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The paper is concerned with the problem of distributed node-to-node consensus of multiagent systems with delayed nonlinear
dynamics and communication constraints. A new kind of consensus protocol based only on the intermittent measurements of
neighboring agents is proposed to make each follower track the corresponding leader asymptotically. Based on the Lyapunov
stability theory andM-matrix theory, some novel and simple criteria are derived for node-to-node consensus ofmultiagent systems.
It is shown that consensus can be reached if the communication time duration is larger than the corresponding threshold value.
Finally, a numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.

1. Introduction

Distributed control of multiagent systems has recently at-
tracted various scientific communities ranging from math-
ematics to electronic engineering [1, 2], which is partly due
to its broad applications in sensor networks, formation of
unmanned vehicles, clustering of satellites, and so on. An
important issue in distributed control of multiagent systems
is consensus control, which can be described as only using the
local relative information to make the whole system reach a
state agreement [3].

Recently, there are many fruitful results on distributed
consensus of multiagent systems, according to the presence
or absence of a leader in the considered multiagent systems;
within the context of multiagent systems, the commonly
studied consensus problems can be classified into three cat-
egories: leaderless consensus, leader-following, and contain-
ment control. Leaderless consensus means that the states of
considered multiple agents achieve a prior unknown agree-
ment [4–6]. Leader-following consensus is also called dis-
tributed consensus tracking, which will converge to a
designed state trajectory which is generated by a virtual
or real leader [7–10]. Distributed containment control of
multiagent systems with multiagent systems with multiple

leaders has been addressed in the literature [11–15], where the
control goal is to make the states of each follower converge to
a convex combination of the states of all leaders. It should be
noted that there is a common assumption in existing works
on containment control that there is no interaction among
the leaders. However, in some real applications, there do
exist interactions between the neighboring leaders and the
state of a given follower needs to track that of a particular
leader not the convex combination of the states of all leaders.
Motivated by this observation, the notion of distributed
node-to-node consensus is introduced in [16, 17]. Specifically,
it is assumed that there are two levels in the multiagent
systems: the leader’s and the follower’s levels; the dynamics
of each leader may only be affected by those of its neighbors
in the leader’s levels, while the dynamics of each follower
may be affected by those of its neighbors in both leader’s
and follower’s levels. It should be noticed that most of the
aforementionedworks inmultiagent systems are derived on a
key assumption that information is transmitted continuously
among the agents. However, this assumption may not be
ensured in some practical cases due to communication
disturbances and sensor range limitations [18, 19]. Thus it is
reasonable to assume that each agent can sense its neighbors
only intermittently. It is worth noting that both impulsive

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 268083, 10 pages
http://dx.doi.org/10.1155/2015/268083



2 Mathematical Problems in Engineering

control and intermittent control are discontinuous controls.
The difference of them is that impulsive control is activated
only at some isolated points [20–22], while intermittent
control is activated during some intervals and does not work
during the other intervals. On the other hand, impulsive
control and intermittent control have attracted more interest
recently due to their easy implementation in engineering
control and being more efficient and useful in real-life appli-
cations. On the other hand, in order to guarantee stability in
complex networks, adaptive strategies to appropriately tune
the strengths of the interconnections among network nodes
have been proposed [23–25]; it can be proved that the fixed
coupling strength is larger than those needed in practice.
Therefore, it may be conservative; adaptive strategies are
proposed and can effectively overcome these shortcomings,
which can appropriately tune the strength with the dynamic
evolution of the network. Finally, the characteristic of time-
delayed coupling is very common in biological and physical
systems; some of the time delays are trivial and so can be
ignored, while some others cannot be ignored, such as in long
distance communication and traffic congestions. Therefore,
time delays should be modeled in order to simulate more
realistic networks [26, 27].

Motivated by these observations, this paper is devoted to
investigate distributed node-to-node consensus problem for a
class of multiagent systems with delayed nonlinear dynamics
by adaptive intermittent control. The main contributions of
this paper can be summarized as follows. (1) The multiagent
systems in the present framework consist of two levels, that
is, the leader’s level and the follower’s level. (2) The agent
dynamics are extended to delayed nonlinear form. (3) Anovel
adaptive intermittent control protocol is designed,where only
a small fraction of followers can sense their corresponding
leaders on some disconnected intervals.

Notation. The notation used here is fairly standard except
where otherwise stated. R𝑛 denotes the 𝑛-dimensional
Euclidean space and R𝑛×𝑚 is a set of real 𝑛 × 𝑚 matrices.
𝐼
𝑛
and 1

𝑁
represent the 𝑛 × 𝑛 identity matrices and the 𝑛-

dimensional column vector with all entries equal to one.
‖ ⋅ ‖ refers to the Euclidean norm. Let diag{⋅ ⋅ ⋅ } stand for a
block-diagonal matrix. Symbol ‖ ⋅ ‖ denotes the Euclidean
norm. 𝑀𝑇 represents the transpose of the matrix 𝑀. For
a real symmetric matrix 𝐴, 𝜆max(𝐴) and 𝜆min(𝐴) represent
its largest and smallest eigenvalues, respectively. Notation ⊗

denotes the Kronecker product. In this paper, if not explicitly
stated, matrices are assumed to have compatible dimensions.

