45,707 research outputs found

    Discovery of a very extended X-ray halo around a quiescent spiral galaxy - the "missing link" of galaxy formation

    Full text link
    Hot gaseous haloes surrounding galaxies and extending well beyond the distribution of stars are a ubiquitous prediction of galaxy formation scenarios. The haloes are believed to consist of gravitationally trapped gas with a temperature of millions of Kelvin. The existence of such hot haloes around massive elliptical galaxies has been established through their X-ray emission. While gas out-flowing from starburst spiral galaxies has been detected, searches for hot haloes around normal, quiescent spiral galaxies have so far failed, casting doubts on the fundamental physics in galaxy formation models. Here we present the first detection of a hot, large-scale gaseous halo surrounding a normal, quiescent spiral galaxy, NGC 5746, alleviating a long-standing problem for galaxy formation models. In contrast to starburst galaxies, where the X-ray halo can be powered by the supernova energy, there is no such power source in NGC 5746. The only compelling explanation is that we are here witnessing a galaxy forming from gradually in-flowing hot and dilute halo gas.Comment: New Astronomy, in pres

    The most ancient spiral galaxy: a 2.6-Gyr-old disk with a tranquil velocity field

    Full text link
    We report an integral-field spectroscopic (IFS) observation of a gravitationally lensed spiral galaxy A1689B11 at redshift z=2.54z=2.54. It is the most ancient spiral galaxy discovered to date and the second kinematically confirmed spiral at z2z\gtrsim2. Thanks to gravitational lensing, this is also by far the deepest IFS observation with the highest spatial resolution (\sim 400 pc) on a spiral galaxy at a cosmic time when the Hubble sequence is about to emerge. After correcting for a lensing magnification of 7.2 ±\pm 0.8, this primitive spiral disk has an intrinsic star formation rate of 22 ±\pm 2 MM_{\odot} yr1^{-1}, a stellar mass of 109.8±0.3^{9.8 \pm 0.3}MM_{\odot} and a half-light radius of r1/2=2.6±0.7r_{1/2}=2.6 \pm 0.7 kpc, typical of a main-sequence star-forming (SF) galaxy at z2z\sim2. However, the H\alpha\ kinematics show a surprisingly tranquil velocity field with an ordered rotation (VcV_{\rm c} = 200 ±\pm 12 km/s) and uniformly small velocity dispersions (Vσ,meanV_{\rm \sigma, mean} = 23 ±\pm 4 km/s and Vσ,outerdiskV_{\rm \sigma, outer-disk} = 15 ±\pm 2 km/s). The low gas velocity dispersion is similar to local spiral galaxies and is consistent with the classic density wave theory where spiral arms form in dynamically cold and thin disks. We speculate that A1689B11 belongs to a population of rare spiral galaxies at z2z\gtrsim2 that mark the formation epoch of thin disks. Future observations with JWST will greatly increase the sample of these rare galaxies and unveil the earliest onset of spiral arms.Comment: 18 pages, 13 figures, 1 table; accepted for publication in Ap

    Star formation and ISM morphology in tidally induced spiral structures

    Get PDF
    Tidal encounters are believed to be one of the key drivers of galactic spiral structure in the Universe. Such spirals are expected to produce different morphological and kinematic features compared to density wave and dynamic spiral arms. In this work we present high resolution simulations of a tidal encounter of a small mass companion with a disc galaxy. Included are the effects of gas cooling and heating, star formation and stellar feedback. The structure of the perturbed disc differs greatly from the isolated galaxy, showing clear spiral features that act as sites of new star formation, and displaying interarm spurs. The two arms of the galaxy, the bridge and tail, appear to behave differently; with different star formation histories and structure. Specific attention is focused on offsets between gas and stellar spiral features which can be directly compared to observations. We find some offsets do exist between different media, with gaseous arms appearing mostly on the convex side of the stellar arms, though the exact locations appear highly time dependent. These results further highlight the differences between tidal spirals and other theories of arm structure.Comment: 17 pages, 19 colour figures, accepted for publication in MNRA

    Spatial Distributions of Cold and Warm Interstellar Dust in M101 Resolved with AKARI/Far-Infrared Surveyor (FIS)

