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Abstract The first phase of TreeMaker, a well-known method for origami design, decomposes a planar polygon
(the “paper”) into regions. If some region is not convex, TreeMaker indicates it with an error message and stops.
Otherwise, a second phases is invoked which computes a crease pattern called a “universal molecule”. In this paper
we introduce and study geodesic universal molecules, which also work with non-convex polygons and thus extend
the applicability of the TreeMaker method. We characterize the family of disk-like surfaces, crease patterns and
folded states produced by our generalized algorithm. They include non-convex polygons drawn on the surface of
an intrinsically flat piecewise-linear surface which have self-overlap when laid open flat, as well as surfaces with
negative curvature at a boundary vertex.

Keywords Algorithmic origami · Planar subdivision · Metric tree · Non-convex polygon

Mathematics Subject Classification 68U05 (Computer graphics; computational geometry)

1 Introduction

Lang’s TreeMaker method [12] is a seminal work in the field of computational origami. Given a square sheet of
paper and a metric tree T , it computes a crease pattern that can be folded into a tree-like 3D structure projecting
onto T , as in Fig. 1. Precise definitions will be given in Sect. 2.

TreeMaker works in two phases. The first phase solves an optimization problem which subdivides the square
paper into polygonal regions and the input tree into subtrees compatible (in a sense that will be made precise below)
with them. When all of these polygons are convex, TreeMaker fills each of them with a crease pattern called a
universal molecule. If the first phase produces some non-convex polygon, TreeMaker stops without producing an
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output. Due to the nature of the optimization problem solved, there is little hope of constraining the first phase to
guarantee convexity.

Our Results In this paper we generalize the universal molecule algorithm to work with non-convex polygons
produced by the first phase, thus allowing TreeMaker to proceed to the end in all cases in which the first phase
succeeds. This solves a long standing open question [10] concerning Lang’s algorithm.
We rely on our streamlined presentation of Lang’s algorithm from [5] and generalize the concepts and terminology
introduced there. The main difference is that geodesic distance inside the (non-convex) input polygon, rather than
Euclidean distance, enforces the relationship of a geodesic Lang polygon PT with a metric tree T . As in [5], we aim
at obtaining a full characterization of the shapes (geodesic Lang surfaces) produced by this generalized algorithm,
as well as of the inputs (geodesic Lang polygons) on which it works.

Basic Concepts Let T be a metric, topologically embedded tree: it has positive weights attached to each arc, and
has a defined ordering or rotation of the incident arcs at each internal node. See Fig. 2. A polygon PT is said to be
a doubling polygon for T if it is metrically and combinatorially equivalent to a right-hand-turn walk around that
arcs of T starting from some leaf node. We say that PT satisfies the geodesic Lang property if the geodesic distance
(inside the polygon) between any two vertices of PT is greater than or equal to the corresponding tree distance
in T .

The input to the geodesic universal molecule algorithm described in this paper is a tree T and a geodesic Lang
polygon PT compatible with it. The output of the algorithm is a subdivision of the polygon into vertices, edges, and
faces (a crease pattern) that is intrinsically equivalent to what we call a geodesic Lang surface ST constructed on
T . This concept, defined in Sect. 5, captures formally what it means, in Lang’s approach, for a 3D folded origami
shape to be compatible with and project onto a given metric tree (see Fig. 3).

Fig. 1 A folded origami shape produced by Lang’s algorithm, projecting onto a metric tree
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Fig. 2 A tree (left) and doubling-polygon (right)

Fig. 3 A tree (left), geodesic Lang polygon subdivided by its geodesic universal molecule (middle), and an intrinsically equivalent
Lang surface (right)
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Fig. 4 An intrinsically flat polygon that self-overlaps when (extrinsically) flattened out in the plane (left). It is intrinsically a disk,
obtained by glueing two simple planar polygons along an edge (right)

A (geodesic) Lang surface is defined inductively from two types of building block surfaces: extrusion disks and
extrusion rings. These are defined with respect to an extrusion process that embeds a kinetic polygon into a plane that
sweeps upwards; a kinetic polygon is a doubling polygon of a kinetic tree, namely a tree in which the leaf nodes are
moving with specified speeds along their leaf edges. The trace of the edges of the kinetic polygon define a surface
which is topologically either a disk or a ring (annulus). Two gluing operations are defined: one for extending a Lang
surface by gluing it to a ring, and another for combining two Lang surfaces by gluing them along a part of their
boundary. Finally, we focus on Lang surfaces with zero-curvature at internal vertices. For the surfaces constructed
in this paper we allow the leaf nodes in a kinetic tree to move both inwards and outwards along the leaf edges. This
process leads to intrinsically simple, possibly non-convex Lang surfaces. This is in contrast to our previous paper
[5], where the leaves moved only inwards and the resulting surface was intrinsically convex.

Our main result can now be stated.

Theorem 1.1 (Main Theorem) Let PT be a doubling-polygon for a tree T on a flat, disk-like piecewise-linear
surface D. Then a Lang surface S constructed on T and isometric to PT exists (and is unique) if and only if PT is
a geodesic Lang polygon for T on D.

Overview The main concepts needed for the statement of Theorem 1.1 are geodesic Lang polygons, the geodesic
Lang property and Lang surfaces: the first two are defined in Sect. 3 and the latter in Sect. 5. In Sect. 4 we introduce
the main tool used in the correspondence between geodesic Lang polygons and Lang surfaces, called a generalized
sweep. The proof of Theorem 1.1 is broken into three parts. In Sect. 5 we prove the necessity of the geodesic Lang
property on the Lang surface. The second part (sufficiency) is proven in Sect. 6 by describing an algorithm that
takes as input a geodesic Lang polygon and produces as output a universal molecule, as illustrated in Fig. 3. The
most intricate part of the paper is the proof of uniqueness (Sect. 7.2).

Origami on Flat Surfaces In addition to non-convex planar polygons, our generalization applies to any polygon
bounding a piecewise linear surface that is topologically a disk, has zero curvature, and meets certain constraints on
the geodesic distance between pairs of points of the polygon that come from the tree. Such a geodesic Lang polygon
should not be thought of as lying in the plane, but rather on an intrinsic surface, on which it is (intrinsically) simple.
But we remark that an open, flat placement of a geodesic Lang polygon in the Euclidean plane may self-overlap, as
illustrated in Fig. 4.
The motivation for generalizing not just to non-convex polygons in the plane, but to these additional cases comes
both from mathematical curiosity (how far can this idea be generalized?) as well as from recent work on extending
origami constructions to paper with negative curvature [3]. Our result represents another family of crease patterns
that can be drawn on such specially constructed paper.

Historical Perspective Lang’s universal molecule algorithm was first described in [12], in connection with
TreeMaker [13]. Further details appear in [10]. Lang polygons and surfaces were used in [5] to formalize the
proof of correctness of the universal molecule, which allowed the investigation of further algorithmic properties
in [7]. Rigid foldability of universal molecules was studied, starting with the special case considered in [8], where
it was shown that when the universal molecule of a convex polygon is identical to the straight skeleton, then a
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non-self-intersecting rigid folding motion exists. In contrast, we showed in [6] that for a larger class of universal
molecules, the initial crease pattern (the open, flat state of the origami) is completely rigid.

Though TreeMaker appeared over 20 years ago, it remains one of the few “general purpose” origami design
algorithms. Another notable method is Tachi’s heuristic [14] for computing a crease pattern that when folded
realizes an input polyhedral surface. The first phase of TreeMaker is a heuristic for an NP-hard optimization problem
[9]. Origami design techniques and rigorous formalization and mathematical analysis are in increased demand for
applications such as designing deployable structures [17,18],modeling rigidity [15,16], and formalization for proper
handling of the algebraic calculations needed to do exact folding [11].

2 Preliminaries

2.1 Piecewise Linear Metric Surfaces

Our primary objects of interest, both Lang polygons and Lang surfaces, are piecewise linear metric surfaces
(shortly referred to from now on as surfaces) obtained by gluing flat, polygonal faces together along whole edges. A
realization of a surface is an isometric map taking each vertex to a point inR3, each edge to a straight-line segment,
and each face to a flat polygon inR3 such that the edges and faces maintain their metric properties (size and shape).

Intrinsic Vs. Extrinsic Properties Properties of a surface that are true in any realization are intrinsic, while those
that depend on a particular realization are extrinsic. This distinction is particularly important for our purposes,
because two different foldings of the same origami crease pattern are intrinsically the same surface but differ in
their extrinsic properties (such as the dihedral or “folding” angle between faces). Showing that a surface is a folding
of another amounts to showing that the two surfaces only differ extrinsically. An example of an extrinsic property
is the dihedral angle between two faces at an edge. Important intrinsic properties include orientation, topology,
Gaussian curvature and metric. In this paper, we work only with connected surfaces that:

• Are orientable.
• Have the topology of a disk (are disk-like) or of an annulus (are ring-like). Hence, each edge is either incident

to exactly one face (a boundary edge), or to two faces (an interior edge).
• Have a finite number of vertices of positive (intrinsic) curvature (defined in the next paragraph).
• Have a metric given by the geodesic distance between two points on the surface (defined below).

Curvature Since our surfaces are piecewise linear, the curvature is concentrated at the vertices. A vertex has a face
angle in each of its incident faces, and its angle sum is the sum over all its face angles. The Gaussian curvature at a
vertex is defined as 2π minus its angle sum. If every internal vertex of a surface has zero curvature then the surface
is (intrinsically) flat, which does not require that it be realized in a single plane. A realization of a flat surface in
which the dihedral angles at all interior edges are equal to π is an open, flat realization. Hence both the initial crease
pattern drawn on the paper and the final folding of the origami are (intrinsically) flat, but only the first is in an
open, flat realization. If for a given surface there exists an open, flat realization, then we say that the surface is open
flattenable. Open flattenability implies that the surface is (intrinsically) flat. The converse is true for all disk-like
surfaces, but not for all ring-like surfaces. For instance, if one removes the top and bottom face from a cube, the
resulting ring-like surface is flat (its curvature is zero everywhere), but it is not open flattenable, since it has no
open, flat realization. See also [2] for a related problem.

Geodesic Distances and Visible Pairs Given a surface S, the geodesic distance between two points p and q,
denoted dS(p, q), is the length of the shortest path between them, called the geodesic path. On a piecewise linear
surface, this path is a polygonal chain which is unique when the surface is a disk. If the geodesic path between two
points p and q is (intrinsically) straight we say that (p, q) is a visible pair. Note that the geodesic distance dS(p, q)

satisfies the usual triangle inequality: for all p, q, r , dS(p, q) ≤ dS(p, r) + dS(r, q).
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Fig. 5 A tree (left), doubling cycle (middle), and doubling-polygon (right)

PolygonsWe use this term to denote a polygon drawn on some underlying intrinsic piecewise linear zero-curvature
disk-like surface S, rather than just in the plane. When it is simple, i.e. it does not self-touch or self-cross on the
intrinsic surface, then we view it together with the piece of the surface that it bounds; in other words, a simple
polygon on S is itself a disk-like surface. We reinforce the remark that if we flatten out S into the plane, the polygon
may self-overlap even though it is simple on S (Fig. 4). A vertex of a polygon is said to be convex (resp. reflex,
marker) if its intrinsic angle sum (i.e. of the vertex angles interior to the polygon surface) is less than (resp. greater
than, equal to) π .