2. Problem Formulation and Preliminaries

Let 𝑔 = (V, 𝜀, 𝐺) be a directed graph with the set of nodes
V = (V

1
, V
2
, . . . , V

𝑁
), the set of directed links 𝜀 ⊆ V × V, and

a weighted adjacency matrix 𝐺 = (𝐺
𝑖𝑗
)
𝑁×𝑁

with nonnegative
adjacency elements 𝐺

𝑖𝑗
. A directed graph has or contains a

directed spanning tree if there exists a node called root such
that there exists a directed path from this node to every other
node. The Laplacian matrix 𝐿 = (𝑙

𝑖𝑗
)
𝑁×𝑁

of the weighted
directed network is defined as 𝐿

𝑖𝑗
= −𝐺

𝑖𝑗
(𝑖 ̸= 𝑗); 𝐿

𝑖𝑖
=

∑
𝑁

𝑗=1,𝑗 ̸=𝑖
𝐺
𝑖𝑗
.

Definition 1. A nonsingular real square matrix 𝐴 is called an
𝑀-matrix if all of its off-diagonal elements are nonpositive,
and all elements of 𝐴−1 are nonnegative.

Lemma 2. Suppose that matrix 𝐴 ∈ R𝑛×𝑛 has nonposi-
tive off-diagonal elements; then 𝐴 is an M-matrix if and
only if there exists a positive diagonal matrix Ξ =

diag{1/𝜃
1
, 1/𝜃
2
, . . . , 1/𝜃

𝑛
}, such that 𝐴

𝑇

Ξ + Ξ𝐴 > 0, where
𝐴𝜃 = 1

𝑁
and 𝜃 = [𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑛
]
𝑇.

Lemma 3. Suppose that nonnegative function 𝑦(𝑡), 𝑡 ∈

[−𝜏, +∞), satisfies

̇𝑦 (𝑡) ≤ −𝑐
1
𝑦 (𝑡) + 𝑐

2
𝑦 (𝑡 − 𝜏) (𝑡 ≥ 0) ; (1)

then

𝑦 (𝑡) ≤




𝑦 (0)




𝜏

𝑒
−𝑟𝑡

(𝑡 ≥ 0) , (2)

where 𝑐
1

> 𝑐
2

> 0, ‖𝑦(0)‖
𝜏

= max
−𝜏≤𝑠≤0

{𝑦(𝑠)}, and 𝑟 is the
unique solution of −𝑟 = −𝑐

1
+ 𝑐
2
𝑒
𝑟𝜏.

Lemma 4. Suppose that nonnegative function 𝑦(𝑡), 𝑡 ∈

[−𝜏, +∞), satisfies

̇𝑦 (𝑡) ≤ 𝑐
1
𝑦 (𝑡) + 𝑐

2
𝑦 (𝑡 − 𝜏) (𝑡 ≥ 0) ; (3)

then

𝑦 (𝑡) ≤




𝑦 (0)




𝜏

𝑒
(𝑐
1
+𝑐
2
)𝑡

(𝑡 ≥ 0) , (4)

where 𝑐
1
and 𝑐

2
are two positive constants and ‖𝑦(0)‖

𝜏
=

max
−𝜏≤𝑠≤0

{𝑦(𝑠)}.

Consider that multiagent systems consist of the leader’s
and the follower’s level; it is assumed that each level contains
𝑁 coupled agents.Thedynamics of the 𝑖th agent in the leader’s
level are described as follows:

�̇�
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡) , 𝑥
𝑖
(𝑡 − 𝜏) , 𝑡) − 𝑐

𝑁

∑

𝑗=1

𝐿
𝑖𝑗
𝑥
𝑗
(𝑡)

(𝑖 = 1, 2, . . . , 𝑁) ,

(5)

where 𝑥
𝑖
(𝑡) ∈ R𝑛 is the position state of the 𝑖th leader.

𝑓(⋅, ⋅, 𝑡) : R𝑛×R𝑛×R+ → R𝑛 is a continuously differentiable
vector-valued function representing the inherent delayed
nonlinear dynamics of agent 𝑖. 𝜏 > 0 is the time delay.
𝑐 > 0 represents the coupling strength. 𝐿 = [𝑙

𝑖𝑗
]
𝑁×𝑁

is the
Laplacian matrix of communication topology. Furthermore,
the evolution of the 𝑖th follower is given as

̇
�̂�
𝑖
(𝑡) = 𝑓 (𝑥

𝑖
(𝑡) , 𝑥
𝑖
(𝑡 − 𝜏) , 𝑡) − 𝑐

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡) + 𝑢

𝑖
(𝑡)

(𝑖 = 1, 2, . . . , 𝑁) ,

(6)

where 𝑥
𝑖
(𝑡) ∈ R𝑛 is the position state of the 𝑖th follower. 𝑢

𝑖
(𝑡)

is the control input acting agent 𝑖.
It is commonly assumed in most existing works that all

information is transmitted continuously among the agents.
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However, in some real situations agents may only commu-
nicate with their neighbors over some disconnected time
intervals due to the unreliability of communication channels,
failure of physical devices; thus the adaptive intermittent
consensus protocol is designed as follows:

𝑢
𝑖
(𝑡)

=

{

{

{

𝑐𝑑
𝑖
(𝑡) (𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)) 𝑡 ∈ [𝑘𝑇, 𝑘𝑇 + 𝛿)

0 𝑡 ∈ [𝑘𝑇 + 𝛿, (𝑘 + 1) 𝑇) ,

(7)

where the pinning link 𝑑
𝑖
(𝑡) > 0 if and only if the 𝑖th follower

can directly sense the 𝑖th leader; otherwise 𝑑
𝑖
(𝑡) = 0; its

updating law is given later.The communication time duration
𝛿 satisfies 𝜏 < 𝛿 ≤ 𝑇.

