152 research outputs found

    Toward an RSU-unavailable lightweight certificateless key agreement scheme for VANETs

    Get PDF
    Vehicle ad-hoc networks have developed rapidly these years, whose security and privacy issues are always concerned widely. In spite of a remarkable research on their security solutions, but in which there still lacks considerations on how to secure vehicle-to-vehicle communications, particularly when infrastructure is unavailable. In this paper, we propose a lightweight certificateless and one-round key agreement scheme without pairing, and further prove the security of the proposed scheme in the random oracle model. The proposed scheme is expected to not only resist known attacks with less computation cost, but also as an efficient way to relieve the workload of vehicle-to-vehicle authentication, especially in no available infrastructure circumstance. A comprehensive evaluation, including security analysis, efficiency analysis and simulation evaluation, is presented to confirm the security and feasibility of the proposed scheme

    Certificateless and provably-secure digital signature scheme based on elliptic curve

    Get PDF
    With the internet today available at the user’s beck, and call data or Information Security plays a vital role. Confidentiality, Integrity, Availability, and Non-repudiation are the pillars of security on which every application on the web is based on. With these basic requirements the users also need the security in low resource constrained environments making it more challenging for the security experts to design secured cryptographic algorithms. Digital Signatures play a pivotal role in Authentication. They help in verifying the integrity of the data being exchanged. Elliptical curves are the strongest contenders in Digital Signatures, and much research is being done to enhance the method in many ways. The paper briefs a secured and improved ECDSA Elliptical Curve Digital Signature Algorithm which is an improved and secured version of the Digital Signature Algorithm

    An Efficient Certificateless Encryption for Secure Data Sharing in Public Clouds

    Get PDF
    We propose a mediated certificateless encryption scheme without pairing operations for securely sharing sensitive information in public clouds. Mediated certificateless public key encryption (mCL-PKE) solves the key escrow problem in identity based encryption and certificate revocation problem in public key cryptography. However, existing mCL-PKE schemes are either inefficient because of the use of expensive pairing operations or vulnerable against partial decryption attacks. In order to address the performance and security issues, in this paper, we first propose a mCL-PKE scheme without using pairing operations. We apply our mCL-PKE scheme to construct a practical solution to the problem of sharing sensitive information in public clouds. The cloud is employed as a secure storage as well as a key generation center. In our system, the data owner encrypts the sensitive data using the cloud generated users’ public keys based on its access control policies and uploads the encrypted data to the cloud. Upon successful authorization, the cloud partially decrypts the encrypted data for the users. The users subsequently fully decrypt the partially decrypted data using their private keys. The confidentiality of the content and the keys is preserved with respect to the cloud, because the cloud cannot fully decrypt the information. We also propose an extension to the above approach to improve the efficiency of encryption at the data owner. We implement our mCL-PKE scheme and the overall cloud based system, and evaluate its security and performance. Our results show that our schemes are efficient and practical

    Certificateless Designated Verifier Proxy Signature

    Get PDF
    Proxy signature (PS) is a kind of digital signature, in which an entity called original signer can delegate his signing rights to another entity called proxy signer. Designated verifier signature (DVS) is a kind of digital signature where the authenticity of any signature can be verified by only one verifier who is designated by the signer when generating it. Designated verifier proxy signature (DVPS) combines the idea of DVS with the concept of proxy signature (PS) and is suitable for being applied in many scenarios from e-tender, e-voting, e-auction, e-health and e-commerce, etc. Many DVPS schemes have been proposed and Identity-based DVPS (IBDVPS) schemes have also been discussed. Certificateless public-key cryptography (CL-PKC) is acknowledged as an appealing paradigm because there exists neither the certificate management issue as in traditional PKI nor private key escrow problem as in Identity-based setting. A number of certificateless designated verifier signature (CLDVS) schemes and many certificateless proxy signature (CLPS) schemes have been proposed. However, to the best of our knowledge, the concept of Certificateless Designated Verifier Proxy Signature (CLDVPS) has not been appeared in the literature. In this paper, we formalize the definition and the security model of CLDVPS schemes. We then construct the first CLDVPS scheme and prove its security