2.2 Metric Trees, Metric Doubling Cycles, and Doubling Polygons

A metric tree (T, w) is a tree T together with a weight function w that maps each arc1 of T to a positive weight
or length. We assume that a cyclic ordering, or rotation, is given for the incident arcs at each node.2 The metric
doubling cycle for T is the pair (CT , w) where CT is the cycle given by starting at any leaf node and listing the
nodes encountered by walking around T while respecting the ordering of incident arcs and w maps each edge of
CT to the length of its corresponding tree arc. See Fig. 5. In such a walk, each edge is traversed once in each
direction, and each vertex is visited a number of times equal to its degree. A doubling polygon PT is a polygon that
is combinatorially and metrically a doubling cycle for a tree T .

Notations and Conventions It is convenient to separate the n leaf nodes and m internal nodes of a tree T into two
sets A = (a1, . . . , an) and B = (b1, . . . , bm), respectively. In order to make clear the correspondences between
a tree T and a doubling polygon PT , we use bold face to denote vertices of the polygon and italics to denote
corresponding nodes in the tree. For instance, the vertex a (resp. edge ab) in the polygon PT corresponds to the
leaf node a (resp. leaf arc ab) in the tree T . Without loss of generality, we assume that a walk around the boundary
of a polygon is in the direction that keeps the interior of the polygon to the left (as in Fig. 5), and refer to it as a
counter-clockwise (ccw) walk. Given a geodesic path from a vertex a to a vertex b of the polygon, we can refer to
the part of the polygon (surface and boundary) lying to the left or to the right of the path. In the case of a doubling
polygon, this sidedness transfers to the underlying tree and allows us to refer to the left and right subtrees, relative
to a path in the tree.

Splitting Trees, Cycles, and Polygons Given a tree T and two leaf nodes ai and a j , the splitting operation (see
Fig. 6) returns two trees T1 and T2 corresponding to the part of the tree to the left of (and including) the path from
ai to a j in T , and the part to the right (resp). To split a doubling cycle CT between ai and a j , we first split CT into
two open chains C1 and C2, one from ai to a j and the other from a j back to ai . We then close each chain using
a copy of the path from ai to a j in T . The chains C1 and C2 are then doubling cycles for T1 and T2 (resp). The
operation can be naturally extended to doubling polygons. However, for reasons that will become clear in Sects. 3
and 4, we enforce a stronger condition: in a doubling polygon PT we allow the splitting operation only if (ai , a j )

is a visible pair, and if the geodesic distance from ai to a j is equal to the tree distance dT (ai , a j ). The split in the

1 To avoid confusion, we use the terms node and arc to refer to the elements of a tree, and vertex and edge to refer to the elements of a
polygon or embedded straight-line graph.
2 Such a tree is sometimes called a ribbon tree, or a topologically embedded tree.
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ai
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Fig. 6 Splitting a tree and corresponding doubling polygon between ai and a j

polygon is performed by introducing a splitting edge along the shortest path between ai and a j and subdividing it
into edges so that it is metrically and combinatorially equivalent to the path between ai and a j in the tree.

3 Geodesic Lang Polygons

We turn now to the study of the first concept critical to the understanding of our results, namely the geodesic Lang
polygon. Let S be a piecewise linear zero-curvature disk-like surface and let T be a metric tree with strictly positive
weights (i.e. we do not allow degenerate zero-length tree arcs). We consider a doubling polygon PT for T on a
surface S which may be self-touching but not self-crossing, and thus has a well-defined interior on the surface. If
the polygon is not self-touching, the interior is itself a disk-like surface; otherwise, it may have several disk-like
components. A geodesic is the shortest path between two points on the polygonal boundary that lies entirely in the
closure of the interior of the polygon. To define the main concepts for this section, the geodesic Lang property and
geodesic Lang polygons, we first discuss the boundary curvature of polygons and restrict our discussion to a class
of polygons we call “well-formed”.

Definition 3.1 (Geodesic Lang property) Let PT be a doubling polygon for a tree T on a surface S. We say that
(T, PT ) satisfies the geodesic Lang property on S if and only if for all pairs of points (u, v) on the boundary of PT ,
their geodesic distance is greater than the corresponding tree distance, i.e. dS(u, v) ≥ dT (u, v).

Negative Boundary Curvature In general we require that the interior angle measure at each vertex of PT be
less than 2π ; however, we allow higher angle measures by the following construction. Suppose we have two pairs
(T, PT ) and (T ′, P ′

T ′) of trees and doubling polygons (in ccw order) such that there is a side aia j in PT that is
equivalent to a side a′

ja
′
i in P ′

T ′ . By ‘equivalent’ we mean that the path from ai to a j in T has the same number of
arcs (with the same lengths) as the path from a′

i to a′
j in T ′. We then construct a new doubling polygon (T ′′, P ′′

T )

by gluing T to T ′ along the equivalent paths in the tree, and by gluing PT to P ′
T by identifying the sides aia j

and a′
ia

′
j . This is the inverse operation to the splitting of a tree and polygon depicted in Fig. 6. The interior angle

at the vertex a′′
i in P ′′

T ′′ is the sum of the interior angles of ai and a′
i in PT and P ′

T ′ . This allows us to arbitrarily
increase the interior angle sum at a vertex so long as the property above is satisfied.We call such a doubling polygon
well-constructed. We now define:

Definition 3.2 (Geodesic Lang polygon) Let PT be a doubling polygon for a tree T on a surface S. We say that
(T, PT ) is a geodesic Lang polygon if (1) it satisfies the geodesic Lang property, (2) each vertex of PT corresponding
to an internal node of T is a marker (interior angle is π ) and (3) (T, PT ) is well-constructed.

Next, we investigate two important properties of geodesic Lang polygons.

The Geodesic Lang Property on Visible Pairs Implies the Geodesic Lang Property on All PairsWe first show
that for a well-constructed doubling polygon to be a Lang polygon, it is sufficient that it satisfies the Lang property
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only for all visible pairs. Later on in Sect. 6 we use this property to give an algorithm for computing a crease pattern
in a geodesic Lang polygon.

Lemma 3.3 Let PT be a well-constructed doubling polygon for a tree T on a surface S, such that each vertex b of
PT corresponding to an internal node b of T is a marker. If the geodesic Lang property holds for all pairs of visible
corners on PT , then (T, PT ) is a Lang polygon.

Proof Let p = A0,A1, . . . ,Ak be the geodesic path between two arbitrary vertices ai = A0 and a j = Ak in
PT . Since each consecutive pair (Am,Am+1) is visible, we have dPT (Am,Am+1) ≥ dT (Am, Am+1) for all m and
thus the lengths of path p,

∑k−1
m=0 dPT (Am,Am+1) is ≥ ∑k−1

m=0 dT (Am, Am+1). Applying the triangle inequality,
the latter sum is ≥ dT (A1, Ak) = dT (ai , a j ). Hence the geodesic Lang property is satisfied for any pair of vertices
(ai , a j ). ��

TreeMaker Always Produces Geodesic Lang Polygons Finally, wemake the simple observation that the polygons
resulting from a solution to the optimization problem solved in the first phase of TreeMaker are geodesic Lang
polygons.

Lemma 3.4 Let PT be a simple, possibly non-convex planar doubling polygon for a metric tree T , satisfying the
(Euclidean) Lang property. Then PT satisfies the geodesic Lang property, and hence is a geodesic Lang polygon
for T .

Proof We remind the reader that a solution to the first phase of TreeMaker is a collection of non-crossing seg-
ments aia j with the property that the Euclidean distance between them is equal to the corresponding tree distance
dT (ai , a j ), with strict inequality for all the other pairs. Moreover, the segments subdivide a planar region (typically
a square or a rectangle), hence it produces polygonal faces. Since inside each polygonal face the geodesic distance
is at least equal to the Euclidean distance, the geodesic Lang property follows. ��

This guarantees that when the first phase of TreeMaker produces an output, the resulting polygonal faces, even
when not convex, satisfy the preconditions required by the geodesic universal molecule algorithm of Sect. 6 to
work.

4 Generalized Sweep of a Geodesic Lang Polygon

In this section we define an algorithmic process on a geodesic Lang polygon called a generalized sweep. This
concept is used in several places in the remainder of the paper. In Sect. 5, we show how to construct a particular
family of surfaces we call Lang surfaces by an extrusion process. The boundary of each Lang surface is shown
to be a geodesic Lang polygon and we end the section by showing that the extrusion process is equivalent to a
generalized sweep starting from its boundary. Next, in Sect. 6, we give our generalization of the universal molecule
algorithm to geodesic Lang polygons, which uses a generalized sweep on the interior of its input Lang polygon to
generate a crease pattern. These crease patterns are shown (in Sect. 7.1) to be equivalent to Lang surfaces. Finally,
in Sect. 7.2 we use the concept of a generalized sweep to prove the uniqueness claim of Theorem 1.1 by showing,
essentially, that any Lang polygon gives rise to exactly one generalized sweep. Finally, Sect. 7.2 gives the details
of the uniqueness claim.

To get started, we recall that a Lang polygon is a pair (T, PT ) of a tree T and a polygon PT which is drawn on
some underlying surface of zero-curvature. To give the main definition we need two additional processes: a kinetic
stretching process defined on the tree in which the leaves shrink and a parallel sweep process in the polygon by
which its edges are moved inwards in parallel at unit speed. We define these in Sect. 4.1 and end by defining the
generalized sweep in Sect. 4.2.
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4.1 Kinetic Trees and Parallel Sweeps

Kinetic Trees A metric tree (T, w) is turned into a kinetic tree by attaching a stretching speed s(ab) to each leaf
arc ab. The length of an arc ab at time t ≥ 0 is given by w(ab) + t s(ab). This gives rise to a family of trees
T (t) parametrized by time t . When the tree is embedded, we extend this motion to the embedded tree by moving
leaf nodes inwards or outwards along the supporting line of the leaf arc. If s(ab) is positive, then we say the arc
is growing, otherwise shrinking.3 This is naturally extended to any doubling cycle CT for T to form a family of
doubling cycles CT (t): simply grow/shrink each edge of CT at the same speed as its corresponding arc in T . The
process trivially maintains the property that at each time t , the cycle CT (t) is a metric doubling cycle for T (t).

Parallel Sweep of a Polygon By moving the edges of a polygon inwards at unit speed in such a way that each
edge remains parallel to its initial position, we obtain what is called a parallel sweep of the polygon. Each edge
grows or shrinks to maintain incidence with its adjacent edges, resulting in a polygon (called a sweping or parallel
offset polygon) whose edges are in one-to-one correspondance and parallel to the edges of the original polygon. An
example appears in Fig. 11. Note that a parallel offset polygon is well-defined only for polygons without negative
boundary curvature. A parallel sweep can sometimes proceed to infinity (e.g. when moving the edges of a convex
polygon outwards), or can be made to stop at certain events, and resumed under different conditions. Various types
of parallel sweeps differ by the nature of the relevant events.

4.2 The Generalized Geodesic Sweep

Overview In this section we define a generalized sweep for a geodesic Lang polygon (T, PT ). The basic idea is to
make the tree T kinetic and to grow/shrink its leaf arcs while simultaneously performing a parallel sweep of the
polygon. At certain events wemay split the tree and polygon (according to the splitting operation defined in Sect. 2).
Thus, at any given point we may have multiple shrinking polygon and tree pairs (hence the term “generalized”). We
define this process so that to maintain the geodesic Lang property of the kinetic tree and parallel polygon pair. In
particular, this means that the sweeping polygon is a doubling polygon for the growing/shrinking kinetic tree and
the geodesic Lang property is satisfied. Maintaining this invariant requires that we process two types of events that
occur in the sweep: contraction events and splitting events.