Remark 5. What kind of agents and howmany agents should
be pinned?The selection criteria are as follows. Firstly, divide
the digraph of the network into 𝑚 components, where each
component contains a directed tree; select the root nodes in
these components as pinned nodes. There are two reasons:
(1) the related message of the leader can be transmitted
to each follower; (2) the consensus can be achieved if and
only if the root node of each component is pinned, which
means that the minimum number of pinning controllers
is 𝑚. If we select the root nodes in these components as
pinned nodes, the following consensus is not achieved; we
need to rearrange the remaining nodes in descending order
according to the differences of out-degrees and in-degrees
and gradually increase the amount of control node, until the

consensus is achieved.More detailed discussion can be found
in the literatures [28, 29].

Definition 6. The distributed node-to-node consensus in
multiagent systems (5) and (6) is said to be achieved if, for
any initial conditions, the following holds:

lim
𝑡→∞





𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)





= 0 (𝑖 = 1, 2, . . . , 𝑁) . (8)

3. Main Result

In this section, we deal with node-to-node consensus prob-
lem for multiagent systems with delayed nonlinear dynamics
by adaptive intermittent control. By defining a Lyapunov
function and utilizing a combination of stability theory and
Kronecker products, some simple conditions are established
to ensure node-to-node consensus of multiagent systems (5)
and (6). The following assumption is needed to derive the
main results.

Assumption 7. For the nonlinear function𝑓(⋅, ⋅, 𝑡) : R𝑛×R𝑛×

R+ → R𝑛 in (5) and (6), there exist two positive constants
𝐿
1
, 𝐿
2
> 0 such that





𝑓 (𝑥
1
, 𝑥
2
, 𝑡) − 𝑓 (𝑦

1
, 𝑦
2
, 𝑡)






2

≤ 𝐿
1





𝑥
1
− 𝑦
1






2

+ 𝐿
2





𝑥
2
− 𝑦
2






2

,

(9)

where 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ R𝑛.

Substituting (7) into (6), one has

̇
�̂�
𝑖
(𝑡) =

{
{
{
{
{

{
{
{
{
{

{

𝑓(𝑥
𝑖
(𝑡) , 𝑥
𝑖
(𝑡 − 𝜏) , 𝑡) − 𝑐

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡) + 𝑐𝑑

𝑖
(𝑡) (𝑥
𝑖
(𝑡) − 𝑥

𝑖
(𝑡)) 𝑡 ∈ [𝑘𝑇, 𝑘𝑇 + 𝛿)

𝑓 (𝑥
𝑖
(𝑡) , 𝑥
𝑖
(𝑡 − 𝜏) , 𝑡) − 𝑐

𝑁

∑

𝑗=1

𝑙
𝑖𝑗
𝑥
𝑗
(𝑡) 𝑡 ∈ [𝑘𝑇 + 𝛿, (𝑘 + 1) 𝑇) .

(10)

For convenience, systems (5) and (10) can be rewritten as

�̇� (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) − 𝑐 (𝐿 ⊗ 𝐼
𝑛
) 𝑥 (𝑡) ,

̇
�̂� (𝑡) =

{

{

{

𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) − 𝑐 (𝐿 ⊗ 𝐼
𝑛
) 𝑥 (𝑡) − 𝑐 (𝐷 (𝑡) ⊗ 𝐼

𝑛
) (𝑥 (𝑡) − 𝑥 (𝑡)) 𝑡 ∈ [𝑘𝑇, 𝑘𝑇 + 𝛿)

𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) − 𝑐 (𝐿 ⊗ 𝐼
𝑛
) 𝑥 (𝑡) 𝑡 ∈ [𝑘𝑇 + 𝛿, (𝑘 + 1) 𝑇) ,

(11)

where

𝑥 (𝑡) = [𝑥
𝑇

1
(𝑡) , 𝑥
𝑇

2
(𝑡) , . . . , 𝑥

𝑇

𝑁
(𝑡)]

𝑇

,

𝑥 (𝑡) = [𝑥
𝑇

1
(𝑡) , 𝑥
𝑇

2
(𝑡) , . . . , 𝑥

𝑇

𝑁
(𝑡)]

𝑇

,

𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) = [𝑓
𝑇

(𝑥
1
(𝑡) , 𝑥
1
(𝑡 − 𝜏) , 𝑡) ,

𝑓
𝑇

(𝑥
2
(𝑡) , 𝑥
2
(𝑡 − 𝜏) , 𝑡) , . . . ,

𝑓
𝑇

(𝑥
𝑁
(𝑡) , 𝑥
𝑁
(𝑡 − 𝜏) , 𝑡)]

𝑇

,

𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) = [𝑓
𝑇

(𝑥
1
(𝑡) , 𝑥
1
(𝑡 − 𝜏) , 𝑡) ,

𝑓
𝑇

(𝑥
2
(𝑡) , 𝑥
2
(𝑡 − 𝜏) , 𝑡) , . . . ,

𝑓
𝑇

(𝑥
𝑁
(𝑡) , 𝑥
𝑁
(𝑡 − 𝜏) , 𝑡)]

𝑇

,

𝐷 (𝑡) = diag {𝑑
1
(𝑡) , 𝑑
2
(𝑡) , . . . , 𝑑

𝑙
(𝑡) , 0, . . . , 0} .

