160 research outputs found

    Tracking Consensus of Networked Random Nonlinear Multi-agent Systems with Intermittent Communications

    Full text link
    The paper proposes an intermittent communication mechanism for the tracking consensus of high-order nonlinear multi-agent systems (MASs) surrounded by random disturbances. Each collaborating agent is described by a class of high-order nonlinear uncertain strict-feedback dynamics which is disturbed by a wide stationary process representing the external noise. The resiliency level of this networked control system (NCS) to the failures of physical devices or unreliability of communication channels is analyzed by introducing a linear auxiliary trajectory of the system. More precisely, the unreliability of communication channels sometimes makes an agent incapable of sensing the local information or receiving it from neighboring nodes. Therefore, an intermittent communication scheme is proposed among the follower agents as a consequence of employing the linear auxiliary dynamics. The closed-loop networked system signals are proved to be noise-to-state practically stable in probability (NSpS-P). It has been justified that each agent follows the trajectory of the corresponding local auxiliary virtual system practically in probability. The simulation experiments finally quantify the effectiveness of our proposed approach in terms of providing a resilient performance against unreliability of communication channels and reaching the tracking consensus.Comment: 6 pages, 4 figure

    Fully distributed consensus for high-order strict-feedback nonlinear multiagent systems with switched topologies

    Get PDF
    summary:This paper studies the distributed consensus problem of high-order strict-feedback nonlinear multiagent systems. By employing the adaptive backstepping technique and switched system theory, a novel protocol is proposed for MASs with switched topologies. Global information such as the number of agents and communication topology is not used. In addition, the communication topology between agents can be switched between possible topologies at any time. Based on the Lyapunov function method, the proposed adaptive protocol guarantees the complete consensus of multiagent systems without restricting the dwell time of the switched signal. Finally, two numerical examples are provided to illustrate the effectiveness and advantages of the given protocol

    Output Feedback Control for Couple-Group Consensus of Multiagent Systems

    Get PDF
    This paper deals with the couple-group consensus problem for multiagent systems via output feedback control. Both continuous- and discrete-time cases are considered. The consensus problems are converted into the stability problem of the error systems by the system transformation. We obtain two necessary and sufficient conditions of couple-group consensus in different forms for each case. Two different algorithms are used to design the control gains for continuous- and discrete-time case, respectively. Finally, simulation examples are given to show the effectiveness of the proposed results

    Enclosing a moving target with an optimally rotated and scaled multiagent pattern

    Get PDF
    We propose a novel control method to enclose a moving target in a two-dimensional setting with a team of agents forming a prescribed geometric pattern. The approach optimises a measure of the overall agent motion costs, via the minimisation of a suitably defined cost function encapsulating the pattern rotation and scaling. We propose two control laws which use global information and make the agents exponentially converge to the prescribed formation with an optimal scale that remains constant, while the team's centroid tracks the target. One control law results in a multiagent pattern that keeps a constant orientation in the workspace; for the other, the pattern rotates with constant speed. These behaviours, whose optimality and steadiness are very relevant for the task addressed, occur independently from the target's velocity. Moreover, the methodology does not require distance measurements, common coordinate references, or communications. We also present formal guarantees of collision avoidance for the proposed approach. Illustrative simulation examples are provided

    Iterative learning control for multi-agent systems with impulsive consensus tracking

    Get PDF
    In this paper, we adopt D-type and PD-type learning laws with the initial state of iteration to achieve uniform tracking problem of multi-agent systems subjected to impulsive input. For the multi-agent system with impulse, we show that all agents are driven to achieve a given asymptotical consensus as the iteration number increases via the proposed learning laws if the virtual leader has a path to any follower agent. Finally, an example is illustrated to verify the effectiveness by tracking a continuous or piecewise continuous desired trajectory
    corecore