Contraction Events The first event type occurs when an arc of the tree and its corresponding edges in the polygon
shrink to zero-length. Combinatorially, the zero-length arc in the tree is removed and the zero-length edges in the
sweeping polygon are replaced with a single vertex.

Splitting Events The second event type occurs when the geodesic Lang property is satisfied with equality for some
non-consecutive visible pair of corner vertices (ai , a j ) in PT . We call this a potential splitting event because at this
point the splitting operation may be applied to the tree and polygon. A potential splitting event occurs because the
rate at which the distance is changing for some pair (ai , a j ) in the sweeping polygon is not necessarily the same
as the rate at which the corresponding distance between ai and a j is changing in the tree. Thus, a pair that satisfies
the geodesic Lang property initially with inequality may satisfy the geodesic Lang property with equality at some
future time. In this case we allow that a splitting operation be applied to the polygon for (ai , a j ) and to the tree
for (ai , a j ) to obtain geodesic Lang polygons (TL , PL) and (TR, PR). We then continue the sweep independently
in each. Note that it is not obviously the case that we must split at such an event in order to maintain the geodesic
Lang property. For instance, it may be that immediately after such an event the distance between the two vertices
in the sweeping polygon increases more quickly than the distance between the corresponding tree nodes. In such
a case, even though the geodesic Lang property holds with equality, we can choose either to split or not. On the

3 Note that in [5], we only allowed a leaf arc to shrink. Here we must allow both shrinking and growing to maintain certain correspon-
dences with parallel sweeps of non-convex polygons.
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other hand, if immediately after such an event the geodesic Lang property is violated, then we are forced to split.
We call a potential splitting event at which the splitting operation is actually applied simply a splitting event. In
the special case of negative boundary curvature (see Sect. 3) we require that the sweep be split immediately so that
each resulting sweep polygon does not have negative boundary curvature. This requirement comes from the fact
that a parallel offset polygon is only well-defined for polygons without negative boundary curvature.

The Generalized Geodesic Sweep Let (T, PT ) be a Lang polygon. The tree T is made kinetic by assigning to
each leaf a speed of −1/ tan(θa) where θa is half the interior angle measure at vertex a. This speed is not arbitrary:
it was chosen so that the speed at which each leaf arc shrinks is the same as the speed at which its corresponding
edges in the polygon shrink (this follows from elementary trigonometry). With these choices, the sweeping of the
polygon and shrinking of the tree as described above maintain the tree-and-doubling-polygon invariant. In addition,
we process all contraction events, and optionally split the polygon and tree at some of the splitting events. If,
throughout the process, we maintain the geodesic Lang property, then the process is called a generalized geodesic
sweep.

We emphasize that this definition allows for multiple possible generalized sweeps for the same polygon and tree
depending on whether we actually split at potential splitting events; we remind the reader that this occurs because
we allow the sweep not to be split at a potential splitting event, as long as this does not violate the geodesic Lang
property. However, we will see in Sect. 7.2 that in order to maintain the geodesic Lang property we must always
split at these events. In other words, any time the sweep arrives at a potential splitting event, to continue past the
event without actually splitting causes the sweeping polygon and tree to violate the Lang property, and thus the
geodesic Lang property fails to hold. Ultimately, we will see that this implies that there is exactly one sweep for a
given geodesic Lang polygon. This is used in Sect. 7.2 to prove the uniqueness claim from Theorem 1.1.

Can a Generalized Sweep Self-Touch? Another important property of a generalized geodesic sweep is that the
sweeping polygon never self touches. In contrast to this behavior in our case, we remark that this property does
not hold for the related parallel sweep used in the definition of the straight skeleton of a non-convex polygon [1].
Were such an event to occur, we would need an entirely different type of “splitting event”, in which the sweeping
polygon is split at the point at which the polygon self-touched (as is the case for the straight skeleton of a non-convex
polygon).

We now show that in a generalized geodesic sweep such an event never occurs, for otherwise the sweep would
violate the geodesic Lang property.We remind the reader that initially we have one sweeping polygon and stretching
tree, but after a while they may have split at splitting events. Hence, that at any given time we have a collection
of Lang polygons. But it is an easy observation that none of the distinct sweeping polygons cannot touch another
one, since each one always moves its edges towards its interior. Thus as soon as a polygon is split, the resulting two
sweep polygons diverge. Therefore we only need to prove that none of these parallel sweep polygons can self-touch,
whioch would happen if either a vertex of the polygon “hits” some edge or two (or more) vertices “hit” each other.
We now show that this is not the case:

Lemma 4.1 A parallel sweep polygon remains simple (not self-touching) throughout a generalized geodesic sweep.

Proof Suppose for contradiction that at some time t a parallel sweep polygon self touches, and take the minimum
time t at which this occurs. There are two cases: (1) either some vertex of the polygon touches an edge elsewhere
in the polygon, or (2) two vertices touch each other simultaneously but are not part of the same contraction event.
We prove that in each case we arrive at a contradiction.
Case 1 Vertex a j hits edge aiai+1 in the polygon. This implies that a j is reflex in PT (otherwise the polygon won’t
be simple, and t won’t be theminimum timewhen such an event occurs). Thus the corresponding leaf arc is growing.
By definition, aiai+1 corresponds to a path in T between leaf nodes ai and ai+1 and a j corresponds to the leaf node
a j in T . Since a j is a leaf node and the corresponding leaf arc was growing (hence its length is strictly larger than
zero), a j does not lie on the path between ai and ai+1 in T . Therefore dT (ai , ai+1) < dT (ai , a j ) + dT (a j , ai+1).
Since (ai , ai+1) is an edge in the doubling polygon, then dPT (ai , ai+1) = dT (ai , ai+1), and thus we have that
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dPT (ai , a j )+dPT (a j , ai+1) < dT (ai , a j )+dT (a j , ai+1), which entails that the geodesic Lang property is violated
in the polygon PT for either the pair (ai , a j ) or (a j , ai+1) - a contradiction.
Case 2 Let ai and a j be the touching vertices that are not part of the same contraction event. At least one must be
a reflex vertex in PT ; without loss of generality let this be ai . Then the leaf arc incident to ai has positive, non-zero
length (since it is growing), and so ai is at least some positive distance from any other node in T . Since ai and a j

are not part of the same contraction event, then ai and a j are distinct in T and thus dT (ai , a j ) > 0. But the distance
from ai to a j is zero, hence the geodesic Lang property is violated. ��

As a consequence we have:

Lemma 4.2 For any given geodesic Lang polygon (T, PT ) (drawn on some flat surface S) there exists a generalized
geodesic sweep.

Proof Make T kinetic as in the definition of a generalized sweep and perform a parallel sweep of PT and simulta-
neous stretching of T . Define the generalized sweep to split whenever a potential splitting event occurs. If multiple
potential splitting events occur simultaneously, then we take one after another, splitting until no potential splitting
events remain, and then continue. Note that here we leave open the possibility that “processing” one potential
splitting event removes another by separating its two vertices on opposite sides of the split (although we will see in
Sect. 7.2 that this is not possible).

The sweep moves the sides of PT inwards towards its interior, and so as the sweep progresses, we must either
encounter (1) a contraction event, (2) a potential splitting event, or (3) an event in which the sweeping polygon
self-touches. By definition, the sweep maintains that for consecutive pairs ai and ai+1 the distance in the tree and
the distance in the sweeping polygon is equal (i.e. dT (ai , ai+1) = d(ai , ai+1)). From this we can rule out case (3).
Assume we get to a point at which PT self touches. Then by Lemma 4.1 (T, PT ) is no longer a geodesic Lang
polygon. But this means that at some earlier time, there must have been a potential splitting event at which we did
not split, a contradiction.

Thus, as long as we take as our rule that we always split at potential splitting events, then we will encounter
events of type (1) and (2) only. But each contraction event removes at least one vertex from the sweeping polygon
(and one leaf from the tree), and each splitting event splits the polygon and tree into two polygons and two trees
each with strictly fewer vertices/leaf nodes and at least three vertices/leaf nodes (since splitting events always occur
for non-consecutive vertices).

The result thus follows by induction on the number of events encountered in the sweep. ��

5 Lang Surfaces

The next major concept needed for our result is that of a Lang surface.We first defined Lang surfaces in [5], where
they had (intrinsically) convex boundary polygons. We now investigate the set of zero-curvature (intrinsically flat)
Lang surfaces in full generality. Such a surface is constructed with respect to a tree T and is formed by combining
a small set of basic building block elements, according to certain gluing rules, to form disk-like surfaces.

5.1 Overview

We define Lang surfaces constructively in Sect. 5.2. We need two families of building block surfaces and two
operations for gluing them together to form Lang surfaces (extension and combination). Constructing the building
blocks relies on the kinetic trees of Sect. 4.1. This follows the same construction as in [5], except that we allow
tree edges to both grow and shrink, and we remove the restriction that Lang surfaces have a convex boundary. In
Sect. 5.3 we investigate the properties of Lang surfaces with zero curvature and show that the boundary polygon
PT of a zero-curvature Lang surface S constructed on a tree T is a geodesic Lang polygon; this proves the necessity
of the geodesic Lang property in Theorem 1.1.
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Finally, in Sect. 5.4, we observe that the extrusion processes for creating the building blocks of a Lang surface
can be chained together to form an intrinsic parallel sweep of the surface with splitting events. This sweeps the
boundary of the surface inward in such a way that each edge of the polygon remains (intrinsically) parallel to its
original position and all edges move at unit speed. A splitting event splits the sweeping polygon into two polygons
and the sweep continues recursively in each. We used this fact in the convex case [5] to put the universal molecules
into correspondence with the zero-curvature Lang surfaces with convex boundary. We observe that concepts from
the convex case transfer to the general case studied in this paper because the parallel sweep of a Lang surface
(convex or otherwise) locally proceeds in the same way as in the convex case in the plane. As in the convex case,
in general a Lang surface may have non-zero curvature at its interior vertices. To define the special family of flat
Lang surfaces, we impose zero-curvature on all interior vertices. This, however, explicitly allows for high curvature
(angle sum > 2π ) on the boundary, which presents a potential problem: what does the sweep look like locally
at such a vertex? In our construction, these high curvature vertices only occur at combination operations, which
correspond to a splitting of the sweep polygon. After the split each vertex of the sweeping polygon has angle less
than 2π , and so the sweep looks locally like a sweep of a polygon in the plane.

5.2 Constructing Lang Surfaces

We first define two types of building blocks: extrusion disks and extrusion rings. Each is built with respect to a
kinetic tree via an extrusion process. The boundary polygon(s) for an extrusion disk or ring are doubling cycles.
We then give two gluing operations, extension and combination, for joining them. The gluing operations can be
applied only if the two input surfaces meet certain conditions coming from the tree. In [5], all leaf arcs are required
to shrink and the combination operation is restricted to produce only surfaces with convex boundary. This ensures
that the Lang surfaces, as defined in [5], are convex, a restriction that is used to prove correspondences with Lang’s
original formulation. In this paper, however, we fully generalize to Lang surfaces with non-convex boundary by
allowing leaf arcs to grow as well as shrink and by allowing the combination operation to result in surfaces with
(intrinsically) non-convex boundary polygons. In the end, many of the properties of Lang surfaces studied in [5]
are preserved; we point them out along the way.

