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Abstract 

Vehicle ad-hoc networks have developed rapidly these years, whose security and 

privacy issues are always concerned widely. In spite of a remarkable research on their 

security solutions, but in which there still lacks considerations on how to secure 

vehicle-to-vehicle communications, particularly when infrastructure is unavailable. In 

this paper, we propose a lightweight certificate less and one-round key agreement 

scheme without pairing, and further prove the security of the proposed scheme in the 

random oracle model. The proposed scheme is expected to not only resist known 

attacks with less computation cost, but also as an efficient way to relieve the workload 

of vehicle-to-vehicle authentication, especially in no available infrastructure 

circumstance. A comprehensive evaluation, including security analysis, efficiency 

analysis and simulation evaluation, is presented to confirm the security and feasibility 

of the proposed scheme. 

Keywords: vehicle ad-hoc network; security and privacy; lightweight authentication; 

certificateless key agreement 
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Vehicle ad-hoc networks (VANETs) have got unprecedented attentions from both 

industry and academia in these years. Dedicate Short Range Communications (OSRC) 

and Wireless Access in Vehicular Environments (WAV E) in 802.11p [1], through 

vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications at 5.9 

GHz, enable a self-organizing, easy deployment, low cost, open architecture of mobile 

ad-hoc network. We can expect that vehicular networks applications and value-added 

service will play an even more important role in easing traffic pressure, in- creasing 

the driving comfort, avoiding traffic accidents, online payment and online 

infotainment, etc. It is well known that vehicular networks are unique features in the 

following two aspects, namely the dynamic network topology and the short-range and 

unstable communication environment. Thus it may not be desirable or feasible to 

simply utilize those existing solutions to handle with VANET security issues. 

 

Due to the mobile and dynamic topology nature, vehicular networks have brought 

some challenging security and privacy issues that still remain to be addressed. 

Although there is a remarkable research for VANET key agreement solutions in the 

literature, the previous work did not specifically optimize the security 

implementations considering the properties of infrastructure inaccessible scenarios. 

For instance, in areas where traffic is concentrated, the distribution of infrastructures 

is generally intensive and well-organized so that vehicles can mutually authenticate in 

real-time online methods. However, in places where infrastructures are sparsely 

deployed or infrastructures cannot be accessed, the method of online authentication 

does not work properly, such as highway environment, suburb, or disaster areas where 

infrastructures were destroyed. 



 

To address the concerns, in this paper, we propose a secure lightweight certificateless 

authentication key agreement scheme (CL- AKA) especially for the purpose of 

securing V2V communication when without available road-side infrastructures. The 

main contributions of this study are threefold. First, we present a strong certificateless 

key agreement protocol following a practical approach and fully addressing the 

aforementioned security issues under a dynamic and insecure vehicular environment. 

Second, we implement one CL- AKA scheme and show its construction pro- cesses 

based on defined strong security model. Third, this paper gives the security proof of 

the proposed CL-AKA scheme and evaluates its performance through comparing with 

other schemes. Security analyses and performance results show that the proposed 

scheme is a well-optimized CL-PKA scheme whose efficiency and performance are 

advantageous for the V2V authentication communication scenarios. 

The rest of this paper is organized as follows. Section II overviews the related work. 

Section III describes the system model and the security model for VANETs. Section 

IV presents our security protocol. Followed by security analysis and performance 

results in section V, the last part is our further discussions and conclusion in section 

VI. 

 

II. Related Work 

 

Generally, there are mainly four kinds of key agreement scheme so far, that is, the 

tradition- al PKI-based or the Certificate (CA)-based key agreement schemes, the 

identification (ID)-based key agreement schemes [5,6], or others, including the 



certificateless public key agreement [2, 3], the Lite-CA based key agreement 

schemes[4], and the self-certificate public key based key agreement schemes. It is 

worth noting that CA-based key agreement scheme usually requires the attendance of 

a public key infrastructure. Besides that, the IO-based cryptosystem [5] often exists a 

key escrow issue. 

