2,052 research outputs found

    Formalism and judgement in assurance cases

    Get PDF
    This position paper deals with the tension between the desire for sound and auditable assurance cases and the current ubiquitous reliance on expert judgement. I believe that the use of expert judgement, though inevitable, needs to be much more cautious and disciplined than it usually is. The idea of assurance “cases ” owes its appeal to an awareness that all too often critical decisions are made in ways that are difficult to justify or even to explain, leaving the doubt (for the decision makers as well as other interested parties) that the decision may be unsound. By building a well-structured “case ” we would wish to allow proper scrutiny of the evidence and assumptions used, and of the arguments that link them to support a decision. A

    Verifiably-safe software-defined networks for CPS

    Full text link
    Next generation cyber-physical systems (CPS) are expected to be deployed in domains which require scalability as well as performance under dynamic conditions. This scale and dynamicity will require that CPS communication networks be programmatic (i.e., not requiring manual intervention at any stage), but still maintain iron-clad safety guarantees. Software-defined networking standards like OpenFlow provide a means for scalably building tailor-made network architectures, but there is no guarantee that these systems are safe, correct, or secure. In this work we propose a methodology and accompanying tools for specifying and modeling distributed systems such that existing formal verification techniques can be transparently used to analyze critical requirements and properties prior to system implementation. We demonstrate this methodology by iteratively modeling and verifying an OpenFlow learning switch network with respect to network correctness, network convergence, and mobility-related properties. We posit that a design strategy based on the complementary pairing of software-defined networking and formal verification would enable the CPS community to build next-generation systems without sacrificing the safety and reliability that these systems must deliver

    Towards building a safety case for Marine Unmanned Surface Vehicles: a Bayesian perspective

    No full text
    Marine Unmanned Surface Vehicles (MUSVs) are essential platforms for persistent and adaptable ocean monitoring and sampling. In order to operate these platforms in coastal areas or near oil and gas waters the MUSVs must meet statutorily and industry safety requirements. Given the novelty of these platforms, there is lack of evidence to support the claim that a given safety target can be met without any additional protection. Therefore, for safety critical operations, MUSVs require the implementation of a safety function. The development of a safety function must comply with IEC61508 safety standard, which requires a quantification of the safety integrity level. Compliance to IEC61508 is subject to subjective uncertainty. The nature of the technology in terms of mode of operation and the environment in which operates exacerbates this uncertainty. This paper presents a Bayesian belief network for formalizing the safety arguments underpinning MUSV compliance to IEC 615078 safety standard

    Reasoning about the Reliability of Diverse Two-Channel Systems in which One Channel is "Possibly Perfect"

    Get PDF
    This paper considers the problem of reasoning about the reliability of fault-tolerant systems with two "channels" (i.e., components) of which one, A, supports only a claim of reliability, while the other, B, by virtue of extreme simplicity and extensive analysis, supports a plausible claim of "perfection." We begin with the case where either channel can bring the system to a safe state. We show that, conditional upon knowing pA (the probability that A fails on a randomly selected demand) and pB (the probability that channel B is imperfect), a conservative bound on the probability that the system fails on a randomly selected demand is simply pA.pB. That is, there is conditional independence between the events "A fails" and "B is imperfect." The second step of the reasoning involves epistemic uncertainty about (pA, pB) and we show that under quite plausible assumptions, a conservative bound on system pfd can be constructed from point estimates for just three parameters. We discuss the feasibility of establishing credible estimates for these parameters. We extend our analysis from faults of omission to those of commission, and then combine these to yield an analysis for monitored architectures of a kind proposed for aircraft

    A Framework for Probabilistic Evaluation of Interval Management Tolerance in the Terminal Radar Control Area

    Get PDF
    Projections of future traffic in the national airspace show that most of the hub airports and their attendant airspace will need to undergo significant redevelopment and redesign in order to accommodate any significant increase in traffic volume. Even though closely spaced parallel approaches increase throughput into a given airport, controller workload in oversubscribed metroplexes is further taxed by these approaches that require stringent monitoring in a saturated environment. The interval management (IM) concept in the TRACON area is designed to shift some of the operational burden from the control tower to the flight deck, placing the flight crew in charge of implementing the required speed changes to maintain a relative spacing interval. The interval management tolerance is a measure of the allowable deviation from the desired spacing interval for the IM aircraft (and its target aircraft). For this complex task, Formal Methods can help to ensure better design and system implementation. In this paper, we propose a probabilistic framework to quantify the uncertainty and performance associated with the major components of the IM tolerance. The analytical basis for this framework may be used to formalize both correctness and probabilistic system safety claims in a modular fashion at the algorithmic level in a way compatible with several Formal Methods tools

    Towards a Rigorous Basis for Specific Operations Risk Assessment of UAS

    Get PDF
    The Specific Operations Risk Assessment (SORA) guidance represents the consensus of various national aviation authorities on a common process to identify, qualitatively assess, and manage the safety risk posed by unmanned aircraft systems (UAS), when preparing the safety case required for regulatory approval to conduct certain types of operations. As such, it can be considered a de facto standard, being increasingly adopted by various relevant stakeholders. This paper first gives an overview of the SORA process and associated methods, identifying a number of inconsistencies in risk identification and assessment, also discussing plausible strategies to close the associated gaps. Then, we give a well-founded basis for the applicable concepts, such as barrier integrity, assurance, and robustness, following which we present a preliminary and simple probabilistic formalization of the underpinning barrier-based safety model. We illustrate our overall approach through a worked example, also discussing how a Bayesian framework can facilitate extending and enhancing our initial formalization. We conclude with a discussion of the opportunities afforded by our approach, such as a well-founded basis for barrier selection, whilst addressing the associated challenges. The main objective of this work is to complement the current SORA guidance through a principled, mathematicallybased approach to risk assessment, particularly when it is applied to higher-risk operational concepts that warrant greater rigor in safety assessment and assurance

    Towards the Verification of Pervasive Systems

    Get PDF
    Pervasive systems, that is roughly speaking systems that can interact with their environment, are increasingly common. In such systems, there are many dimensions to assess: security and reliability, safety and liveness, real-time response, etc. So far modelling and formalizing attempts have been very piecemeal approaches. This paper describes our analysis of a pervasive case study (MATCH, a homecare application) and our proposal for formal (particularly verification) approaches. Our goal is to see to what extent current state of the art formal methods are capable of coping with the verification demand introduced by pervasive systems, and to point out their limitations
    • …
    corecore