Extrusion Surfaces The two types of building block surfaces are defined with respect to a kinetic tree (T, w, s)
and a positive extrusion height h. The extrusion process is given by the following construction. First, we fix an
embedding of the tree in the xy-plane. Next, we shrink or grow each leaf arc (according to its speed s(ab)) while
simultaneously moving the plane containing the tree upwards in the positive z-direction at unit speed. We simulate
both of these motions for t from 0 to h. At time t we have T (t) embedded in the z = t plane. Next, we obtain a
doubling polygon PT (t) for T (t) by embedding the doubling cycle CT (t) directly “on top of” T (t) in the sweeping
plane, meaning each vertex v of PT (t) is placed directly on top of its corresponding node v in the tree T (t) in the
z = t plane. We call this polygon PT (t) (embedded in the z = t plane) the extrusion polygon at height t . The
extrusion surface of height h for (T, w, s) is the trace of the edges of PT in this sweep. See Fig. 7. We restrict h to
be not greater than the first time t at which an arc shrinks to zero length in T (t).
Extrusion Disks If we assign each arc ab of T a stretching speed s(ab) equal to −h/dT (a, b) and T has a single
internal node, then all of the edges of the extrusion polygon shrink to a single point p at t = h. The resulting

h

h

kinetic tree plane sweep extrusion ring extrusion disk

Fig. 7 A kinetic tree, the kinetic tree embedded in a sweeping plane, an extrusion ring of height h and an extrusion disk of height h.
Note that we “open up” the ring and disk slightly for visualization purposes
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extrusion surface is topologically a disk, which we refer to as an extrusion disk. The point p is the single interior
vertex for the disk. Its curvature is 2π − 2

∑
ab∈T arctan(dT (a, b)/h), and there is a unique height h for each tree

T resulting in an extrusion disk of zero curvature. Each face is a right triangle with one edge equal to the initial
doubling polygon edge in the xy-plane, one edge equal to an edge of length h lying perpendicularly above the
xy-plane, and the remaining edge a hypotenuse traced by a vertex of the extrusion polygon corresponding to a leaf
node. There is another degenerate situation that results in a disk, namely when a tree T (h) has all of its leaf arcs
incident to only two distinct internal nodes. In this case, of course, the tree is a path. If we identify the edges of the
corresponding extrusion polygon at height h, we obtain a disk surface. Handling this second case is a straightforward
extension of the first, and so we focus only on the first.

Extrusion Rings The second type of extrusion surface is defined for a kinetic tree such that no leaf arc shrinks to
zero-length at a time t < h and the tree T (h) has at least three leaf nodes. The resulting extrusion ring of height
h is a ring-like surface with lower and upper boundary polygons that are doubling polygons of T and T (h). See
Fig. 7. We note that because each vertex of an extrusion ring is on the boundary, all extrusion rings are flat, though
a priori a given extrusion ring may not have an open, flat realization (as pointed out in Sect. 2.1).

BoundaryCurvature andFaceGeometry ofExtrusion SurfacesRecall that the boundary polygon of an extrusion
surface is a doubling polygon for the tree T . Each vertex v of the boundary is incident to exactly two faces in the
surface. If the vertex corresponds to an internal node of T , then its (x, y)-coordinates do not change throughout the
extrusion process. This implies that the two face angles incident to v are each π/2 and the angle sum is π . This also
implies that an edge in the extruding polygon corresponding to an internal arc in T traces out a rectangular face.
On the other hand, a leaf node moves so that its incident leaf arc grows or shrinks according to the speed s(ab). An
edge of the extruding doubling polygon corresponding to a leaf arc in T traces out a right triangle if the arc shrinks
to zero at t = h, or a right trapezoid otherwise. An edge corresponding to an internal arc of the tree traces out a
rectangular face. In particular, this means that the vertices of the boundary of an extrusion disk or lower boundary
of an extrusion ring have angle sum less than 2π ; in other words, the curvature at these vertices is non-negative.

Operations for Constructing Lang Surfaces Lang surfaces are obtained by starting with extrusion disks and rings
and combining them using the following two operations, combination and extension. A Lang surface constructed
on an embedded kinetic metric tree (T, w, s) is a disk-like piecewise linear surface in R3 whose boundary is a
doubling polygon T . Lang surfaces are defined inductively: (a) all extrusion disks are Lang surfaces, and (b) new
Lang surfaces are formed by either applying the extension operation to a Lang surface and an extrusion ring, or by
applying the combination operation to two Lang surfaces (in each case meeting certain preconditions).

The Extension Operation This operations takes as input an extrusion ring R of height h and a Lang surface S
with the precondition that the upper boundary polygon of R and the boundary polygon of S are the same doubling
polygon for the same tree (except that the upper boundary polygon of R is in the z = h plane and the boundary of
S is in the xy-plane). We extend S with R by translating S upwards in the positive z-direction by h, bringing its

Fig. 8 The combination (left) and extension (right) operations depicted extrinsically (top) and intrinsically (bottom)
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boundary polygon into the z = h plane. We then identify the corresponding edges of the upper boundary polygon
of R and the boundary polygon of S to form the output Lang surface. See Fig. 8.
The Combination Operation This operation takes as input two Lang surfaces S1 and S2 constructed on trees T1
and T2 (resp.). The precondition for this operation is that there exists a tree T and a pair of leaf nodes (ai , a j ) in
T , such that when T is split between ai and a j , the result is T1 and T2. In particular, this means that ai and a j

are consecutive leaf nodes in T1 and T2 and thus appear as consecutive corner vertices ai and a j in the boundary
polygons of both S1 and S2. The paths between ai and a j in both S1 and S2 correspond to the path in T between ai
and a j . We combine S1 to S2 along this gluing path by identifying the corresponding edges along the path. Note
that because ai and a j are consecutive in S1 and S2, then this gluing path is intrinsically straight. The output surface
S is a Lang surface constructed on T . See Fig. 8.

Definition 5.1 (Lang surface) A Lang surface is any surface formed by joining a collection of extrusion disks and
rings using the combination and extension operations.

The boundary polygon for a Lang surface S is, by definition, a doubling polygon for a tree T , which we call its
boundary tree. We say that S is constructed on T . Note that each Lang surface is tree projectible, meaning that its
projection onto the xy-plane is a tree T ′, which is combinatorially equivalent to its boundary tree and geometrically
contains it. It should also be noted that different embeddings of the boundary tree give rise to the same intrinsic
surface. This entails, in particular, that a continuous motion of the boundary tree in the plane corresponds to a
continuous motion of the Lang surface that maintains the shape of each of its faces. We can then align all of the
arcs of the tree along a single line, which “lines up” the boundary edges along a single axis. For this reason, a Lang
surface is called uniaxial, a term used by origamists to describe structures of this type.

5.3 Properties of Zero-Curvature Lang Surfaces

We are primarily interested in conditions under which the operations described above produce flat Lang surfaces,
since these serve as a generalization of flat, polygonal sheets of paper. For the combination operation, it is necessary
and sufficient that both input surfaces be flat. For the extension operation, it is necessary and sufficient that (1) the
input Lang surface is flat (as we have seen, all extrusion rings are flat by definition), and (2) the sum of the two
angle sums at each vertex along the gluing path is 2π .

Negative Boundary Curvature In [5], we considered only Lang surfaces with zero curvature and (intrinsically)
convex boundary polygons. Here we remove the restriction on convex boundary polygons. This results in flat Lang
surfaces with non-convex boundary and even with negative curvature along the boundary. This never occurs as
the result of an extension operation, because, as we have seen, the lower boundary of an extrusion ring always
has non-negative curvature; however, we can perform an arbitrary number of consecutive combination operations,
which allows us to make the angle sum at a boundary vertex as large as we want.

An example is shown in Fig. 9, where we construct a Lang surface with a boundary vertex v of high curvature
using successive combination operations. A single “unit” Lang surface is first shown, intrinsically. The boundary

Fig. 9 Constructing a Lang surface with a boundary vertex v of high curvature using successive combination operations
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chains s1 and s2 match metrically and combinatorially and we can glue a copy of the surface to itself. Then,
iteratively, we arbitrarily increase the angle sum at v.

We note two properties of flat Lang surfaces with negative curvature on the boundary. First, as soon as we have
introduced negative curvature to the boundary, we can no longer apply extension operations, since to do so would
necessarily involve creating an interior vertex of negative curvature, and thus the resulting surface would not be flat.
Second, the boundary polygon of this surface is, by construction, a well-formed doubling polygon (in the sense of
Sect. 3).
Necessity of the Geodesic Lang Property The main result of this section can now be described: the boundary
polygon PT of a Lang surface S for a tree T is a geodesic Lang polygon for T . The proof is the same as in Lang’s
original paper [12], the main difference being that we use geodesic paths rather than straight line segments. We
reproduce it here for completeness:

Lemma 5.2 Let S be a Lang surface for a tree T and PT be its boundary polygon. Then (T, PT ) is a geodesic
Lang polygon on S.

Proof Let p denote the geodesic path between any two vertices u and v of PT . In the realization of S, p is a
polygonal path in R3. Recall that the projection of S onto the xy-plane is an embedding of T , thus the projection
of p onto the xy-plane contains the path from u to v in T . The projection of p has length less than or equal to the
length of p, which proves that the distance between u and v in T is less than or equal to the distance in S between
u and v. ��

5.4 The Extrusion Process as a Generalized Sweep

The building blocks of a Lang surface are generated by tracing a polygon as its edges grow or shrink. We now take
one such block, say a ring R and “replay” the motion of the extrusion process across the surface, from the bottom
up. We observe that each edge of the extruding polygon, across the face that it generates, moves in such a way that it
remains (intrinsically) parallel to its original position. See Fig. 10 (left). This process is referred to as the extrusion
sweep for disks and rings, and can be generalized, recursively, to an extrusion sweep for the entire Lang surface S,
as follows.

In all cases the extrusion sweep starts as the boundary polygon of S. If S is formed by an extension operation
on a Lang surface S′ and a ring R, then we first perform the extrusion sweep of R, and then recursively continue
the extrusion sweep of S′. If S is formed by a combination operation on Lang surfaces S1 and S2, then the sweep is
defined by first splitting the sweep polygon along the gluing edge between S1 and S2, and then continuing the sweep
independently in each. In the base case that S is an extrusion disk, we simply perform the extrusion sweep of S and
stop. Note that by construction the state of the extrusion sweep at time t is equivalent to the intersection of the z = t
plane with S. The edges of S are given by the trace of the vertices of the sweep together with the splitting edges

Fig. 10 The extrusion sweep of a ring (left) and of an entire Lang surface (right)
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Fig. 11 A visualization of the sweep of an input geodesic Lang polygon (T, PT ) including a splitting event

introduced for combination operations. The faces of S are the traces of the edges of the sweep. Figure 10 shows a
Lang surface formed by combining two extrusion disks using a combination operation and then an extension of the
resulting surface with an extrusion ring. When we replay the extrusion “from the bottom up” we first (intrinsically)
perform a parallel sweep of of the ring, then split the sweep into two, and then simultaneously perform parallel
sweeps of the the two extrusion disks. We prove:

Lemma 5.3 The extrusion sweep of a Lang surface is a generalized geodesic sweep of its boundary polygon and
tree.