In 2005, AI-Riyami and Paterson [7] introduced a certificateless public-key 

encryption (CL-PKE) that gets rid of the requirement of public key infrastructure. 

Roughly speaking, it combines the ideas and methods from the traditional public key 

encryption and identity-based encryption. Distinguished from 10-based 

cryptosystems, user's partial private key originates from its own identity information 

and KGC, and a secret value generated by the user itself. In 2008, Dent [8], in one 

survey paper, notes that two obvious advantages of certificateless public key 

encryption scheme. First, it has no requirement of certificates, which is unlike a 

traditional public key encryption scheme. Furthermore, it voids the direct threat from 

attackers to compute the full private key. 

In 2009, Lippold et al. [3] proposed the first one-round CL-AKE scheme proven 

secure in the random oracle model. This paper gives a detailed secure proof and a 

generic model to design a strong secure key agreement proto- col. However, its 

process of key agreement is complex and time-consuming with at least five modular 

exponentiation and ten bilinear pairing operations. In 2011, Yang et al. [9] proposed 

the first proven strongly secure CL-KE protocol without pairing. It requires less 

computation cost than Lippold’s scheme because of no expensive pairing operations. 

These certificateless key agreement schemes, in general, have three main secrets, that 

is, the ID-based key, the secret value and the ephemeral key. Both papers use the 

random oracle model to prove their security that, as long as one of the three secrets is 



unrevealed, the scheme is considered secure [3, 9]. However, these studies are not 

feasible in securing V2V communication when considering of less computation and 

communication overhead. 

Song et al. [2] proposed a strong certificateless key agreement protocol following a 

practical approach and fully addressing the  aforementioned security issues under 

common VANET attacks. This scheme has four rounds to achieve the three-way 

handshake.  Thus it is still inefficient for vehicle-to-vehicle key agreement 

communication. Dong and Cao [4] proposed an efficient lite-CA-based encryption 

scheme for data forwarding in VANETs. This proposed scheme has less 

computational over- head and provides an efficient way to relieve workload and 

deployment of certificates as well. 

Inspired by previous works, this paper pro- poses a certificateless key agreement 

scheme which is addressed in a dynamic and insecure vehicular environment, 

particularly for V2V authentication communication in the scenario without available 

road-side infrastructures. 

 

III. SYSTEM MODEL AND SECURE MODEL 

 

3.1 System model 

 

This paper addresses the VANETs scenario as Figure 1. As seen from the figure, there 

are usually three components: Regional Trusted Authority (RTA), Road Side Unit 

(RSU) and On Board Unit (OBU). In this paper, the main concern is the secure 



authentication key agreement communication between vehicles, as well as the 

registration before communication. 

 

 

Fig.1 System model 

 

a) RTA: is a regional trusted authority. There is usually only one RTA which is 

always trusted. In our system model, RTA has two main functions: one is that RTA 

computes the master key for the key agreement and publishes the requisite public 

parameters; the other is that when vehicles come into its communication range, RTA 

controls the registration pro- cess of vehicles and computes the pseudonym for 

vehicles. 

b) RSU: is a trusted roadside unit which connects with RTA through wired channel 

and communicates with  OBU  via  wireless   channel; meanwhile, it has a wireless 

Access Point (AP) for all OBUs in its communication range. RSUs have two roles, 

data warehouse and pro- cessing center authorized by CA. So RSUs are important to 

act as the secure proxy between RTA and OBU. They are generally deployed in an 



optimized way for high utilization due to their high cost. Therefore, once the RSUs 

are unavailable in some areas, the V21 communications will be invalid or infeasible. 

c)  OBU:  is deployed on the vehicles as a trusted platform module (TPM).  OBUs can 

communicate with RSUs through wireless channel. OBUs should register to RTA and 

obtain key materials in advance. Before OBUs communicate with each other, they 

exchange public keys and compute the session keys for encrypting the subsequent 

messages. 