    An Efficient Certificate-Based Designated Verifier Signature Scheme

    Get PDF
    Certificate-based public key cryptography not only solves certificate revocation problem in traditional PKI but also overcomes key escrow problem inherent in identity-based cryptosystems. This new primitive has become an attractive cryptographic paradigm. In this paper, we propose the notion and the security model of certificate-based designated verifier signatures (CBDVS). We provide the first construction of CBDVS and prove that our scheme is existentially unforgeable against adaptive chosen message attacks in the random oracle model. Our scheme only needs two pairing operations, and the signature is only one element in the bilinear group G1. To the best of our knowledge, our scheme enjoys shortest signature length with less operation cost

    A Comprehensive Survey on Signcryption Security Mechanisms in Wireless Body Area Networks

    Get PDF
    WBANs (Wireless Body Area Networks) are frequently depicted as a paradigm shift in healthcare from traditional to modern E-Healthcare. The vitals of the patient signs by the sensors are highly sensitive, secret, and vulnerable to numerous adversarial attacks. Since WBANs is a real-world application of the healthcare system, it’s vital to ensure that the data acquired by the WBANs sensors is secure and not accessible to unauthorized parties or security hazards. As a result, effective signcryption security solutions are required for the WBANs’ success and widespread use. Over the last two decades, researchers have proposed a slew of signcryption security solutions to achieve this goal. The lack of a clear and unified study in terms of signcryption solutions can offer a bird’s eye view of WBANs. Based on the most recent signcryption papers, we analyzed WBAN’s communication architecture, security requirements, and the primary problems in WBANs to meet the aforementioned objectives. This survey also includes the most up to date signcryption security techniques in WBANs environments. By identifying and comparing all available signcryption techniques in the WBANs sector, the study will aid the academic community in understanding security problems and causes. The goal of this survey is to provide a comparative review of the existing signcryption security solutions and to analyze the previously indicated solution given for WBANs. A multi-criteria decision-making approach is used for a comparative examination of the existing signcryption solutions. Furthermore, the survey also highlights some of the public research issues that researchers must face to develop the security features of WBANs.publishedVersio

    Aggregatable Certificateless Designated Verifier Signature

    Get PDF
    In recent years, the Internet of Things (IoT) devices have become increasingly deployed in many industries and generated a large amount of data that needs to be processed in a timely and efficient manner. Using aggregate signatures, it provides a secure and efficient way to handle large numbers of digital signatures with the same message. Recently, the privacy issue has been concerned about the topic of data sharing on the cloud. To provide the integrity, authenticity, authority, and privacy on the data sharing in the cloud storage, the notion of an aggregatable certificateless designated verifier signature scheme (ACLDVS) was proposed. ACLDVS also is a perfect tool to enable efficient privacy-preserving authentication systems for IoT and or the vehicular ad hoc networks (VANET). Our concrete scheme was proved to be secured underling of the Computational Diffie-Hellman assumption. Compared to other related schemes, our scheme is efficient, and the signature size is considerably short

    Efficient and Provably-secure Certificateless Strong Designated Verifier Signature Scheme without Pairings

    Get PDF
    Strong designated verifier signature (generally abbreviated to SDVS) allows signers to obtain absolute control over who can verify the signature, while only the designated verifier other than anyone else can verify the validity of a SDVS without being able to transfer the conviction. Certificateless PKC has unique advantages comparing with certificate-based cryptosystems and identity-based PKC, without suffering from key escrow. Motivated by these attractive features, we propose a novel efficient CL-SDVS scheme without bilinear pairings or map-to-point hash operations. The proposed scheme achieves all the required security properties including EUF-CMA, non-transferability, strongness and non-delegatability. We also estimate the computational and communication efficiency. The comparison shows that our scheme outperforms all the previous CL-(S)DVS schemes. Furthermore, the crucial security properties of the CL-SDVS scheme are formally proved based on the intractability of SCDH and ECDL assumptions in random oracle model
    • …
    corecore