Proof By construction, the extrusion sweep as defined above is a parallel sweep (as defined in Sect. 4) of the
boundary polygon PT of S with splitting events that occur when the sweep hits the base of a part of S formed by
the combination operation. We only need to show that when we attach the appropriate speeds to T making it kinetic
and perform the extrusion sweep while shrinking the tree, then (1) it maintains the Lang property throughout the
sweep and (2) a polygon in the extrusion sweep is split only when the Lang property holds with equality.

For (1) we first note that the speed assigned to each leaf arc in T in a generalized sweep of (T, PT ) across S is
the same speed at which the same leaf arc shrinks during the extrusion process. The claim then follows by the same
argument that geodesic Lang property holds on S.

Claim (2) follows from the definition of the extrusion sweep, and the definition of the combination operation,
which guarantees that the gluing path is straight, and the length of the path is equal to the corresponding distance
in the tree. By definition, this gluing path is used to split the extrusion sweep polygon. From this and claim (1) we
infer that the geodesic Lang property holds with equality for the the pair of vertices on which we split and thus the
extrusion sweep is a generalized sweep. ��

Next we argue that every generalized geodesic sweep corresponds to the extrusion sweep of some Lang surface.

Lemma 5.4 Let (T, PT ) be a Lang polygon. Then there exists a Lang surface ST constructed on T such that the
extrusion sweep of ST is the generalized sweep of (T, PT ).

Proof The details of this proof are the same as in [5] but for clarity we have introduced extrusion and generalized
geodesic sweeps (these concepts were implicit in [5] but were not given names). We sketch the proof here with the
new terminology, and point to the previous paper for the details.

We keep track of events during a generalized sweep using an event tree: a node is an event and the sweep between
events is represented by a directed arc from the later event to the earlier. A splitting event results inmultiple incoming
edges, one for each of the split polygons in the sweep, whereas a contraction event (that is not also a splitting event)
results in one single incoming edge. The root node of the tree is a special starting event denoting the initial boundary
polygon, and each leaf is an event at which the one of the sweeping polygons shrinks to a single point as is stopped.
We only record splitting events when the polygon and tree are actually split.
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The proof nowproceeds by induction on the depth of the event tree, showing that each edge of this tree corresponds
to an extrusion surface and each node corresponds to operations on Lang surfaces.

In the base case the event tree has one edge: one event occurs in the generalized sweep, namely a simultaneous
contraction to a single point. If t is the time at which this event occurs, ST is the extrusion disk of height t constructed
on T and f the face traced by an edge e of the generalized sweep in (T, PT ), then (from the definitions of the
generalized sweep and the extrusion disk) it follows that the face traced by the corresponding edge in ST is congruent
to f . Hence ST is the same intrinsic surface as PT and thus the generalized sweep of (T, PT ) is equal to the extrusion
sweep of ST .

For the inductive step, let (T, PT ) be a geodesic Lang polygon with event tree of depth d + 1. There are two
cases we need to handle. The first is when we split at time t = 0 in the generalized sweep of (T, PT ) and the
second is when the first event occurs at some time t > 0. In the first case, the polygon PT is split into polygons
P1, . . . , Pk at time t = 0. Each of these correspond to a sub-tree of the event tree. By inductive hypothesis, there are
Lang surfaces S1, . . . , Sk corresponding to P1, . . . , Pk . The result then follows by observing that the inverse of the
splitting process on PT is the combination operation on S1, . . . , Sk . In the second case, the root node of the event
tree has in-degree one. That edge corresponds to a sweep from PT to PT (t). By the same argument as in the base
case above, the surface traced by the sweep between PT and PT (t) is equivalent to the extrusion ring R constructed
on T where the speeds assigned to T for the extrusion process are the same as for the generalized sweep. Then by
inductive hypothesis, we have a Lang surface S′ constructed on T (t) and observe that applying the combination
operation to S′ and R gives us a Lang surface ST constructed on T for which the extrusion sweep is equivalent to
the generalized sweep of (T, PT ). ��
Summary We have defined a family of surfaces, called Lang surfaces, that are built on top of a tree. A Lang
surface is formed by gluing together extrusion disks and rings using the extension and combination operations. The
boundary of a Lang surface is a geodesic Lang polygon. We then put the family of zero-curvature Lang surfaces
into correspondence with the generalized sweeps of a Lang polygon by showing that the extrusion process that
generates a given Lang surface corresponds to a generalized sweep of its boundary polygon (Lemma 5.3), and
that a generalized sweep of a Lang polygon always corresponds to the extrusion process for some Lang surface
(Lemma 5.4). In the next section we describe an algorithm for simulating the sweep. Finally, we showed that
for any given Lang polygon there is a unique generalized sweep. This puts the Lang polygons into one-to-one
correspondence with the zero-curvature Lang surfaces.

6 Computing the Geodesic Universal Molecule

In the previous section we defined Lang surfaces, showed that the boundary of a Lang surface is a geodesic Lang
polygon, and showed that the extrusion process is equivalent to a generalized sweep. We now go in the opposite
direction.We start with a geodesic Lang polygon (T, PT ) and perform a particular generalized sweep of the polygon
maintaining that the sweeping polygon is a geodesic Lang polygon. So far we have not shown that there is a unique
generalized sweep for a Lang polygon; instead we have stated that it is possible that at a potential splitting event,
we may be able to choose whether to actually split or not and in either case maintain the geodesic Lang property.
Regardless of the choice we make, we get a generalized sweep. The algorithm described below simulates one
particular generalized sweep–namely the one in which we always split at a potential splitting event. We showed in
Lemma 4.2 that this sweep must exist. We use it to compute a subdivision of a geodesic Lang polygon into vertices,
edges, and faces. We call this subdivision the geodesic universal molecule of (T, PT ). The edges of the subdivision
are given by tracing the vertices of the sweeping polygon (along with the edges introduced at a splitting event).

In this section we describe an algorithm for simulating the sweep and computing the geodesic universal molecule.
Then in Sect. 7.1 we prove that there exists a Lang surface with the same boundary Lang polygon and generalized
sweep (using the connection between generalized sweeps and extrusion sweeps given in Lemmas 5.3 and 5.4).
Finally, in Sect. 7.2 we show that there is exactly one generalized sweep for any given Lang polygon (T, PT ). This
implies a one-to-one correspondence between Lang surfaces and geodesic universal molecules.
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Let us note again that the sweep in the convex case is a generalization of the straight skeleton sweep [1]. For
non-convex polygons, the straight skeleton sweep may encounter an event in which a reflex vertex “hits” another
edge of the sweep necessitating a split (not to be confused with our splitting events). We emphasize that such an
event cannot occur in our case, because our sweep maintains the invariant that the sweeping polygon is a geodesic
Lang polygon, and therefore by Lemma 4.1 remains simple. This implies that before such an event occurs a splitting
event must precede it.

The reader should keep in mind that this sweep is performed intrinsically on the surface of PT ; however, in the
case that PT flattens out onto a simple polygon in the plane (convex or non-convex), then we can perform the sweep
explicitly in the plane. The algorithm we describe solves the following:

Geodesic Universal Molecule Problem Given a geodesic Lang polygon (T, PT ) compute a flat Lang surface
constructed on T that is intrinsically equivalent to PT .

The Algorithm The input is a geodesic Lang polygon (T, PT ) and the output is a planar graph G embedded on the
surface of PT such that the subdivision of PT induced by G is (intrinsically) equivalent to a Lang surface S. We
call G the geodesic universal molecule for (T, PT ). We assume the existence of primitive operations for computing
(intrinsic) parallel offset polygons at a given height h and a predicate for determining whether two vertices of a
polygon are a visible pair.

The algorithm follows the basic procedure similar to the case of convex, planar Lang polygons. We make the
tree T kinetic by attaching a stretching speed s(ab) to each leaf arc ab. The stretching speed is determined with
respect to interior angle of a in PT , so that the arc ab maintains the same length in T (as it grows/shrinks) as the
length of the corresponding edge in the sweeping polygon. By elementary trigonometry, we have that s(ab) must
be −1/ tan(θa) where θa is the interior angle measure of a in the sweeping polygon. We refer to the kinetic process
in the tree and parallel sweep in the polygon collectively as the sweep.

We remind the reader that for the sweep to be a generalized sweep it must maintain the invariant that the kinetic
tree and sweeping polygon form a geodesic Lang polygon (Sect. 4). Maintaining this invariant requires processing
two types of events. A contraction event occurs when an arc of T and its corresponding edges in PT shrink to zero
length. In this case we remove (or contract) the zero length arcs/edges. A splitting event occurs when for two non-
consecutive corners in PT , say ai and a j , the geodesic Lang property holds with equality: dPT (ai , a j ) = dT (ai , a j ).
As a consequence of Lemma 3.3, this pair (ai , a j ) is a visible pair. We then split the tree between ai and a j and split
the polygon between ai and a j to obtain a left tree and polygon (TL , PL) and right tree and polygon (TR, PR) both
of which form geodesic Lang polygons with the visible pair now on the boundary. Finally, we continue the sweep
independently in each. The output crease pattern is the union of the trace of the vertices throughout the sweep and
the splitting edges introduced at a splitting event. See Fig. 11 for a visual overview of the algorithm. The recursive
pseudocode below summarizes the sweep process:

Algorithm 1 GeodesicUMAlgorithm(T, PT )

function GeodesicUMAlgorithm(T, P_T):
if (T, P_T) is a baseCase:

return handleBaseCase(T, P_T)

nextEvent := findNextEvent(T, P_T)

(T’, P_T ’), R := AdvanceSweepAndTileRing(T, P_T , nextEvent)

if nextEvent is a contraction event:
(T’, P_T ’) := Contract(T’, P_T ’)
G’ := GeodesicUMAlgorithm(T’, P_T ’)

else:
(T_L , P_L), (T_R , P_R) := Split(T’, P_T ’, nextEvent)
G_L := GeodesicUMAlgorithm(T_L , P_L)
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G_R := GeodesicUMAlgorithm(T_R , P_R)
G’ := MergeCreasePatterns(G_L , G_R)

endif

G := MergeCreasePatternWithRing(G’, R)
return G

Algorithm Overview Each call to GeodesicUMAlgorithm takes as input a geodesic Lang polygon (T, PT ) and
recursively “fills in” the interior of PT with a crease pattern G. The occurrence of the next event is handled by the
sub-routine findNextEvent, which stores in the nextEvent structure the time at which the event occurs and a
pointer to the contracting edge/arc in PT and T (in case of a contraction event), or the splitting pair of vertices/nodes
in PT and T . If simultaneous contraction and splitting events occur, the contraction events are processed first. How
findNextEvent finds the next event is described below under the heading “Computing the events.” Once the next
event has been identified, the AdvanceSweepAndTileRing subroutine computes the state of the tree and polygon
at the event (T ′, P ′

T ) by moving all the nodes/vertices of (T, PT ) inwards by the appropriate amount. It then “tiles”
the annular region between PT and P ′

T by adding edges between corresponding vertices (see “Simulating the sweep”
below). If the next event is a contraction event, then P ′

T will contain zero-length edges which must be contracted
to a single vertex. The associated arc of T ′ must also be pruned. This is handled by a call to Contract, which is
a subroutine for contracting zero-length edges/arcs in PT and T . The crease pattern for the interior of (T ′, P ′

T ) is
then computed recursively and merged with the computed annulus R byMergeCreasePatternWithRing. If the
next event is a splitting event, then the Split subroutine splits the tree and polygon using the splitting pair stored
in nextEvent (using the operation described in Sect. 2). The splitting operation returns the split of (T, PT ) into
polygons PL and PR and trees TL and TR . The crease patterns GL and GR on the interiors of PL and PR are then
recursively computed, merged together, and finally merged with the tiling of the annulus R. The entire process is
illustrated in Fig. 12.