 

3.2 Secure model 

 

Inspired  by  the  extended  Canetti-Krawcyzk (eCK)  model [ll],  this  paper  designs  

a  novel  lightweight  certificateless  key  agreement scheme  which  is provably  

secure  in  the  random oracle model. We present their cryptography properties as 

followings. 

The proposed scheme consists of the following probabilistic polynomial time 

algorithms: 

Setup(lk) : with the input of the security parameters k, it outputs the global parameters 

{g, q, G}  as well as the hash functions. 

MasterKeyGen(lk): with the k as the security parameter input, it returns the master 

private key s and the corresponding master public key S. 

ID-basedKeyGen(s, ID): with the input of the master private key s and the identity ID 

of a user, it returns the ID-based key dID of the user. 



SecretValueGen (1k): with the input of the security parameters k, it outputs the secret 

value Xi of user i. 

CertificatelessPublicKeyGen(xi): with the input of the secret value Xi of user i, it 

outputs the certificateless public key Xi.  

EphemeralKeyGen(1k) : with the input of the security parameters k, it outputs the 

ephemeral key ri and Ri of user i. 

SessionKeyGen(sid, pki, pkj, ski, skj): with the input of the parameters sid, pki' pkj' sk;, 

skj, where sid is the identity of the session, pki is the set of user i's public keys, pkj is 

the set of user j's public keys, Ski is the set of user i's private keys, skj is the set of 

user j's private keys, the algorithm outputs the session key SK between user i and}. 

Let U = U1, U2, U3, …, Un be a set of vehic1es. The protocol is run between any two 

of these vehicles. For each vehicle, an ID-based private key can be obtained from the 

RTA through a secure channel. Other keys, such as their secret value, ephemeral key 

and certificateless public key are generated by themselves. 

The adversary A has the ability to control the communication channel over which the 

vehicles exchange their messages. IT i,' j denotes the tth protocol session running 

between the user i and user}. In addition, the adversary is allowed to replace the 

certificate less public key unless the corresponding private key is unrevealed, and vice 

versa. A session IT i, 'j may enter an accepted state with having computed a session 

key S K;'J or terminate without entering into an accepted state. We assumed that the 

information that whether a session is terminated with entering into an accepted state 

or not is public. Each session ITi, j is identified with a session ID sid which contains 

the identity of user i and user j. The transcript of the message is exchanged between 



user i and user } during the session. Two sessions IT i,'j and IT i, k j are considered to 

be a match if they have the same sid. 

The game runs in two phases. During the first phase, the adversary is allowed to issue 

the following queries in any order:  

Send(IT i,' j, x): if the Send query is allowed, the adversary controls all the 

communication and can cancel and modify the existing messages, insert new ones as 

well. If the Send query is not allowed, the adversary can only passively eavesdrop the 

message sent by the parties after the authenticated communication.  

Reveal master key: by this query, A learns the master key s.  

Reveal ID-based secret: by this query, A learns a user's ID-based key dm.  

Reveal secret value: by this query, A learns a user's long term secret key XU.  

Reveal ephemeral key: by this query, A learns a user's ephemeral secret key rU in 

session ITi, I I  

Replace public key: by this query, A replaces a user's public key Xu to be X�, and V 

will use X;; as its public key.  

Reveal session key: by this query, A learns the session key SK of session IT i,'I Once 

the first phase is over, the adversary chooses a fresh session IT i,1j and issues the T 

est(IT i,1j) query.  

Test(ITi,'j): input a fresh session ITi,' j and a bit b E { 0, I} is chosen. If b = 0, the 

adversary is given the session key S K i, 1 j, otherwise, the adversary gets session key 

randomly chosen from the set of the valid session key. 