(12)
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Let 𝑒(𝑡) = 𝑥(𝑡) −𝑥(𝑡); then the following error system can
be obtained from (11) such that

̇𝑒 (𝑡) =

{

{

{

𝑓 (𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏) , 𝑡) − 𝑐 (𝐿 ⊗ 𝐼
𝑛
) 𝑒 (𝑡) − 𝑐 (𝐷 (𝑡) ⊗ 𝐼

𝑛
) 𝑒 (𝑡) 𝑡 ∈ [𝑘𝑇, 𝑘𝑇 + 𝛿)

𝑓 (𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏) , 𝑡) − 𝑐 (𝐿 ⊗ 𝐼
𝑛
) 𝑒 (𝑡) 𝑡 ∈ [𝑘𝑇 + 𝛿, (𝑘 + 1) 𝑇) ,

(13)

where

𝑓 (𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏) , 𝑡) = 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡)

− 𝑓 (𝑥 (𝑡) , 𝑥 (𝑡 − 𝜏) , 𝑡) .

(14)

It is not hard to verify that node-to-node consensus for
multiagent systems (5) and (6) will be achieved if and only
if zero equilibrium point of error system (13) is globally
attractive.

Theorem 8. Suppose that Assumption 7 holds; then dis-
tributed node-to-node consensus problem for multiagent sys-
tems (5) and (6) is achieved under the following distributed
adaptive intermittent control protocol:

𝑢 (𝑡) =

{

{

{

−𝑐 (𝐷 (𝑡) ⊗ 𝐼
𝑛
) 𝑒 (𝑡) 𝑡 ∈ [𝑘𝑇, 𝑘𝑇 + 𝛿)

0 𝑡 ∈ [𝑘𝑇 + 𝛿, (𝑘 + 1) 𝑇)

(15)

and the updating law 𝑑
𝑖
(𝑡) (𝑖 = 1, 2, . . . , 𝑙) is defined as

̇
𝑑
𝑖
(𝑡)

=

{

{

{

𝑐𝑎
0𝑖
𝑒
𝑎
1𝑖
𝑡

𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡) 𝑡 ∈ [𝑘𝑇, 𝑘𝑇 + 𝛿)

0 𝑡 ∈ [𝑘𝑇 + 𝛿, (𝑘 + 1) 𝑇)

(16)

if the following conditions hold:

1 + 𝐿
1
− 2𝑐𝜆min (𝐿) 𝜃min + 𝑎

1
< 0, (17)

1 + 𝐿
1
− 𝑐𝜆min (𝑆) − 𝑏

1
< 0, (18)

𝛿 >

𝑟𝜏 + (𝑏
1
+ 𝐿
2
) 𝑇

𝑟 + 𝑏
1
+ 𝐿
2

, (19)

where

Ξ = diag{

1

𝜃
1

,

1

𝜃
2

, . . . ,

1

𝜃
𝑁

} ,

𝜃 = [𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑛
]
𝑇

,

𝐿𝜃 = 1
𝑁
,

𝜃max = max
1≤𝑖≤𝑁

{𝜃
𝑖
} ,

𝜃min = min
1≤𝑖≤𝑁

{𝜃
𝑖
} ,

𝐿 =

Ξ�̂� + �̂�
𝑇

Ξ

2

,

�̂� = 𝐿 + 𝐷
∗

,

𝐷
∗

= diag {𝑑
∗

1
, 𝑑
∗

2
, . . . , 𝑑

∗

𝑙
, 0, . . . , 0} ,

𝑆 = Ξ
−1

(Ξ𝐿 + 𝐿
𝑇

Ξ) ,

−𝑟 = −𝑎
1
+ 𝐿
2
𝑒
𝑟𝜏

,

𝑎
1
= min
1≤𝑖≤𝑁

{𝑎
1𝑖
} .

(20)

Proof. Choose the following Lyapunov function candidate:

𝑉 (𝑡) =

1

2

𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡)

+

1

2

𝑙

∑

𝑖=1

𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

)
2

𝑎
0𝑖

,

(21)

where Ξ = diag{1/𝜃
1
, 1/𝜃
2
, . . . , 1/𝜃

𝑁
}, 𝜃 = [𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑛
]
𝑇

satisfies 𝐿𝜃 = 1
𝑁
. 𝑑∗
𝑖
(𝑖 = 1, 2, . . . , 𝑙) are some undetermined

sufficiently large positive constants.
(1) For 𝑡 ∈ [𝑘𝑇, 𝑘𝑇 + 𝛿)and an arbitrarily given 𝑘 ∈ N,

taking the derivative of 𝑉(𝑡) along the trajectories of system
(13) can be given as follows:

�̇� (𝑡) = 𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) ̇𝑒 (𝑡) −

1

2

⋅

𝑙

∑

𝑖=1

𝑎
1𝑖
𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

+

𝑙

∑

𝑖=1

𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)

𝑎
0𝑖

̇
𝑑
𝑖
(𝑡) = 𝑒

𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
)

⋅ 𝑓 (𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏) , 𝑡) − 𝑐𝑒
𝑇

(𝑡) (

Ξ𝐿 + 𝐿
𝑇

Ξ

2

⊗ 𝐼
𝑛
)

⋅ 𝑒 (𝑡) − 𝑐𝑒
𝑇

(𝑡) (

Ξ𝐷 (𝑡) + 𝐷 (𝑡)
𝑇

Ξ

2

⊗ 𝐼
𝑛
) 𝑒 (𝑡) −

1

2
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⋅

𝑙

∑

𝑖=1

𝑎
1𝑖
𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

+

𝑙

∑

𝑖=1

(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
) 𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) ̇𝑒 (𝑡) = 𝑒

𝑇

(𝑡)

⋅ (Ξ ⊗ 𝐼
𝑛
) 𝑓 (𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏) , 𝑡) − 𝑐𝑒

𝑇

(𝑡) (𝐿 ⊗ 𝐼
𝑛
)

⋅ 𝑒 (𝑡) −

1

2

𝑙

∑

𝑖=1

𝑎
1𝑖
𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

≤

1

2

𝑒
𝑇

(𝑡)

⋅ (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡) +

1

2

𝑓
𝑇

(𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏) , 𝑡) (Ξ ⊗ 𝐼
𝑛
)

⋅ 𝑓 (𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏) , 𝑡) − 𝑐𝑒
𝑇

(𝑡) (𝐿 ⊗ 𝐼
𝑛
) 𝑒 (𝑡) −

1

2

⋅

𝑙

∑

𝑖=1

𝑎
1𝑖
𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

≤

1

2

𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡)

+

1

2

𝐿
1
𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡) +

1

2

𝐿
2
𝑒
𝑇

(𝑡 − 𝜏) (Ξ ⊗ 𝐼
𝑛
)

⋅ 𝑒 (𝑡 − 𝜏) − 𝑐𝜆min (𝐿) 𝜃min𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡) −

1

2

⋅

𝑙

∑

𝑖=1

𝑎
1𝑖
𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

=

1

2

(1 + 𝐿
1
− 2𝑐𝜆min (𝐿) 𝜃min) 𝑒

𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡)

−

1

2

𝑙

∑

𝑖=1

𝑎
1𝑖
𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

+

1

2

𝐿
2
𝑒
𝑇

(𝑡 − 𝜏)

⋅ (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡 − 𝜏)

≤

1

2

(1 + 𝐿
1
− 2𝑐𝜆min (𝐿) 𝜃min + 𝑎

1
) 𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
)

⋅ 𝑒 (𝑡) −

1

2

𝑎
1
𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡) −

1

2

⋅ 𝑎
1

𝑙

∑

𝑖=1

𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

+

1

2

𝐿
2
𝑒
𝑇

(𝑡 − 𝜏) (Ξ ⊗ 𝐼
𝑛
)

⋅ 𝑒 (𝑡 − 𝜏) +

1

2

𝐿
2

𝑙

∑

𝑖=1

𝑒
−𝑎
1𝑖
(𝑡−𝜏)

(𝑑
𝑖
(𝑡 − 𝜏) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

≤ −𝑎
1
𝑉 (𝑡) + 𝐿

2
𝑉 (𝑡 − 𝜏) ,

(22)

where

𝑎
1
= min
1≤𝑖≤𝑁

{𝑎
1𝑖
} ,

𝐿 =

Ξ�̂� + �̂�
𝑇

Ξ

2

,

�̂� = 𝐿 + 𝐷
∗

,

𝐷
∗

= diag {𝑑
∗

1
, 𝑑
∗

2
, . . . , 𝑑

∗

𝑙
, 0, . . . , 0} ,

𝜃min = min
1≤𝑖≤𝑁

{𝜃
𝑖
} .

(23)

(2) For 𝑡 ∈ [𝑘𝑇+ 𝛿, (𝑘 + 1)𝑇) with arbitrarily given 𝑘 ∈ N,
taking the time derivative 𝑉(𝑡) along the trajectories of (13),
we have

�̇� (𝑡) = 𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) ̇𝑒 (𝑡) −

1

2

⋅

𝑙

∑

𝑖=1

𝑎
1𝑖
𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

= 𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
)

⋅ 𝑓 (𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏) , 𝑡) − 𝑐𝑒
𝑇

(𝑡) (�̃� ⊗ 𝐼
𝑛
) 𝑒 (𝑡) −

1

2

⋅

𝑙

∑

𝑖=1

𝑎
1𝑖
𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

≤

1

2

𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡)

+

1

2

𝑓
𝑇

(𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏) , 𝑡) (Ξ ⊗ 𝐼
𝑛
)

⋅ 𝑓 (𝑒 (𝑡) , 𝑒 (𝑡 − 𝜏) , 𝑡) − 𝑐𝑒
𝑇

(𝑡) (�̃� ⊗ 𝐼
𝑛
) 𝑒 (𝑡) −

1

2

⋅

𝑙

∑

𝑖=1

𝑎
1𝑖
𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

≤

1

2

(1 + 𝐿
1
) 𝑒
𝑇

(𝑡)