Computing the Events Since corresponding leaf arcs and polygon edges shrink/grow at the same rate, to find
the next candidate contraction event it suffices to check each leaf arc ab for the smallest value of t for which
dT (a, b) − 1/ tan(θa/2) = 0 over all leaf arcs ab.

Finding the next splitting event is a bit trickier. We first note that since we maintain that the sweeping polygon
and tree form a geodesic Lang polygon, by Lemma 4.1 we never get to a point where a reflex vertex “hits” another
edge of the polygon. By Lemma 3.3, the next splitting event must occur for a visible pair; however, as the sweep
progresses the set of visible pairs changes, and there is no guarantee that the current visible pairs will be visible at
the next splitting event. Let P̄T denote the open, flat realization of PT , āi be the position of ai in P̄T , and V̄ai denote
the velocity of āi in the sweep of P̄T .

PL PR

R

TL TR

GL GR

G

G

Fig. 12 An illustration of the recursive procedure in Algorithm 1. We first compute the ring R. Then contract or split (in this case split),
fill in each side of the split recursively, and merge this with R to produce an output
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For each pair of corners (ai , a j ) find the smallest value of t satisfying

||(āi + t V̄ai ) − (ā j + t V̄a j )|| = dT (ai , a j ) − t (1/ tan(θai /2) + 1/ tan(θa j /2)). (6.1)

The left side of Eq. 6.1 is the Euclidean distance between the two vertices in the flattened sweep at time t and
the right side is the corresponding tree distance in the shrinking tree. Solving for t gives the time at which the
Euclidean distance becomes equal to the shrinking tree distance. For a visible pair the geodesic distance in PT and
the Euclidean distance in P̄T are identical. Thus Eq. 6.1 is valid for checking the geodesic Lang property for any
visible pair. We still do not know which pair will be visible. We check this in a straightforward manner by sorting
the times t satisfying Eq. 6.1 over all pairs of non-consecutive corners in PT . Then, in increasing order over the
times ti of these candidate events, advance the sweep to each time ti , and check whether the corresponding pair
of corners (ai , a j ) is visible in the sweep polygon at ti . The first pair we find (smallest value ti ) is the pair for the
candidate splitting event. The next event is whichever candidate event (contraction or splitting) occurs at a smaller
time t .

Base Cases The base case is when the next event is a contraction of all leaf arcs simultaneously to a single node.
(And the degenerate case where all leaf arcs contract simultaneously leaving a path, rather than a single node, in
the tree.) This can only occur if all arcs are shrinking, and thus the sweeping polygon is convex. This is the same as
in the planar, convex case [5] and occurs if and only if all the angle bisectors intersect at a single point. Let p be the
point on the interior of PT at which sweep contracts. The handleBaseCase sub-routine returns the subdivision of
PT into faces given by adding a vertex at p and adding an edge from that vertex to each vertex of PT .

Analysis The recursive algorithm we describe above does not simulate all parts of the sweep simultaneously. When
the sweep is split into two it first recursively simulates the sweep on the interior of one side of the split, and then
simulates the sweep on the interior of the other side of the sweep. We store the output universal molecule G, and
the tiled ring R as a doubly-connected edge list (DCEL) [4]. Using this structure, computing the ring R, splitting a
polygon, and merging crease patterns trivially requires O(n) time. Contracting an edge requires O(1) time. Thus,
the main work of each recursive invocation is computing the time of the next event.

Let n denote the number of nodes in the input tree. To find the next event, we first compute the time at which
each edge would contract (assuming no other event occurred first) in constant time per edge. The minimum is the
candidate next contraction event. This takes O(n) time. Then, for each pair of non-adjacent vertices, we compute
the time at which Eq. 6.1 is satisfied to obtain a list E of candidate splitting events. We then sort the list, which takes
O(n2 log n) time [since there are O(n2) candidate splitting events]. We then look at the first candidate splitting
event, compute a representation of the polygon at that event, and check whether the candidate splitting pair of
vertices is still visible when the sweep reaches that point. This takes O(n) time using standard techniques. If the
candidate splitting pair is visible, then we have found the candidate next splitting event. Otherwise, we check the
second candidate event in E , and so on.We continue until we have either found a candidate splitting event for which
the pair is visible, or the event time of the candidate splitting event we are considering is greater than the event time
of the next candidate contraction event. In the worst case, then, finding the time of the next event requires O(n3)
time, since there are O(n2) candidate splitting events, and testing the visibility pair in each requires an additional
O(n) time. Thus one invocation of the algorithm takes O(n3) time total and O(n2) space.

To bound the running time of the algorithm, then, we need to bound the number of events that occur during the
sweep. In order to reduce the number of events that occur, it is convenient to first compute only the traces of the
corner vertices. The traces of the markers can be computed in a post-processing step. This is the method employed
both in Lang’s original paper [12] and our paper on faster implementations of the universal molecule algorithm
for convex polygons [7]. By the same reasoning as in [7], the number of contraction and splitting events is O(n)

leading to an O(n4) time algorithm. We note, however, that the naive method described above recomputes almost
all of the same candidate splitting events on each recursive call. Using the same techniques as in [7] this can be
improved to O(n3 log n) time.
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7 Proof of Main Theorem

We can now proceed to the proof of:

Theorem 1.1 Let PT be a doubling-polygon for a tree T on a flat, disk-like piecewise-linear surface D. Then a
Lang surface S constructed on T and isometric to PT exists (and is unique) if and only if (T, PT ) is a geodesic
Lang polygon.
ProofOutlineLet (T, PT ) be a geodesicLang polygon.We show inLemma7.2 in the next section that the subdivision
G returned by Algorithm 1 is equivalent to a Lang surface ST constructed on T with boundary polygon PT . In
particular this proves that for any geodesic Lang polygon there exists a Lang surface constructed on T which has PT
as its boundary polygon, namely the Lang surface that is equivalent to the geodesic universal molecule of (T, PT ).

We have already established a correspondence in the other direction via Lemma 5.2, which shows that the
boundary of each Lang surface is a geodesic Lang polygon.

It remains to establish a one-to-one correspondence, which we do by showing that there exists exactly one
generalized sweep for any given Lang polygon, which implies that for a given Lang polygon (T, PT ), there exists
a unique Lang surface ST constructed on T that has PT as its boundary. We prove this in Lemma 7.4 in Sect. 7.2.

Therefore, if we are given a geodesic Lang polygon (T, PT ), then there exists a Lang surface ST constructed on
T that is isometric to PT , and by Lemma 5.2, if we start with a Lang surface ST constructed on T and isometric to
PT , then (T, PT ) is a geodesic Lang polygon. ��

7.1 Proof of Algorithm Correctness: Geodesic Universal Molecule Crease Patterns are Lang Surfaces

We prove that Algorithm 1 correctly simulates a generalized sweep of the input (T, PT ) and that the resulting
subdivision G returned by the algorithm is equivalent to a Lang surface ST constructed on T with boundary
polygon PT .

Lemma 7.1 Algorithm 1 simulates a generalized sweep.

Proof By definition the algorithm advances a parallel sweep in PT and grows/shrinks the leaf arcs of T with the
same speed assigned to each leaf arc as in the definition of a generalized sweep. We only need to show is that the
sweep maintains the geodesic Lang property throughout this sweep. Otherwise, at some intermediate point the Lang
property is violated in the simulated sweep between two consecutive events processed by the algorithm. But the
algorithm always processes contraction events it encounters, and any splitting events for visible pairs (since Eq. 6.1
gives the time of a splitting event). Therefore, the Lang property was violated for a non-visible pair but not for a
visible pair contradicting Lemma 3.3. This concludes the proof.

Lemma 7.2 The subdivision G returned byAlgorithm 1 on a geodesic Lang polygon (T, PT ) is the same subdivision
of PT into vertices, edges, and faces as a Lang surface ST constructed on T with PT as its boundary polygon.

Proof By Lemma 7.1 the algorithm simulates a generalized sweep of (T, PT ). The trace of the vertices of the
sweep together with the splitting edges introduced at splitting events induce the subdivision G. By Lemma 5.4,
this generalized sweep is equivalent to an extrusion sweep of a Lang surface ST constructed on T with PT as its
boundary polygon. By definition all the edges of ST are given by the traces of the vertices of the extrusion sweep
and the splitting segments introduced at splitting events. Thus G induces the same subdivision of PT into vertices,
edges, and faces as those given by the construction of ST . ��

7.2 Uniqueness

Thus far, we have seen that the vertices, edges, and faces of each flat Lang surface are defined by an extrusion sweep,
which, by Lemma 5.3, is a generalized sweep of the surface’s boundary polygon and tree. We have also seen that
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any generalized sweep of a flat geodesic Lang polygon is equivalent to an extrusion sweep of some Lang surface.
In Sect. 6, we gave an algorithm for producing at least some of the flat Lang surfaces, by simulating one particular
generalized sweep of a Lang polygon, namely the one in which we always process splitting events, regardless of
whether or not it is necessary to do so to maintain the geodesic Lang property on the sweep. We now show that
this is the only possible generalized sweep of a flat geodesic Lang polygon. In other words, there is no “choice” to
make. If we fail to split the polygon and tree at a potential splitting event, then whatever the resulting sweep is, it
is not a generalized geodesic sweep. Summarizing,

Theorem 7.3 Let (T, PT ) be a flat geodesic Lang polygon. Then there exists a unique generalized sweep of (T, PT ).

We prove this presently but first note that as a direct consequence we have the following, which is the final step
in the proof of the Main Theorem:

Lemma 7.4 Let (T, PT ) be a flat geodesic Lang polygon. Then there exists a unique Lang surface ST constructed
on T that is isometric to PT .

Proof Assume not. Then there are at least two different Lang surfaceswith PT as its boundary, and thus two different
extrusion sweeps. But by Lemma 5.3, these constitute two different generalized sweeps of (T, PT ), contradicting
Theorem 7.3. ��

The remainder of this section concerns proving Theorem 7.3. Our main work is to show that when a generalized
sweep encounters a potential splitting event, it must actually split in order to maintain the geodesic Lang property.
We note that this proof is significantly more involved than in the convex case in [5]. The proof is based on elementary
geometry and vector calculus and requires a careful case analysis of 36 possible cases, only one of which is the
convex case. We first outline the proof of Theorem 7.3 and then fill in the details in the theorems and lemmas that
follow.

Proof Outline of Theorem 7.3 The possibility of the existence of multiple generalized sweeps for the same geodesic
Lang polygon (T, PT ) comes from our distinction between potential and actual splitting events. We have thus far
allowed that, as long as the geodesic Lang property is maintained, we do not care if the sweep is actually split at
each potential splitting event. There are two possibilities we need to consider regarding potential splitting events
that may give rise to multiple generalized sweeps for the same geodesic Lang polygon.