After the second phase, the adversary outputs a guess fj for b. If fj = b, we consider 

the adversary wins the game, and the advantage that the adversary wins the game is 

defined as: 

 

 

IV. SECURITY PROTOCOL DESIGN 

 

In this section, we propose the preliminaries for the certificateless key agreement 

scheme, and then design a lightweight certificateless key agreement scheme by using 

five following cryptographic primitives. It is noted that this scheme can be easily 

extended and further optimized by one kind of improvement design. Finally, we 

present their proofs on consistency and security. 

 

4.1 Preliminaries 

 

Due to the page limit, we only review part of the definitions and theorems that are 

closely related to our proposed protocol. 

 

Definition: Zq
* is multiplicative group, where q is a prime integer; G is a cyclic group 

of prime order q, generated by g; G* = G \ 1, where 1 is the identity of G. 

Computational Diffie-Hellman (CDH) Problem: [12] given ga, gb  G, where a, b   

Z, compute gab. 



Cap Diffie-Hellman (CDH) Problem: [13] given ga, gb, gc   G*, where a, b, c   Z, it 

is easy to decide whether c=ab, but cannot compute a, b. 

Cap Diffie-Hellman (CDH) Signature: [13] let secret key x   Zq
*, the public key v = 

gx given x and a message M   {0, 1}*, compute h = H(M), and the signature   = hx , 

where H: {0, 1}*   G*. The verification is to compute h = H(M), and verify that (g, 

v, h,  ) is a valid Diffie-Hellman tuple. 

Dual (exponential) Challenge-Response (DCR) signature: [14] let public keys A = ga 

and X = gx, B = gb and Y = gy. The OCR signature (OS) of A and B on message ml, 

m2 is a tuple of values X, Y, and DSA'B' respectively. Here, the same signature can 

be exchanged to compute (and verify) as follows: 

 

where d and e denote H(X, ml) and H(Y, m2). 

Twin Diffe-Hellman  (TDH)  Trapdoor Theorems:  [1 3] using the above notations, 

suppose Xl  E  G'  r, s E Z'  and   :=  g'/X;.  Y,Zj,ZC  are random  variables  in G  and  

defined  as  functions of Xl and X2• Then, I) X2 is uniformly distributed over G; 2) 

Xl and X2 are independent; 3) if Xj  = g"  and Xc  = g", the probability that the value 

of Z Z2  =   Y' does not agree with the  value  of Zj  =  yx,  1\ Z2  =  yxo is  at  most  

I/q (if the latter holds, the former certainly holds). 

 

4.2 Protocol design 

 



In this section, we present a concrete certificateless key agreement scheme for V2V 

communication. The new scheme consists of the following PPT algorithms. 

Setup(lk) :    input  a  security  parameter  1 k, the  RTA runs  the  Setup algorithm as 

following  steps:  determines  (g, q, G),  where  q is  a k-bit  prime, G  is  a  cyclic  

group with  order q and  generator  g,  and  then,  choose  three  hash functions: 

. RTA 

publishes the global parameter param = {q, g, G, H, H1, H2}. 

MasterKeyGen(lk): input a param-secuntyeter 1k,  the RTA chooses sZq, and  

computes S = H(TA)s where TA is the identity of  RTA, s is the master private key  

and public key, respectively. 

ID-basedKeyGen(s, ID): run by the RTA. To register via the RTA, the vehicle sends 

its real identity ID to the RTA. RTA computes the pseudonym ID' and the ID-based 

key for the vehicle. After that, the RTA returns (lD', dID) to the vehicle, where dID is a 

Diffie-Hellman signature by the RTA. 

VerifyID-basedKey: get (lD', dID) from the RTA,   the   vehicle   can   verify   whether 

(  ,  , dID) is a valid Diffie-Hellman tuple by verifying the key dID. 

SecretValueGen(lk) :   input  a  security  parameter lk, the  vehicle  runs  the algorithm 

to generate the secret value xU,  xU   Zq. The xU is the long-term secret. 

CertijicatelessPublicKeyGen(xij): with the secret value xU, the vehicle runs this 

algorithm to compute the  certificateless  public key xU. 

