1,598 research outputs found

    Analysis of Mobile Networks’ Protocols Based on Abstract State Machines

    Get PDF
    We define MOTION (MOdeling and simulaTIng mObile adhoc Networks), a Java application based on the framework ASMETA (ASM mETAmodeling), that uses the ASM (Abstract State Machine) formalism to model and simulate mobile networks. In particular, the AODV (Ad-hoc On-demand Distance Vector) protocol is used to show the behaviour of the application

    Contrasting Views of Complexity and Their Implications For Network-Centric Infrastructures

    Get PDF
    There exists a widely recognized need to better understand and manage complex “systems of systems,” ranging from biology, ecology, and medicine to network-centric technologies. This is motivating the search for universal laws of highly evolved systems and driving demand for new mathematics and methods that are consistent, integrative, and predictive. However, the theoretical frameworks available today are not merely fragmented but sometimes contradictory and incompatible. We argue that complexity arises in highly evolved biological and technological systems primarily to provide mechanisms to create robustness. However, this complexity itself can be a source of new fragility, leading to “robust yet fragile” tradeoffs in system design. We focus on the role of robustness and architecture in networked infrastructures, and we highlight recent advances in the theory of distributed control driven by network technologies. This view of complexity in highly organized technological and biological systems is fundamentally different from the dominant perspective in the mainstream sciences, which downplays function, constraints, and tradeoffs, and tends to minimize the role of organization and design

    A knowledge discovery approach for the detection of power grid state variable attacks

    Get PDF
    As the level of sophistication in power system technologies increases, the amount of system state parameters being recorded also increases. This data not only provides an opportunity for monitoring and diagnostics of a power system, but it also creates an environment wherein security can be maintained. Being able to extract relevant information from this pool of data is one of the key challenges still yet to be obtained in the smart grid. The potential exists for the creation of innovative power grid cybersecurity applications, which harness the information gained from advanced analytics. Such analytics can be based on the extraction of key features from statistical measures of reported and contingency power system state parameters. These applications, once perfected, will be able to alert upon potential cyber intrusions providing a framework for the creation of power system intrusion detection schemes derived from the cyber-physical perspective. With the power grid having a growing cyber dependency, these systems are becoming increasingly the target of attacks. The current power grid is undergoing a state of transition where new monitoring and control devices are being constantly added. These newly connected devices, by means of the cyber infrastructure, are capable of executing remote control decisions along with reporting sensor data back to a centralized location. This dissertation is an examination of advanced data mining and data analytic techniques for the development of a framework for detecting malicious cyber activity in the power grid based solely on reported power system state parameters. Through this examination, results indicate the successful development of a cyber-event detection framework capable of detecting and localizing 92% of the simulated cyber-events. In focusing on specific types of intrusions, this work describes the utilization of machine learning techniques to examine key features of multiple power systems for the detection of said intrusions. System analysis is preformed using the Newton-Raphson method to solve the nonlinear power system partial differential power flow equations for a 5-Bus and 14-Bus power system. This examination offers the theory and simulated implementation examples behind a context specific detection approach for securing the current and next generation\u27s critical infrastructure power grid

    Developing Systems for Cyber Situational Awareness

    Get PDF
    In both military and commercial settings, the awareness of Cyber attacks and the effect of those attacks on the mission space of an organization has become a targeted information goal for leaders and commanders at all levels. We present in this paper a defining framework to understand situational awareness (SA)—especially as it pertains to the Cyber domain—and propose a methodology for populating the cognitive domain model for this realm based on adversarial knowledge involved with Cyber attacks. We conclude with considerations for developing Cyber SA systems of the future
    • 

    corecore