First, it may be the case that if multiple potential splitting events occur simultaneously, then actually splitting
across one event removes one of the others as a potential splitting event. Theorem 7.5 shows that this does not occur.
Thus, when we arrive at simultaneous potential splitting events (u, v) and (w, x), splitting at one, say (u, v) leaves
the other as a potential splitting event. In other words both w and x are in the same split polygon/tree after splitting
at (u, v) which entails that we still have a potential splitting event, since splitting does not effect the distances
between w and x in the either the polygon or tree.

Second, it may be the case that we can simply ignore some potential splitting events. This would mean that there
is a potential splitting event for a pair (u, v) at some time t such that immediately before the event and immediately
after the event the geodesic Lang property is satisfied if we do not split. Thus we can choose to either actually split
or not to obtain different generalized splitting events. We show in Theorem 7.7 that this is not the case–we must
split at potential splitting events.

Thus, together with Theorems 7.5 and 7.7, we have that the generalized sweep of a geodesic Lang polygon on a
flat surface is unique. ��

Event Order Does Not Matter. We now show that when simultaneous potential splitting events occur, choosing
to split across one of the events does not invalidate any of the others as potential splitting events. This completes
the first part of the proof of Theorem 7.3 above.
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Theorem 7.5 Let (u, v) and (w, x) be simultaneous potential splitting events encountered at some time in a gener-
alized sweep of a Lang polygon. Then after actually splitting for one, say (u, v), the other (w, x) remains a potential
splitting event.

Proof Let T and PT denote the tree and sweeping polygon at the time of the event. Let (TL , PL) and (TR, PR)

denote the split polygons obtained by splitting (T, PT ) at (u, v). Then without loss of generality, either both w and
x are in PL or w is in PL and x is in PR . In the first case, the distances dPT (w, x) and dT (w, x) are not changed by
the split and thus (w, x) remains a potential splitting event. In the second case, we note that the cyclic ordering of
u, v,w, x along the boundary of PT is (without loss of generality) u,w, v, x. In other words, the pairs (u, v) and
(w, x) cross, which contradicts Lemma 7.6 below. ��

The main work of the proof above is Lemma 7.6 below, which shows that potential splitting events do not cross.
We note that the proof is the same as Lemma 12 in [5] since it relies only on properties of the tree and the triangle
inequality on the geodesic distances, and refer the reader to our previous paper for the argument. Thus we have:

Lemma 7.6 Potential splitting pairs do not cross in a geodesic Lang polygon.

The Sweep Must Split at All Potential Splitting EventsWe now show that when a generalized sweep encounters
a potential splitting event, it necessarily actually splits at the event. Otherwise, we will show, the sweep fails
to maintain the geodesic Lang property and thus is not a generalized sweep of a geodesic Lang polygon. This
completes the remainder of the proof of Theorem 7.3. The proof is significantly more involved than in the convex
case (Lemma 16 in [5]). This is because in the convex case, it is fairly straightforward to show that the distances
in the plane between vertices of the sweeping polygon always decreases at a rate faster than the corresponding
distances in the tree. In the present case, however, distances between points in the sweeping polygon and in the
tree may be either increasing or decreasing (depending on the geometry), and it is not necessarily the case that tree
distances decrease slower than distances in the sweeping polygon. For this reason, a more careful case analysis is
needed. We now prove:

Theorem 7.7 A generalized sweep of a Lang polygon always splits at each potential splitting event.

Proof Suppose that we reach a potential splitting event (ai , a j ). We prove the theorem by comparing the rates
at which the distances are changing in the sweeping polygon and tree. Let dS(t) denote the distance at time t
between ai and a j in the sweep and dT (t) denote the distance between the corresponding leaf nodes ai and a j in
the kinetic tree. Let d(t) denote the difference between them, i.e. d(t) = dS(t) − dT (t). For simplicity, we will
shift the event times so that the event occurs at time t = 0, and thus dS(0) = dT (0), or equivalently d(0) = 0. Let
�t > 0 be a small value near 0. Just before the event (i.e. at time −�t), the geodesic Lang property holds, and so
dS(−�t) > dT (−�t), and thus d(−�t) > 0. We want to show that just after the event the geodesic Lang property
is violated, i.e. d(�t) < 0 for all small enough �t . To do this, we need to show that d(t) is not at a local minimum
at t = 0. It suffices to show that it is not at a critical point, meaning that its derivative d ′(0) = d ′

S(0) − d ′
T (0) �= 0,

or equivalently d ′
S(0) �= d ′

T (0). We prove this in Lemma 7.8 below.
Now assume that a generalized sweep encounters a potential splitting event but does not split. By Theorem 7.5,

we have that the potential event cannot be removed by actually splitting for some other simultaneously occurring
potential splitting event. But then, by the discussion above we have that immediately after the event, the geodesic
Lang property is violated, contradicting that our sweep is a generalized sweep. ��
Lemma 7.8 The instantaneous rate of change in the geodesic distance between two non-consecutive visible corners
ai and a j in the parallel sweep is not equal to the instantaneous rate of change in the corresponding distance in
the kinetic tree.

Proof Set-Up and Outline Here we only outline the proof of Lemma 7.8 and give the geometric set-up. The details
of the proof are then organized into the lemmas below. We then give the full proof at the end this section starting
from the paragraph titled “Proof of Lemma 7.8”.
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ai

aj{

Fig. 13 Flattening out of a small ε band around the visibility segment between ai and a j

Initial Set-Up As in Theorem 7.7, we denote the distance function between ai and a j in the sweep by dS(t) and
the distance function in the tree between ai and a j by dT (t). To prove the lemma, we show that the instantaneous
rate of change in the geodesic distance, d ′

S(0) is not equal to the instantaneous rate of change, d
′
T (0) in the tree. In

principle our argument holds for all values of t so long as (ai , a j ) is a visible pair.

Overview Instead of deriving a closed form for d ′
S(t) and d

′
T (t), we show in Lemmas 7.9 and 7.10 how to determine

the value of d ′
S(0) and d ′

T (0) at t = 0 geometrically. We show that the values of d ′
S(0) and d ′

T (0) are determined
by two vectors defined at each vertex, which we label Vi and Wi at ai and Vj and Wj at a j . Then, by analyzing the
relative magnitudes of Vi andWi and the relative magnitudes of Vj andWj we prove that d ′

S(0) �= d ′
T (0). To do this

we first initiate a study of the relative magnitudes of Vi andWi at ai , from which we derive 6 distinct cases, labelled
A–F. These depend on whether ai is convex or not in the polygon and the angle made between the edges incident
to ai and the visibility segment aia j . We then complete the proof of the lemma by showing in all 36 possible cases
(where both vertex ai and vertex a j may be any of the six cases A–F), d ′

S(0) �= d ′
T (0). ��

Before we fill in the details of the proof, we fix some useful notation and simplify the discussion by providing a
local view around the visibility edge aia j .

Notation In the remainder of this section we use upper cased non-bold type with subscripted i or j to denote vectors,
such as Ui or Uj , defined at ai and a j resp. We denote the magnitude of a vector Ui by its lower-case ui = ||Ui ||.

Local View In order to simplify the discussion that follows we “flatten out” the polygon and sweep in the plane.
This flat realization, as we have seen, may have self-intersections; however, if we restrict ourselves to a small
enough patch, say all points within some small ε distance of the visibility segment between ai and a j , then the
resulting flattened ε-patch is realized in the plane as a small planar region without self intersections. See Fig. 13 for
an example. There, the dashed line denotes the visibility segment, the dotted line denotes the sweep, and the two
arrows denote the motion vectors of ai and a j in the unit-speed parallel sweep.

In the remainderof this section we use this “local” view of the flat realization in the plane, which allows us to
use elementary plane geometry to analyze the geometry near the visibility segment.

Deriving the Vectors Vi and Wi Let Ui denote the instantaneous velocity vector of ai . By definition, Ui points
along the interior angle bisector at ai . We now use Ui to define two vectors, Vi and Wi at ai . Project Ui onto the
visibility segment aia j . Let L denote the supporting line through one of the edges incident to ai . Project Ui onto
L to obtain Wi . Note that because Ui points along an angle bisector, and because we are really only interested in
the magnitude wi and not the direction, it does not matter which edge incident to ai is chosen to construct L (the
magnitude wi is the same regardless of the choice). We define vectorsUj , Vj , andWj at a j similarly. Examples are
shown in Fig. 14. The left shows the convex case. The middle shows a reflex case in which ai is moving towards
a j . The right shows a reflex case in which ai is moving away from a j . Ui denotes the motion vector of ai along
the interior angle bisector in the sweep. Vi is the projection of Ui onto the line between ai and a j , and Wi is the
projection of Ui onto the line supporting one of its edges.
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Fig. 14 An illustration of the vectors defined in the proof of Lemma 7.8 for the vertex ai in three different situations

Table 1 A summary of the relationship between the magnitudes vi and wi of the vectors Vi and Wi from Fig. 14 organized by cases
A–F, and the sign in front of each in d ′

S(0) and d ′
T (0) for all possible cases of the vertex ai

Case vi?wi Sign of vi in d ′
S(0) Sign of wi in d ′

T (0)
A vi > wi − −
B vi < wi + +
C vi < wi vi = 0 +
D vi < wi − +
E vi = wi − +
F vi > wi − +

What Remains In Lemma 7.9 we show how d ′
S(0) relates to the magnitudes vi and v j . In Lemma 7.10 we show

how d ′
T (0) relates to the magnitudes of wi and w j . We end with the proof of Lemma 7.8.

Lemma 7.9 The instantaneous rate of change in the distance between ai and a j in the polygon is given by

d ′
S(0) = ±vi ± v j (7.1)

where the sign in front of vi (resp. v j ) is ‘+’ if Vi points towards a j (resp. Vj points towards ai ), otherwise the sign
is ‘-’.

Proof The proof follows from elementary vector calculus. ��
We now derive d ′

T (0):

Lemma 7.10 The instantaneous rate of change in the distance between ai and a j in the tree is given by

d ′
T (0) = ±wi ± w j (7.2)

where the sign in front of wi (resp. wi ) is ‘-’ if vertexai (resp. a j ) is convex in the polygon, ‘+’ otherwise.