EphemeralKeyGen(1k) :   input a security parameter 1k, the vehicle chooses rU   Zq, 

and computes RU  =  gru. 



MessageExchange: Before user A and user B run the SessionKeyGen algorithm, they 

exchange the following message: 

 

where, A', B' are the pseudonym identities of the user A and user B, TcurA, TcurB are 

the time-stamps, and LcurA, LcurB are location information. 

SessionKeyGen(sid,  pkA, pkB, skA, skB): input  the  parameters  sid,  pkA, pkB, skA, skB, 

this algorithm returns the session key SK. Here,  sid is the identity of the session, and 

sid = {A', B', EA, EB}, skA = {xA, rA, dA},  pkA = {XA, RA}, skB =  {xB, rB, dB},  pkB =  

{XB, RB}. To generate the session key, A, B do the following computation: 

A computes 

 

B computes 

 

Above computations can be easily verified as: 

 

So the session key SK is: 

),,,,,,,( 76543212 SidHSK   

As mentioned above, we show a proposed certificateless key agreement process, 

which fits for Lippold’s secure model [3]. Further- more, this proposed scheme 



computes more easily and keeps minimization principle from the cryptography 

primitives. 

 

 

V. SECURITY ANALYSIS AND PERFORMANCE RESULTS 

 

In this section, we demonstrate that the proposed protocol is secure, practical and 

feasible by analyzing its security properties, computational cost and communication 

overhead. 

 

5.1 Security analysis 

 

We first prove that the proposed certificateless key agreement scheme is secure in 

random oracle under the CDR assumption. The advantage of any PPT, Oli -valued 

adversary A in solving CDH Problem referred in section 4. 1 can be defined as: 

 

And CDH Assumption is: AdvA(k)[CDH] is negligible. 

 

),( ' jiTest i : the input session is fresh [3], and a bit b{0, 1} is randomly chosen. If b 

= 0, the adversary A learns the session key SK, otherwise it randomly chooses a 

session key from the set of valid session keys for A. We say that our certificate less 



authentication key agreement scheme is secure if for any PPT adversary A to guess b 

for 'jj, the advantage A breaks up our scheme is a negligible function of k, which we 

denote as: 

 

Before  ),( ' jiTest i , the  challenger  B tries to  guess  the  test  session,  and  he  

randomly  chooses  two  indices       i, J E  {I, 2,· .    .    q}, tE  {I, 2, .    .    ·    q'}      

and      i *'  J,     i,  J     represent the  i'h and the j’h distinct query.      i,    J' and     t   

denote   the   t,h   test   oracle      ITi, j. Where, q is the most of users, and q' is the 

most sessions. 

So, the probability of B choosing the right i, j is: 

2

1

)1(

1

qqq



 

and then the probability of guess the ji ,
'  correctly is: 

'2

11
)],ˆ,ˆ,ˆ(Pr[

qq
ttjjiiB   

Since  there  are  three  secrets  (drm  Xu,  ru) kept  in  each  party,  we  say  that  our  

scheme is  secure  as  long  as  there  is  still  one  secret  unrevealed  for  each  party.   

So there are 9 situations that each party still keeps one secret.  For  the  9  situations,  

there  are 9  strategies  for  B  to  abort  the  game,   illustrated  in  Table  I  and   

AdvA(k)[CDH] > Pr[B(i = i, J = j,t=  t)]Adv(k)[IT].    So,   the advantage of any 

adversary A against our protocol is limited by: 

 



 

Table I The Nine Situations and Strategies 

 

 

1) Strategy 1. The adversary learned the ID- based key dr and d.r of party I and J 

through revealing mastered key query or through10- based key query, and also 

learned the secret value Xr and XJ through revealing secret value or replacing the 

public key and X"I through replacing public key query. The only remained secrets  

are  rJ and       So,  the  adversary  has  to guess the right session  IIi,'j  and then to 

solve the CDR problem to compute rA and rB if he wants to compute Al for the 

session key.  So the advantage of the adversary is limited to: 