    Full text link
    The nearby face-on spiral galaxy M101 has been observed with the Far-Infrared Surveyor (FIS) onboard AKARI. The far-infrared four-band images reveal fine spatial structures of M101, which include global spiral patterns, giant HII regions embedded in outer spiral arms, and a bar-like feature crossing the center. The spectral energy distribution of the whole galaxy shows the presence of the cold dust component (18 K) in addition to the warm dust component (55 K). The distribution of the cold dust is mostly concentrated near the center, and exhibits smoothly distributed over the entire extent of the galaxy, whereas the distribution of the warm dust indicates some correlation with the spiral arms, and has spotty structures such as four distinctive bright spots in the outer disk in addition to a bar-like feature near the center tracing the CO intensity map. The star-formation activity of the giant HII regions that spatially correspond to the former bright spots is found to be significantly higher than that of the rest of the galaxy. The latter warm dust distribution implies that there are significant star-formation activities in the entire bar filled with molecular clouds. Unlike our Galaxy, M101 is a peculiar normal galaxy with extraordinary active star-forming regions.Comment: 18 pages, 9 figures, accepted for publication in PASJ AKARI special issu

    Zoom-in cosmological hydrodynamical simulation of a star-forming barred, spiral galaxy at redshift z=2

    Get PDF
    Accepted for publication in MNRASWe present gas and stellar kinematics of a high-resolution zoom-in cosmological chemodynamical simulation, which fortuitously captures the formation and evolution of a star-forming barred spiral galaxy, from redshift z3z\sim3 to z2z\sim2 at the peak of the cosmic star formation rate. The galaxy disc grows by accreting gas and substructures from the environment. The spiral pattern becomes fully organised when the gas settles from a thick (with vertical dispersion σv>\sigma_{v} > 50 km/s) to a thin (σv25\sigma_{v} \sim 25 km/s) disc component in less than 1 Gyr. Our simulated disc galaxy also has a central X-shaped bar, the seed of which formed by the assembly of dense gas-rich clumps by z3z \sim 3. The star formation activity in the galaxy mainly happens in the bulge and in several clumps along the spiral arms at all redshifts, with the clumps increasing in number and size as the simulation approaches z=2z=2. We find that stellar populations with decreasing age are concentrated towards lower galactic latitudes, being more supported by rotation, and having also lower velocity dispersion; furthermore, the stellar populations on the thin disc are the youngest and have the highest average metallicities. The pattern of the spiral arms rotates like a solid body with a constant angular velocity as a function of radius, which is much lower than the angular velocity of the stars and gas on the thin disc; moreover, the angular velocity of the spiral arms steadily increases as function of time, always keeping its radial profile constant. The origin of our spiral arms is also discussed.Peer reviewe

    Tracing PAHs and Warm Dust Emission in the Seyfert Galaxy NGC 1068

    Get PDF
    We present a study of the nearby Seyfert galaxy NGC 1068 using mid- and far- infrared data acquired with the IRAC, IRS, and MIPS instruments aboard the Spitzer Space Telescope. The images show extensive 8 um and 24 um emission coinciding with star formation in the inner spiral approximately 15" (1 kpc) from the nucleus, and a bright complex of star formation 47" (3 kpc) SW of the nucleus. The brightest 8 um PAH emission regions coincide remarkably well with knots observed in an Halpha image. Strong PAH features at 6.2, 7.7, 8.6, and 11.3 um are detected in IRS spectra measured at numerous locations inside, within, and outside the inner spiral. The IRAC colors and IRS spectra of these regions rule out dust heated by the AGN as the primary emission source; the SEDs are dominated by starlight and PAH emission. The equivalent widths and flux ratios of the PAH features in the inner spiral are generally consistent with conditions in a typical spiral galaxy ISM. Interior to the inner spiral, the influence of the AGN on the ISM is evident via PAH flux ratios indicative of a higher ionization parameter and a significantly smaller mean equivalent width than observed in the inner spiral. The brightest 8 and 24 um emission peaks in the disk of the galaxy, even at distances beyond the inner spiral, are located within the ionization cones traced by [O III]/Hbeta, and they are also remarkably well aligned with the axis of the radio jets. Although it is possible that radiation from the AGN may directly enhance PAH excitation or trigger the formation of OB stars that subsequently excite PAH emission at these locations in the inner spiral, the orientation of collimated radiation from the AGN and star formation knots in the inner spiral could be coincidental. (abridged)Comment: 20 pages, 11 figures; AJ, accepted; full resolution version available at http://spider.ipac.caltech.edu/staff/jhhowell/astro/howelln1068.pd
    corecore