⋅ (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡) +

1

2

𝐿
2
𝑒
𝑇

(𝑡 − 𝜏) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡 − 𝜏)

− 𝑐𝑒
𝑇

(𝑡) (�̃� ⊗ 𝐼
𝑛
) 𝑒 (𝑡) −

1

2

𝑙

∑

𝑖=1

𝑎
1𝑖
𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

,

(24)

where �̃� = (Ξ𝐿 + 𝐿
𝑇

Ξ)/2.
Note that, for an arbitrarily given 𝑡 ∈ [𝑘𝑇 + 𝛿, (𝑘 + 1)𝑇),

the matrix ⟨Ξ𝐿 + 𝐿
𝑇

Ξ, Ξ⟩ is normal; for any given 𝑧 ∈ R𝑁, it
is easily derived from the generalized eigenvalue theory that

𝜆min (𝑆) 𝑧
𝑇

Ξ𝑧 ≤ 𝑧
𝑇

(Ξ𝐿 + 𝐿
𝑇

Ξ) 𝑧, (25)

where 𝑆 = Ξ
−1

(Ξ𝐿 + 𝐿
𝑇

Ξ); then one has

1

2

𝜆min (𝑆) 𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡) ≤ 𝑒

𝑇

(𝑡) (�̃� ⊗ 𝐼
𝑛
) 𝑒 (𝑡) . (26)

By considering (18), (24), and (26), we can obtain

�̇� (𝑡)

≤

1

2

(1 + 𝐿
1
) 𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡)

+

1

2

𝐿
2
𝑒
𝑇

(𝑡 − 𝜏) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡 − 𝜏)
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−

1

2

𝑐𝜆min (𝑆) 𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡)

−

1

2

𝑙

∑

𝑖=1

𝑎
1𝑖
𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

≤

1

2

(1 + 𝐿
1
− 𝑐𝜆min (𝑆) − 𝑏

1
) 𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡)

+

1

2

𝑏
1
𝑒
𝑇

(𝑡) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡)

+

1

2

𝑏
1

𝑙

∑

𝑖=1

𝑒
−𝑎
1𝑖
𝑡
(𝑑
𝑖
(𝑡) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

+

1

2

𝐿
2
𝑒
𝑇

(𝑡 − 𝜏) (Ξ ⊗ 𝐼
𝑛
) 𝑒 (𝑡 − 𝜏)

+

1

2

𝐿
2

𝑙

∑

𝑖=1

𝑒
−𝑎
1𝑖
(𝑡−𝜏)

(𝑑
𝑖
(𝑡 − 𝜏) − 𝑑

∗

𝑖
)
2

𝑎
0𝑖

≤ 𝑏
1
𝑉 (𝑡) + 𝐿

2
𝑉 (𝑡 − 𝜏) ,

(27)

where 𝑏
1
> 0.

Based on the above analysis and according to Lemma 3,
when 𝑡 ∈ [0, 𝛿), we can obtain

𝑉 (𝑡) ≤ max
−𝜏≤𝑠≤0

𝑉 (𝑠) 𝑒
−𝑟𝑡

= ‖𝑉 (0)‖
𝜏
𝑒
−𝑟𝑡

, (28)

where 𝑟 is the positive solution of −𝑟 = −𝑎
1
+ 𝐿
2
𝑒
−𝑟𝜏.

When 𝑡 ∈ [𝛿, 𝑇), by using Lemma 4, one has

𝑉 (𝑡) ≤ max
𝛿−𝜏≤𝑠≤𝛿

𝑉 (𝑠) 𝑒
(𝑏
1
+𝐿
2
)(𝑡−𝛿)

≤ max
−𝜏≤𝑠≤0

𝑉 (𝑠) { max
𝛿−𝜏≤𝑡≤𝛿

𝑒
−𝑟𝑡

} 𝑒
(𝑏
1
+𝐿
2
)(𝑡−𝛿)

= ‖𝑉 (0)‖
𝜏
𝑒
−𝑟(𝛿−𝜏)+(𝑏

1
+𝐿
2
)(𝑡−𝛿)

.

(29)

Consider 𝑇 − 𝜏 > 𝛿; then

‖𝑉 (𝑡)‖
𝜏
= max
𝑇−𝜏≤𝑡≤𝑇

𝑉 (𝑡)

≤ max
𝛿−𝜏≤𝑠≤𝛿

𝑉 (𝑠) max
𝑇−𝜏≤𝑡≤𝑇

{𝑒
(𝑏
1
+𝐿
2
)(𝑡−𝛿)

}

≤ max
𝛿−𝜏≤𝑠≤𝛿

𝑉 (𝑠) 𝑒
(𝑏
1
+𝐿
2
)(𝑇−𝛿)

≤ max
−𝜏≤𝑠≤0

𝑉 (𝑠) 𝑒
−𝑟(𝛿−𝜏)+(𝑏

1
+𝐿
2
)(𝑇−𝛿)

= ‖𝑉 (0)‖
𝜏
𝑒
−Δ

,

(30)

where Δ = 𝑟(𝛿 − 𝜏) − (𝑏
1
+ 𝐿
2
)(𝑇 − 𝛿).

