601 research outputs found

    Modelling Of A Microgrid Using Z Notation

    Get PDF
    A Microgrid is a group of electrical sources and connected loads that operate energy grids in grid-connected or islanded mode. Microgrid usage has increased recently due to improved technology andthe effectiveness of renewable energy sources. To produce a balanced and stable power supply frommicrogrids and meet the load demand is a challenging research area in both the electrical engineering and software engineering fields. This work presents a formal model for representing the microgrid system to prevent failure or inconsistencies in the power generation and usage. A methodology for creating a formal model for a microgrid is a critical approach to overcoming the challenges of microgrid management and is examined in this work. The work was studied in two parts. The first part assessed the microgrid’s existing class diagram that is then transformed into a precise representation in the Z notation. The Z notation is a mathematical specification language used for describing system properties, and to reason about possible refinements of a design. The second part involved verifying and validation of the microgrid system through the creation of a structured specification using Z. The research addressed class diagram faults in model-based testing. Hence, the class diagrams are analyzed, recreated, and then designed using the formal notation in an iterative process, resulting in a precise description of the microgrid structure in a formal, unambiguous, and effective manner. This description can then be analyzed to determine the correctness of the UML description that will be used to design a microgrid power management system

    Supervisory Energy-Management Systems for Microgrids: Modeling and Formal Verification

    Get PDF

    Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants

    Get PDF
    Within the field of soft computing, intelligent optimization modelling techniques include various major techniques in artificial intelligence. These techniques pretend to generate new business knowledge transforming sets of "raw data" into business value. One of the principal applications of these techniques is related to the design of predictive analytics for the improvement of advanced CBM (condition-based maintenance) strategies and energy production forecasting. These advanced techniques can be used to transform control system data, operational data and maintenance event data to failure diagnostic and prognostic knowledge and, ultimately, to derive expected energy generation. One of the systems where these techniques can be applied with massive potential impact are the legacy monitoring systems existing in solar PV energy generation plants. These systems produce a great amount of data over time, while at the same time they demand an important e ort in order to increase their performance through the use of more accurate predictive analytics to reduce production losses having a direct impact on ROI. How to choose the most suitable techniques to apply is one of the problems to address. This paper presents a review and a comparative analysis of six intelligent optimization modelling techniques, which have been applied on a PV plant case study, using the energy production forecast as the decision variable. The methodology proposed not only pretends to elicit the most accurate solution but also validates the results, in comparison with the di erent outputs for the di erent techniques

    Day-Ahead Load Demand Forecasting in Urban Community Cluster Microgrids Using Machine Learning Methods

    Get PDF
    © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).The modern-day urban energy sector possesses the integrated operation of various microgrids located in a vicinity, named cluster microgrids, which helps to reduce the utility grid burden. However, these cluster microgrids require a precise electric load projection to manage the operations, as the integrated operation of multiple microgrids leads to dynamic load demand. Thus, load forecasting is a complicated operation that requires more than statistical methods. There are different machine learning methods available in the literature that are applied to single microgrid cases. In this line, the cluster microgrids concept is a new application, which is very limitedly discussed in the literature. Thus, to identify the best load forecasting method in cluster microgrids, this article implements a variety of machine learning algorithms, including linear regression (quadratic), support vector machines, long short-term memory, and artificial neural networks (ANN) to forecast the load demand in the short term. The effectiveness of these methods is analyzed by computing various factors such as root mean square error, R-square, mean square error, mean absolute error, mean absolute percentage error, and time of computation. From this, it is observed that the ANN provides effective forecasting results. In addition, three distinct optimization techniques are used to find the optimum ANN training algorithm: Levenberg−Marquardt, Bayesian Regularization, and Scaled Conjugate Gradient. The effectiveness of these optimization algorithms is verified in terms of training, test, validation, and error analysis. The proposed system simulation is carried out using the MATLAB/Simulink-2021a® software. From the results, it is found that the Levenberg−Marquardt optimization algorithm-based ANN model gives the best electrical load forecasting results.Peer reviewe

    Model predictive control for microgrid functionalities: review and future challenges

    Get PDF
    ABSTRACT: Renewable generation and energy storage systems are technologies which evoke the future energy paradigm. While these technologies have reached their technological maturity, the way they are integrated and operated in the future smart grids still presents several challenges. Microgrids appear as a key technology to pave the path towards the integration and optimized operation in smart grids. However, the optimization of microgrids considered as a set of subsystems introduces a high degree of complexity in the associated control problem. Model Predictive Control (MPC) is a control methodology which has been satisfactorily applied to solve complex control problems in the industry and also currently it is widely researched and adopted in the research community. This paper reviews the application of MPC to microgrids from the point of view of their main functionalities, describing the design methodology and the main current advances. Finally, challenges and future perspectives of MPC and its applications in microgrids are described and summarized.info:eu-repo/semantics/publishedVersio

    Functional Analysis of the Microgrid Concept Applied to Case Studies of the Sundom Smart Grid

    Get PDF
    The operation of microgrids is a complex task because it involves several stakeholders and controlling a large number of different active and intelligent resources or devices. Management functions, such as frequency control or islanding, are defined in the microgrid concept, but depending on the application, some functions may not be needed. In order to analyze the required functions for network operation and visualize the interactions between the actors operating a particular microgrid, a comprehensive use case analysis is needed. This paper presents the use case modelling method applied for microgrid management from an abstract or concept level to a more practical level. By utilizing case studies, the potential entities can be detected where the development or improvement of practical solutions is necessary. The use case analysis has been conducted from top-down until test use cases by real-time simulation models. Test use cases are applied to a real distribution network model, Sundom Smart Grid, with measurement data and newly developed controllers.. The functional analysis provides valuable results when studying several microgrid functions operating in parallel and affecting each other. For example, as shown in this paper, ancillary services provided by an active customer may mean that both the active power and reactive power from customer premises are controlled at the same time by different stakeholders.© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Experiments on a real-time energy management system for islanded prosumer microgrids

    Get PDF
    This paper presents an experimental demonstration of a novel real-time Energy Management System (EMS) for inverter-based microgrids to achieve optimal economic operation using a simple dynamic algorithm without offline optimization process requirements. The dynamic algorithm solves the economic dispatch problem offering an adequate stability performance and an optimal power reference tracking under sudden load and generation changes. Convergence, optimality and frequency regulation properties of the real-time EMS are shown, and the effectiveness and compatibility with inner and primary controllers are validated in experiments, showing better performance on optimal power tracking and frequency regulation than conventional droop control power sharing techniques
    corecore