6 research outputs found

    Geodesic Universal Molecules

    Get PDF
    The first phase of TreeMaker, a well-known method for origami design, decomposes a planar polygon (the “paper”) into regions. If some region is not convex, TreeMaker indicates it with an error message and stops. Otherwise, a second phases is invoked which computes a crease pattern called a “universal molecule”. In this paper we introduce and study geodesic universal molecules, which also work with non-convex polygons and thus extend the applicability of the TreeMaker method. We characterize the family of disk-like surfaces, crease patterns and folded states produced by our generalized algorithm. They include non-convex polygons drawn on the surface of an intrinsically flat piecewise-linear surface which have self-overlap when laid open flat, as well as surfaces with negative curvature at a boundary vertex

    Discrete Differential Geometry of Thin Materials for Computational Mechanics

    Get PDF
    Instead of applying numerical methods directly to governing equations, another approach to computation is to discretize the geometric structure specific to the problem first, and then compute with the discrete geometry. This structure-respecting discrete-differential-geometric (DDG) approach often leads to new algorithms that more accurately track the physically behavior of the system with less computational effort. Thin objects, such as pieces of cloth, paper, sheet metal, freeform masonry, and steel-glass structures are particularly rich in geometric structure and so are well-suited for DDG. I show how understanding the geometry of time integration and contact leads to new algorithms, with strong correctness guarantees, for simulating thin elastic objects in contact; how the performance of these algorithms can be dramatically improved without harming the geometric structure, and thus the guarantees, of the original formulation; how the geometry of static equilibrium can be used to efficiently solve design problems related to masonry or glass buildings; and how discrete developable surfaces can be used to model thin sheets undergoing isometric deformation

    Math-Origami. Aspectos algebraicos de las construcciones con origami

    Get PDF
    Plantemaos el estudio de los números construibles por origami siguiendo la formalización clásica dada por los axiomas Huzita-Justin. El resultado fundamental será el siguiente: un número alfa pertenece al conjunto de los número origami-construibles si, y sólo si, existe una torre de cuerpos que empieza en Q y termina en un subcuerpo del cuerpo de los complejos que contiene alfa, tal que el grado de cada extensión sea 2 ó 3. Veremos cómo caracterizar los polígonos regulares construibles por origami o cómo resolver ecuaciones polinomiales doblando una hoja de papel. Realizado esto, propondremos diferentes extensiones de los axiomas de partida, creando nuevas concepciones del origami que analizar; estudiaremos en cada caso las consecuencias y limitaciones de estas nuevas herramientas de construcción mediante doblado, dando caracterizaciones precisas siempre que nos sea posible. La teoría de Galois será la materia crucial que nos permitirá entender con precisión, y clarificar estas construcciones.Grado en Matemática

    Logic and intuition in architectural modelling: philosophy of mathematics for computational design

    Get PDF
    This dissertation investigates the relationship between the shift in the focus of architectural modelling from object to system and philosophical shifts in the history of mathematics that are relevant to that change. Particularly in the wake of the adoption of digital computation, design model spaces are more complex, multidimensional, arguably more logical, less intuitive spaces to navigate, less accessible to perception and visual comprehension. Such spatial issues were encountered much earlier in mathematics than in architectural modelling, with the growth of analytical geometry, a transition from Classical axiomatic proofs in geometry as the basis of mathematics, to analysis as the underpinning of geometry. Can the computational design modeller learn from the changing modern history, philosophy and psychology of mathematics about the construction and navigation of computational geometrical architectural system model space? The research is conducted through a review of recent architectural project examples and reference to three more detailed architectural modelling case studies. The spatial questions these examples and case studies raise are examined in the context of selected historical writing in the history, philosophy and psychology of mathematics and space. This leads to conclusions about changes in the relationship of architecture and mathematics, and reflections on the opportunities and limitations for architectural system models using computation geometry in the light of this historical survey. This line of questioning was motivated as a response to the experience of constructing digital associative geometry models and encountering the apparent limits of their flexibility as the graph of dependencies grew and the messiness of the digital modelling space increased. The questions were inspired particularly by working on the Narthex model for the Sagrada Família church, which extends to many tens of thousands of relationships and constraints, and which was modelled and repeatedly partially remodelled over a very long period. This experience led to the realisation that the limitations of the model were not necessarily the consequence of poor logical schema definition, but could be inevitable limitations of the geometry as defined, regardless of the means of defining it, the ‘shape’ of the multidimensional space being created. This led to more fundamental questions about the nature of Space, its relationship to geometry and the extent to which the latter can be considered simply as an operational and notational system. This dissertation offers a purely inductive journey, offering evidence through very selective examples in architecture, architectural modelling and in the philosophy of mathematics. The journey starts with some questions about the tendency of the model space to break out and exhibit unpredictable and not always desirable behaviour and the opportunities for geometrical construction to solve these questions is not conclusively answered. Many very productive questions about computational architectural modelling are raised in the process of looking for answers

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum
    corecore