 

2) Strategy 2: the adversary learned the 10- based key dl and dJ through revealing 

mastered key query  or revealing ID-based key  query of party I and J, and also 

learned  the ephemeral key  rl and  rJ through  revealing  ephemeral key query in 

session IIi, I The unrevealed secrets are Xu and Xu. Therefore, the adversary has to 



guess the right party I and J and then to solve the  CDR  problem  to  compute XI  and 

XJ  if he wants  to  compute A2 for the session key.  So, the advantage is limited by: 

 

3)  Strategy 3 and 4: the adversary learned  the IO-based key dl and dJ through 

revealing mastered key query or revealing ID-based key query of party I and J, 

moreover, the adversary learned the secret value through revealing secret value or 

replacing the public key through replacing public key query of either of party and 

learned the ephemeral key of either party through revealing ephemeral key query in 

session IIi, I Each party keeps a secret of xr/Xu or ru safety. If the adversary wants to 

compute A3 or A4 for the session key, he must guess the right party I and J and the 

right session IIi, j and then to solve the CDR problem. So, the advantage is limited by: 

 

4) Strategy 5 and 6: the adversary learned the IO-based key and secret value of either 

party or replaced the pubic key of either party, and also learned the ephemeral key of 

both parties in session IIi, I. The uncorrupted key of each party is an IO-based key or 

a xu/Xu   or ru.  The adversary has to guess the right party I and J and then to solve the 

DCR signature to compute As if he wants to compute the session key.  So, the 

advantage is limited by: 

 

5) Strategy 7 and 8: the adversary learned the ID-based key and ephemeral key of 

either party, and also learned the secret value or re-placed the public key of both 

parties. The safety secret in each party is an ID-based key or an ephemeral key. The 

adversary has to guess the right party I and J and the right session IIi, j, and then to 



solve the DCR signature to compute A6 if he wants to compute the session key.  So, 

the advantage is limited by: 

 

6) Strategy 9: the adversary learned the secret values and ephemeral keys of both 

parties and replaced the public keys of both parties. The unrevealed secrets are ID-

based keys of both parties. The adversary has to guess the right party I and J and then 

to solve the CDR problem to compute XJ and if he wants to compute A9 for the 

session key. So, the advantage is limited by: 

 

 

5.2 Performance results 

 

In this section, we will evaluate our proposed certificateless key agreement scheme 

from the aspect of efficiency and network performance. 

1) Efficiency Analysis: In this part, we evaluate and compare the performance of our 

protocol with the other protocols, which offer similar security and privacy properties 

even though different schemes were adopted, i.e., discrete logarithm in our protocol 

and elliptic curve cryptosystem in theirs. We measure the computation overhead of 

the following five different operations based on the original source code in the Miracl 

library[15], which is a well-known free software for non-commercial use and 

implements efficient Big Number Cryptography. The experimentation results of the 

crypto overhead are listed in Table II. 



 

Table II Crypto Overhead 

 

 

The experiment platform used in this paper is a commodity PC with a dual-core 3.4 

GHz CPU, and 2 GB RAM, and we used the Miracl big number library. Without loss 

of generality, the total computation for each party in our scheme is nine 1024-bit 

modular exponent Modexp operations, four 1024-bit big number multiplication 

Mul1024/prime operations,  two  1024-bit  big number modular addition  ADD/Mod1024  

operations,  and  six  512- bit hash operations.  We compare our protocol with several 

existing CL-AKA protocols we have referred above in Table III. As shown in Figure 

2, Figure 3 and Figure 4, we can see that our scheme have obvious advantage in 

computation efficiency after multi-times key agreement. 

 

Table III Comparison of Different Protocol 



 

 

 

Fig. 2 Compared with Huang s schemes 

 

 



Fig. 3 Compared with Lippolds schemes 

 

 

Fig. 4 Compared with Song and Yang s schemes 

 

2) Network Performance: In this section, we present the performance evaluation of the 

proposed protocol. There are several metrics that can be used to measure the 

performance of a routing protocol, but we use the most widely accepted ones: the 

packet delivery ratio (PDR), end-to-end delay (E2ED). 

