that the isochrons concentrate near the repelling slow manifold, which is why we call
it an ‘almost phaseless set.’ (We note that, in the limit ε → 0 of the ratio ε ≪ 1
between the slow and fast time scales of the system, the repelling slow manifold con-
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verges to a phaseless set.) This suggests that a controller such as that considered
in [8] could target the repelling slow manifold rather than the equilibrium x∗ in order
to desynchronize a population of neurons through phase randomization.

In theory, it is straightforward to generalize the computational method presented
in this paper to isochrons of three- or higher-dimensional vector fields. However,
the isochrons are then two- or higher-dimensional manifolds and their computation
becomes increasingly difficult for the same reasons as the computation of global two-
or higher-dimensional stable manifolds [31].
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[4] X. Cabré, E. Fontich and R. de la Llave, The parameterization method for invariant
manifolds. III: Overview and applications, J. Differential Equations, 218 (2005), pp. 444–
515.

[5] A. Campbell, A. Gonzalez, D. L. Gonzalez, O. Piro and H. A.Larrondo, Isochrones and
the dynamics of kicked oscillators, Phys. A, 155 (1989), pp. 565–584.

[6] P. Danzl, R. Hansen, G. Bonnet, and J. Moehlis, Partial phase synchronization due to
random Poisson inputs, J. Comp. Neurosci., 25 (2008), pp. 141-157.

[7] P. Danzl and J. Moehlis, Spike timing control of oscillatory neurons using impulsive and
quasi-impulsive charge-balanced inputs, in Proceedings of the 2008 American Control Con-
ference, 2008, pp. 171-176.

[8] P. Danzl, J. Hespanha, and J. Moehlis, Event-based minimum-time control of oscillatory
neuron models: phase randomization, maximal spike rate increase, and desynchronization,
Biol. Cybernetics, in press.

[9] V. De Witte and W. Govaerts, Convergence analysis of a numerical method to solve the
adjoint equations, preprint Ghent University, 2009.

[10] E. J. Doedel, Lecture notes on numerical analysis of nonlinear equations, in Numerical Con-
tinuation Methods for Dynamical Systems: Path following and boundary value problems,
B. Krauskopf, H. M. Osinga, and J. Galán-Vioque, eds., Springer-Verlag, New-York, 2007,
pp. 1–50.

[11] E. J. Doedel, AUTO-07P: Continuation and bifurcation software for ordinary differential
equations, with major contributions by A. R. Champneys, F. Dercole, T. F. Fairgrieve,
Yu. A. Kuznetsov, B. E. Oldeman, R. C. Paffenroth, B. Sandstede, X. J. Wang and
C. Zhang; available via http://cmvl.cs.concordia.ca/auto/.

[12] E. J. Doedel, B. W. Kooi, G. A. K. van Voorn, Yu. A. Kuznetsov, Continuation of
connecting orbits in 3D-ODEs (I): Point-to-cycle connections, Int. J. Bif. Chaos, 18(7)
(2008), pp. 1889–1903.

[13] E. J. Doedel, B. W. Kooi, G. A. K. van Voorn, Yu. A. Kuznetsov, Continuation of
connecting orbits in 3D-ODEs (II): Cycle-to-cycle connections, Int. J. Bif. Chaos, 19(1)
(2009), pp. 159–169.

[14] F. Dumortier and R. Roussarie, Canard cycles and center manifolds, Mem. Amer. Math.
Soc., 121(577) (1996).



24 H. M. OSINGA and J. MOEHLIS

[15] J. P. England, B. Krauskopf, and H. M. Osinga, Computing one-dimensional global mani-
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