Proof The vector Wi is the orthogonal component of ai ’s instantaneous motion towards the other endpoint of one
of the edges incident to ai . The proof then follows from the fact that we defined the speeds at the leaf arcs so as to
maintain the length in the tree between edges in the sweeping polygon and their corresponding leaf arcs. ��

Characterizing the Relative Magnitudes of vi andwi We now characterize the relative magnitudes of Vi andWi ,
and the signs in front of each in Eqs. 7.1 and 7.2. There are six possible cases, which we label A–F, which depend
on whether ai is convex or not, and the angle made by the visibility segment aia j with the edges incident to ai . The
construction of cases A–F, detailed shortly, is illustrated in Fig. 15 and the relative magnitudes of vi and wi in each
case is summarized in Table 1 below. A is the convex case, cases B–F are illustrated in Fig. 15. Those for a j are
similar. Using the table together with Eqs. 7.1 and 7.2 allows us to determine the values of d ′

S(0) and d ′
T (0) based

on which cases A–F are ai and a j . For instance, if ai is case B and a j is case D, then using the table and the two
equations we see that d ′

S(0) = vi − v j and d ′
T (0) = wi + w j .
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Fig. 15 Constructing the five non-convex cases B–F used to define the cases in the case analysis in the proof of Lemma 7.8. From left to
right, first: extend the lines supporting the two edges incident to a vertex (dashed). Second: the line (dashed) orthogonal to the interior
angle bisector (gray vector). Third: the wedge regions R1 through R3 defined by the lines extending the edges and the line orthogonal
to the interior angle bisector (the wedges to the left of the bisector are symmetric to those on the right). Fourth: the labelling of the
cases to the right of the interior angle bisector (the left is symmetric). Fifth: an example where the position of a j follows in region R2,
making ai case D. In this case the length of Wi is greater than the length of Vi

Constructing Cases A–F Case A is when ai is convex, cases B–F are when a j is non-convex. To construct cases
B–F, first extend lines through the edges incident to ai . Next construct the line through ai perpendicular to the interior
angle bisector of ai . See the first two parts of Fig. 15. These three lines together with the interior angle bisector
divide the wedge around ai into six wedge “slices”. Those on the left side of the angle bisector are symmetric to
those to the right, so we label them R1, R2, and R3 symmetrically and in the remainder concentrate on the right
side—see the center of Fig. 15. Case B is when a j falls in the wedge R1. Case C is when it falls on the line between
R1 and R2. Case C is when it falls in R2. Case E is when it falls on the line between R2 and R3. Case F is when it
falls in R3. We now have:

Lemma 7.11 Table 1 summarizes the relationship between vi and wi and the signs in front of each in Eqs. 7.1 and
7.2.

Proof The lines extended in the construction of regions R1, R2, and R3 are precisely thosewhere relativemagnitudes
and the signs in Eq. 7.1 change. Extending the lines through the edges in the construction of R1 through R2 divides
the plane into four regions (see the left-most illustration in Fig. 15). One is outside the the polygon. The next two are
incident to the two edges incident to ai . In these, by elementary geometry it follows that vi < wi . In the remaining,
vi > wi , and if a j lies on the line through one of the edges then vi = wi . The line through ai perpendicular to the
interior angle bisector is the dividing line such that if a j is below it (i.e. in R1), then ai is moving away from a j

(and hence vi has a ‘+’ in Eq. 7.1). If a j is on the line, then ai is moving perpendicularly relative to ai and a j and
so vi = 0. Otherwise a j is moving towards it. The table simply summarizes these facts. ��

Proof of Lemma 7.8 We now complete the proof of Lemma 7.8 by showing that for all possible cases A–F of ai
and all possible cases A–F of a j , the instantaneous rate of change in the geodesic distance d ′

S(0) is not equal to the
instantaneous rate of change in the tree.

We have 36 cases to consider, depending on which cases A–F are the two vertices ai and a j . Each case is labeled
with the two case letters for ai and a j . For instance, if vertex ai is B and a j is D, then we label it BD. Note that
symmetric cases use the same proof, so we only list cases in lexicographical order (BD and DB are the same so we
use BD). In each case we start by using Table 1 to derive d ′

S(0). We then use the relationship between vi and wi

and the relationship between v j and w j to show that d ′
S(0) �= d ′

T (0) (which is found by plugging in the appropriate
values from Table 1 into Eq. 7.2).

Below we prove each case on a single line, however, to give the reader a full sense of the line of proof we do one
expanded case here, the case where ai is B and a j is E (i.e. case BE). Looking up B for ai and E a j in Table 1 and
plugging the appropriate values into Eqs 7.1 and 7.2 we have that d ′

S(0) = vi − v j and d ′
T (0) = wi + w j . We now

start with d ′
S(0) and show that it is not equal to d ′

T (0). d ′
S(0) = vi −v j < wi −v j since by Table 1 vi < wi for case

B. wi − v j < wi + w j since all magnitudes are positive, and thus subtracting vi from wi is less than adding any
positive value to wi . But wi + w j = d ′

T (0), and thus d ′
S(0) < d ′

T (0). We now show the full case by case analysis.
All inferences are either derived from Table 1 as above, or follow from the fact that all magnitudes are positive.
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• AA: d ′
S(0) = −vi − v j < −wi − v j < −wi − w j = d ′

T (0).
• AB, AC: d ′

S(0) = −vi + v j < −wi + v j < −wi + w j = d ′
T (0).

• AD, AE, and AF: d ′
S(0) = −vi − v j < −wi − v j < −wi + w j = d ′

T (0).
• BB, BC: d ′

S(0) = vi + v j < wi + v j < wi + w j = d ′
T (0).

• BD: d ′
S(0) = vi − v j < vi + w j < wi + w j = d ′

T (0).
• BE, BF: d ′

S(0) = vi − v j < wi − v j < wi + w j = d ′
T (0).

• CC: d ′
S(0) = 0. d ′

T (0) = wi + w j > 0.
• CD, CE, CF: d ′

S(0) = −v j < w j < wi + w j = d ′
T (0).

• DD, DE, DF, EE, EF, FF: d ′
S(0) = −vi − v j < 0 < wi + w j = d ′

T (0).

The remaining cases are symmetric. In all cases we have shown that d ′
S(0) �= d ′

T (0), which proves that d(t) =
dS(t) − dT (t) is not at a local minimum at t = 0 and thus to proceed in the sweep constitutes a violation of the
geodesic Lang property. ��

Summary We have shown that the instantaneous rate of change in the geodesic distance between ai and a j is not
equal to the instantaneous rate of change in the tree distance between ai and a j . In particular, this shows that the
derivative d ′(0) = d ′

S(0)−d ′
T (0) does not vanish, meaning that d(0) is not a critical point. Since d(0) is not a critical

point, then to continue the sweep past a splitting event without splitting results in a violation of the geodesic Lang
property. This completes the proofs of Theorems 7.3 and 7.7. Thus for any given flat geodesic Lang polygon, there
exists a unique generalized sweep fro the polygon. This sweep is precisely the sweep simulated by the geodesic
universal molecule algorithm. Furthermore, together with Lemmas 5.4 and 7.1 this entails that there is a unique
geodesic Lang surface constructed on T having PT as its boundary and the subdivision of PT into vertices, edges,
and faces given by ST is the geodesic universal molecule of PT . This in turn is the final ingredient in the proof of
the Main Theorem, Theorem 1.1.

8 Conclusion

In this paper we generalized the universal molecule algorithm to geodesic Lang polygons which form the boundary
of piecewise-linear disk-like surfaces in R3 with zero-curvature. Restricted to simple, non-convex polygons in the
plane our algorithm extends the TreeMaker algorithm to cases where before it could not produce an output. A
further open problem is an extension of the algorithm to surfaces of non-zero curvature. Our Lang surfaces are more
general and can be used to construct surfaces with non-zero curvature. Can the algorithm be extended to compute
these from the boundary polygon? If we are given a geodesic Lang polygon drawn on a surface with singular points
of non-zero curvature, can we always compute a geodesic universal molecule on the polygon that is equivalent to
some Lang surface?

References

1. Aichholzer, O., Alberts, D., Aurenhammer, F., Gärtner, B.: A novel type of skeleton for polygons. J. Univers. Comput.
Sci. 1(12), 752–761 (1995)

2. Aloupis, G., Demaine, E.D., Langerman, S., Morin, P., O’Rourke, J., Streinu, I., Toussaint, G.T.: Edge-unfolding nested polyhedral
bands. Comput. Geom. Theory Appl. 39(1), 30–42 (2008)

3. Alperin, R., Hayes, B., Lang, R.: Folding the hyperbolic crane. Math. Intell. 34(2), 38–49 (2012)
4. Aurenhammer, F.: Voronoi diagrams—a survey of a fundamental geometric data structure. ACMComput. Surv. (CSUR) 23(3), 345–

405 (1991)
5. Bowers, J., Streinu, I.: Lang’s universal molecule algorithm. Ann. Math. Artif. Intell. 1–30 (2014)
6. Bowers, J.C., Streinu, I.: Rigidity of origami universalmolecules. In: Ida, T., Fleuriot, J.D. (eds.) AutomatedDeduction inGeometry.

Lecture Notes in Computer Science, vol. 7993, pp. 120–142. Springer, New York (2012)
7. Bowers, J.C., Streinu, I.: Computing origami universal molecules with cyclic tournament forests. In: Proc. 15th Intern. Symp. on

Symbolic and Numeric Algorithms for Scientific Computing (SYNASC’13), pp. 42–52. IEEE (2013)



Geodesic Universal Molecules 141

8. Demaine, E.D., Demaine, M.L.: Computing extreme origami bases. Technical Report CS-97-22, Dept. of Computer Science,
University of Waterloo, Waterloo (1997)

9. Demaine, E.D., Fekete, S.P., Lang, R.J.: Circle packing for origami design is hard. In: Wang-Iverson, P., Lang, R.J., Yim, M. (eds.)
Origami 5: Fifth International Meeting of Origami Science, Mathematics, and Education, pp. 609–626. Taylor and Francis, London
(2011)

10. Demaine, E.D.,O’Rourke, J.:Geometric FoldingAlgorithms:Linkages,Origami, andPolyhedra.CambridgeUniversity Press,Cam-
bridge (2007)

11. Ida, T., Ghourabi, F., Takahashi, K.: Formalizing polygonal knot origami. J. Symb. Comput. 69, 93–108 (2015)
12. Lang, R.J.: A computational algorithm for origami design. In: Proceedings of the 12th Annual ACM Symposium on Computational

Geometry, pp. 98–105 (1996)
13. Lang, R.J.: Treemaker 4.0: A program for origami design. http://www.langorigami.com (1998)
14. Tachi, T.: Origamizing polyhedral surfaces. IEEE Trans. Vis. Comput. Graph. 16(2), 298–311 (2010)
15. Tanaka, H.: Bi-stiffness property of motion structures transformed into square cells. Proc. R. Soc. A Math. Phys. Eng.

Sci. 469(2156), 20130063 (2013)
16. Wu, W., You, Z.: Modelling rigid origami with quaternions and dual quaternions. Proc. R. Soc. A Math. Phys. Eng.

Sci. 466(2119), 2155–2174 (2010)
17. Wu, W., You, Z.: A solution for folding rigid tall shopping bags. In: Proceedings of the Royal Society of London A: Mathematical,

Physical and Engineering Sciences, vol. 467, pp. 2561–2574. The Royal Society (2011)
18. Yasuda, H., Yein, T., Tachi, T., Miura, K., Taya, M.: Folding behaviour of Tachi–Miura polyhedron bellows. Proc. R. Soc. A Math.

Phys. Eng. Sci. 469(2159), 20130351 (2013)

http://www.langorigami.com

	Geodesic Universal Molecules
	Recommended Citation

	Geodesic Universal Molecules
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Piecewise Linear Metric Surfaces
	2.2 Metric Trees, Metric Doubling Cycles, and Doubling Polygons

	3 Geodesic Lang Polygons
	4 Generalized Sweep of a Geodesic Lang Polygon
	4.1 Kinetic Trees and Parallel Sweeps
	4.2 The Generalized Geodesic Sweep

	5 Lang Surfaces
	5.1 Overview
	5.2 Constructing Lang Surfaces
	5.3 Properties of Zero-Curvature Lang Surfaces
	5.4 The Extrusion Process as a Generalized Sweep

	6 Computing the Geodesic Universal Molecule
	7 Proof of Main Theorem
	7.1 Proof of Algorithm Correctness: Geodesic Universal Molecule Crease Patterns are Lang Surfaces
	7.2 Uniqueness

	8 Conclusion
	References