We evaluate the computation overhead of the proposed scheme in NS3 with a cross-

layer weighted position-based routing protocol (CLW PR) [16], which is designed for 

urban VANET environment. CLWPR uses cross-layer information, such as SNIR 

from PRY layer and frame error rate from MAC layer to improve the efficiency of 

routing. 

The scenario is a 5x5 Manhattan Grid network with 200 nodes, with mean speed 

varying from 0 to 35mls in bonnmotion-2.0[17]. For each scenario, 10 concurrent 



connections are created in NS3.11 using UDP connections to get the PDR, E2ED, hop 

counts and total dropped packets. We run several Monte Car- lo simulations, and use 

50 different mobility trace files for each scenario. Each vehicle is equipped with a 

proper wireless interface. The communication range is set to be 500m according to the 

IEEE 802.11p standard with RTS/CTS mechanism and the used propagation model is 

Two-Ray-Ground. 

The results are shown in Figure 5, Figure 6. In both figures, the x-axis indicates the 

mean speed of the 200 vehicles in the scenario. In each figure, there are three curves, 

the red line with + point stands for the PDR or E2ED of the CLWPR protocol without 

our proposed secure key agreement scheme, the green line with x point stands for the 

PDR or E2ED of the CLWPR protocol with our proposed secure key agreement 

scheme, and the time of our scheme is computed by the naive algorithm in Miracle, 

the last curve of blue line with x point is the PDR or E2ED of the CLWPR protocol 

with our proposed secure key agreement scheme testing in the comba algorithm in 

Miracle. 

 

 



Fig.5 Packet delivery rate results 

 

In Figure 5, the y-axis indicates the pack- age delivery rate, which means the ratio of 

the number of delivered data packet to the destination. This illustrates the level of 

delivered data to the destination. 

 

From Figure 5, we can see that the three curves are very similar, and they are nearly 

overlapped.  Therefore, the proposed scheme does not decrease the packet delivery 

rate and does not add much network overhead. 

In Figure 6, the y-axis indicates the end- to-end delay, E2ED means the average time 

taken by a data packet to arrive in the destination. It also includes the delay caused by 

route discovery process and the queue in data packet transmission. Only these data 

packets are successfully delivered to destinations count. 


 


sconnectionofNumber

timesendtimearrive
EDE2  

 



 

Fig.6 End-ta-end delay results 

 

From Figure 6, we can see that the pro- posed scheme increases a little extra end-to- 

end delay, but the addition in E2ED is negligible because the three curves are quite 

close. We can conclude that our proposed certificate- less key agreement scheme is 

efficient which shows a good network performance.  

 

 

VI. CONCLUSIONS 

 

In this paper, we focus on a practical and safe certificateless key agreement scheme 

special to secure V2V communication without available RSU. Firstly, we utilize Gap 

Diffie-Heilman Signature for RTA to sign the ID-based key dID, which makes it 

possible to build our scheme free from a secure channel between RTA and vehicles. 

Secondly, considering securing forward property, the ephemeral key pairs, i.e., rU and 



RU, which is only used in one certain key exchange process, is embedded into the 

session key. Thirdly, in order to enhance the efficiency and robustness of the proposed 

scheme, we embed DCR signature in session key evidences and reduced the key 

agreement interactions to one-round. Finally, we evaluate the computational cost and 

the network overhead of the proposed scheme by the existing routing protocol 

CLWPR in NS3. Besides that, we also use the classical reduction approach to prove 

that the proposed scheme is secure as long as there is still one secret uncompromised 

in the random oracle model. Performance comparisons with other schemes show that 

our proposed key agreement schemes are efficient and suitable for vehicle-to-vehicle 

authentication communication services. 
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