Next, for all 𝑘 ∈ N, we will prove that ‖𝑉(𝑘𝑇)‖
𝜏

≤

‖𝑉(0)‖
𝜏
𝑒
−𝑘Δ. One has

‖𝑉 (𝑘𝑇)‖
𝜏
= max
𝑘𝑇−𝜏≤𝑡≤𝑘𝑇

𝑉 (𝑡)

≤ max
(𝑘−1)𝑇+𝛿−𝜏≤𝑠≤(𝑘−1)𝑇+𝛿

𝑉 (𝑠)

⋅ max
𝑘𝑇−𝜏≤𝑡≤𝑘𝑇

𝑒
(𝑏
1
+𝐿
2
)(𝑡−(𝑘−1)𝑇−𝛿)

= max
(𝑘−1)𝑇+𝛿−𝜏≤𝑠≤(𝑘−1)𝑇+𝛿

𝑉 (𝑠) 𝑒
(𝑏
1
+𝐿
2
)(𝑇−𝛿)

≤ max
(𝑘−1)𝑇−𝜏≤𝑠≤(𝑘−1)𝑇

𝑉 (𝑠)

⋅ { max
(𝑘−1)𝑇+𝛿−𝜏≤𝑡≤(𝑘−1)𝑇+𝛿

𝑒
−𝑟(𝑡−(𝑘−1)𝑇)

} 𝑒
(𝑏
1
+𝐿
2
)(𝑇−𝛿)

= max
(𝑘−1)𝑇−𝜏≤𝑠≤(𝑘−1)𝑇

𝑉 (𝑠) 𝑒
−𝑟(𝛿−𝜏)+(𝑏

1
+𝐿
2
)(𝑇−𝛿)

= max
(𝑘−1)𝑇−𝜏≤𝑠≤(𝑘−1)𝑇

𝑉 (𝑠) 𝑒
−Δ

= ⋅ ⋅ ⋅ ≤ max
−𝜏≤𝑠≤0

𝑉 (𝑠) 𝑒
−𝑘Δ

= ‖𝑉 (0)‖
𝜏
𝑒
−𝑘Δ

.

(31)

For any 𝑡 > 0, there exists a positive integer 𝑘
0
, such that

𝑘
0
𝑇 ≤ 𝑡 ≤ (𝑘

0
+ 1)𝑇; then one has the following.

When 𝑡 ∈ [𝑘
0
𝑇, 𝑘
0
𝑇 + 𝛿), we can obtain

𝑉 (𝑡) ≤ max
𝑘
0
𝑇−𝜏≤𝑠≤𝑘

0
𝑇

𝑉 (𝑠) 𝑒
−𝑟(𝑡−𝑘

0
𝑇)

≤ max
−𝜏≤𝑠≤0

𝑉 (𝑠) 𝑒
−𝑘
0
Δ

≤ max
−𝜏≤𝑠≤0

𝑉 (𝑠) 𝑒
Δ(1−𝑡/𝑇)

= ‖𝑉 (0)‖
𝜏
𝑒
Δ

𝑒
−(Δ/𝑇)𝑡

.

(32)

When 𝑡 ∈ [𝑘
0
𝑇 + 𝛿, (𝑘

0
+ 1)𝑇), we have

𝑉 (𝑡) ≤ max
𝑘
0
𝑇+𝛿−𝜏≤𝑠≤𝑘

0
𝑇+𝛿

𝑉 (𝑠) 𝑒
(𝑏
1
+𝐿
2
)(𝑡−𝑘
0
𝑇−𝛿)

≤ max
𝑘
0
𝑇−𝜏≤𝑠≤𝑘

0
𝑇

𝑉 (𝑠) { max
𝑘
0
𝑇+𝛿−𝜏≤𝑡≤𝑘

0
𝑇+𝛿

𝑒
−𝑟(𝑡−𝑘

0
𝑇)

}

⋅ 𝑒
(𝑏
1
+𝐿
2
)(𝑡−𝑘
0
𝑇−𝛿)

= max
𝑘
0
𝑇−𝜏≤𝑠≤𝑘

0
𝑇

𝑉 (𝑠) 𝑒
−𝑟(𝛿−𝜏)

𝑒
(𝑡−(𝑘
0
+1)𝑇)+𝑇−𝛿

≤ ‖𝑉 (0)‖
𝜏
𝑒
−𝑘
0
Δ

𝑒
−𝑟(𝛿−𝜏)+(𝑏

1
+𝐿
2
)(𝑇−𝛿)

= ‖𝑉 (0)‖
𝜏

⋅ 𝑒
−(𝑘
0
+1)Δ

≤ ‖𝑉 (0)‖
𝜏
𝑒
−(Δ/𝑇)𝑡

.

(33)

From (32) and (33), we can obtain

𝑉 (𝑡) ≤ 𝐾
0
𝑒
−(Δ/𝑇)𝑡

, (34)
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Figure 1: Communication topology of multiagent systems (5) and
(6).

where 𝐾
0

= max{1, 𝑒Δ}, which indicates that the states of
agents exponentially converge to node-to-node consensus.
This completes the proof.

