189 research outputs found

    A Formal Metamodeling Approach to a Transformation between Visual and Formal Modeling Techniques

    Get PDF
    Formal modeling notations and visual modeling notations can complement each other when developing software models. The most frequently adopted approach is to define transformations between the visual and formal models. However, a significant problem with the currently suggested approaches is that the transformation itself is often described imprecisely, with the result that the overall transformation task may be imprecise, incomplete and inconsistent. This paper presents a formal metamodeling approach to transform between UML and Object-Z. In the paper, the two languages are defined in terms of their formal metamodels, and a systematic transformation between the models is provided at the meta-level in terms of formal mapping functions. As a consequence, we can provide a precise, consistent and complete transformation between a visual model in UML and a formal model in Object-Z

    Unification of LARCH and Z-Based Object Models to Support Algebraically-based Design Refinement: The LARCH Perspective

    Get PDF
    This research describes the feasibility of developing object-oriented LARCH specifications, part of a dual approach for formally extending object-oriented analysis models using LARCH and Z. The first phase consisted of two steps establishing a set of transformation heuristics for algebraically representing object models and implementing a robust LARCH parser. The LARCH parser produced abstract syntax trees ASTs of objects forming the basis for analyzing the similarities and differences between Z-based and LARCH-based object representations. The second phase used the analysis of LARCH and Z to identify fundamental core constructs in the languages and abstract syntax trees. These core constructs consisted of similar syntactic and semantic notions of signatures and axioms for describing a problem domain, thereby forming a canonical framework for formal object representations. This canonical framework provides a front-end for producing design refinement artifacts such as interface languages theorem proving sentences, and synthesis diagrams. The final phase demonstrated the feasibility of interface language generation by establishing an executable framework. This executable framework mapped LARCH into the SOFTWARE REFINERY™ Programming Environment to rapidly prototype object-oriented LARCH specifications

    Experiences Using Formal Methods for Requirements Modeling

    Get PDF
    This paper describes three cases studies in the lightweight application of formal methods to requirements modeling for spacecraft fault protection systems. The case studies differ from previously reported applications of formal methods in that formal methods were applied very early in the requirements engineering process, to validate the evolving requirements. The results were fed back into the projects, to improve the informal specifications. For each case study, we describe what methods were applied, how they were applied, how much effort was involved, and what the findings were. In all three cases, the formal modeling provided a cost effective enhancement of the existing verification and validation processes. We conclude that the benefits gained from early modeling of unstable requirements more than outweigh the effort needed to maintain multiple representations

    Independent verification of specification models for large software systems at the early phases of development lifecycle

    Get PDF
    One of the major challenges facing the software industry, in general and IV&V (Independent Verification and Validation) analysts in particular, is to find ways for analyzing dynamic behavior of requirement specifications of large software systems early in the development lifecycle. Such analysis can significantly improve the performance and reliability of the developed systems. This dissertation addresses the problem of developing an IV&V framework for extracting semantics of dynamic behavior from requirement specifications based on: (1) SART (Structured Analysis with Realtime) models, and (2) UML (Unified Modeling Language) models.;For SART, the framework presented here shows a direct mapping from SART specification models to CPN (Colored Petrinets) models. The semantics of the SART hierarchy at the individual levels are preserved in the mapping. This makes it easy for the analyst to perform the analysis and trace back to the corresponding SART model. CPN was selected because it supports rigorous dynamic analysis. A large scale case study based on a component of NASA EOS system was performed for a proof of the concept.;For UML specifications, an approach based on metamodels is presented. A special type of metamodel, called dynamic metamodel (DMM), is introduced. This approach holds several advantages over the direct mapping of UML to CPN. The mapping rules for generating DMM are not CPN specific, hence they would not change if a language other than CPN is used. Also it makes it more flexible to develop DMM because other types of models can be added to the existing UML models. A simple example of a pacemaker is used to illustrate the concepts of DMM

    Smart Geographic object: Toward a new understanding of GIS Technology in Ubiquitous Computing

    Get PDF
    One of the fundamental aspects of ubiquitous computing is the instrumentation of the real world by smart devices. This instrumentation constitutes an opportunity to rethink the interactions between human beings and their environment on the one hand, and between the components of this environment on the other. In this paper we discuss what this understanding of ubiquitous computing can bring to geographic science and particularly to GIS technology. Our main idea is the instrumentation of the geographic environment through the instrumentation of geographic objects composing it. And then investigate how this instrumentation can meet the current limitations of GIS technology, and offers a new stage of rapprochement between the earth and its abstraction. As result, the current research work proposes a new concept we named Smart Geographic Object SGO. The latter is a convergence point between the smart objects and geographic objects, two concepts appertaining respectively to
    • …
    corecore