Remark 9. It can be seen from (34) that the convergence
speed is related to the value of Δ; by some simple computa-
tion, we have

Δ = 𝑟𝛿 − 𝑟𝜏 − (𝑏
1
+ 𝐿
2
) 𝑇 + (𝑏

1
+ 𝐿
2
) 𝛿

= (𝑟 + 𝑏
1
+ 𝐿
2
) 𝛿 − 𝑟𝜏 − (𝑏

1
+ 𝐿
2
) 𝑇;

(35)

from the above equation, we can see that the convergence
speedwill accelerate with the increase of 𝛿.Therefore, a trade-
off has to be made between the convergence rate and the
control cost.

4. A Numerical Example

In this section, a numerical example is provided to verify the
analysis results.

Example 1. Suppose that there are five leaders in the con-
sidered multiagent systems; the communication topologies
among the leaders and the followers are given in Figure 1; the
solid lines indicate the neighboring relationship among the
agents in the same level, while the dashed lines are the pinning
links; the corresponding Laplacian matrix 𝐿 and the pinning
matrix𝐷

∗ are given as follows:

𝐿 =

[

[

[

[

[

[

[

[

[

4 −3 −1 0 0

−3 5 −2 0 0

−1 −2 3 0 0

0 0 −2 3 −1

0 0 0 0 0

]

]

]

]

]

]

]

]

]

,
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Figure 2: The curves of position states 𝑥
1
(𝑡) and 𝑥

1
(𝑡).

𝐷
∗

=

[

[

[

[

[

[

[

[

[

0 0 0 0 0

0 0 0 0 0

0 0 10 0 0

0 0 0 1 0

0 0 0 0 1

]

]

]

]

]

]

]

]

]

.

(36)

The nonlinear dynamics are described as 𝑓(𝑥
𝑖
(𝑡), 𝑥
𝑖
(𝑡 −

𝜏), 𝑡) = [cos(0.5𝑥
𝑖1
(𝑡)) + cos(0.5𝑥

𝑖1
(𝑡 − 𝜏)), 0.25sin(2𝑥

𝑖2
(𝑡)) +

0.25sin(2𝑥
𝑖2
(𝑡 − 𝜏))]

𝑇; it can be verified that the intrinsic
nonlinear dynamics of the agents obey Assumption 7 with
𝐿
1
= 𝐿
2
= 0.5.

By some simple computation, we have

𝜃 = [1.0273 0.9364 0.3 0.1308 0.1] ,

Ξ = diag {0.9735 1.068 3.3333 7.6471 10} ;

(37)

then we can obtain 𝜃min = 0.1, 𝜆min(𝐿) = 0.8816, and
𝜆min(𝑆) = −0.8499. Taking 𝑐 = 11.4, 𝑇 = 1, and 𝜏 =

0.1, by using condition (17) in Theorem 8, we can obtain
𝑎
1
< 0.51; let 𝑎

1
= 0.5099. By using condition (18), we have

𝑏
1

> 11.1319, here taking 𝑏
1

= 11.14. Then we can obtain
the communication 𝛿 > 0.9646, taking 𝛿 = 0.9650. It is
assumed that the agents communicate with their neighbors
only when 𝑡 ∈ ⋃

𝑘∈𝑁
[𝑘, 𝑘 + 0.9650), which indicates that

the average communication rate is 0.9650. The position state
trajectories of the leaders and the followers are shown in
Figures 2–6, which indicate that node-to-node consensus
in multiagent systems (5) and (6) is indeed guaranteed.
The position state error trajectories of agents are shown in
Figure 7, which further demonstrate the effectiveness of the
obtained criteria. The curve of adaptive intermittent control
is shown in Figure 8; it is noted that the control 𝑢(𝑡) = 0

in time interval ⋃
𝑘∈𝑁

[𝑘 + 0.9650, 𝑘 + 1). The trajectory of
pinning feedback gain 𝑑

𝑖
(𝑡) (𝑖 = 3, 4, 5) under the updating
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Figure 3: The curves of position states 𝑥
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(𝑡) and 𝑥
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(𝑡).
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Figure 4: The curves of position states 𝑥
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(𝑡).
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Figure 5: The curves of position states 𝑥
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Figure 6: The curves of position states 𝑥
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(𝑡) and 𝑥

5
(𝑡).

0 0.5 1 1.5 2 2.5 3

t

e(
t)

0.4

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

−0.5

−0.6

Figure 7: The position state error trajectories of 𝑒(𝑡).
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Figure 8: The trajectory of adaptive intermit control 𝑢(𝑡).
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Figure 9:The trajectory of pinning feedback gains 𝑑
𝑖
(𝑡) (𝑖 = 3, 4, 5).

laws (16) is shown in Figure 9. The simulation has confirmed
the effectiveness of our theoretical results.

5. Conclusions

In this paper, we have investigated node-to-node consensus
of multiagent systems with delayed nonlinear dynamics.
The coordination goal is to make each follower track the
corresponding leader asymptotically, where only a small
fraction of followers can sense the states of their correspond-
ing leaders on some disconnected time intervals. Finally, a
simulation example has been employed to demonstrate the
effectiveness of the results. Further research topics include
the extension of our results to second-order or high-order
multiagent systems with delayed nonlinear dynamics and
communication constraints.
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