
 MODELLING OF A MICROGRID USING Z NOTATION

by

Binisha Shrestha

Master of Science in Computer Science, University of North Dakota 2020

A Thesis

Submitted to the Graduate Faculty

of the

University of North Dakota

in partial fulfillment of the requirements

for the degree of

Master of Science

Grand Forks, North Dakota

December
 2020

ii

Copyright 2016 Binisha Shrestha

iii

This document, submitted in partial fulfillment of the requirements for the degree from
the University of North Dakota, has been read by the Faculty Advisory Committee under whom
the work has been done and is hereby approved.

This document is being submitted by the appointed advisory committee as having met all
the requirements of the School of Graduate Studies at the University of North Dakota and is
hereby approved.

Chris Nelson
Dean of the School of Graduate Studies

Date

Name:

Degree:

������������������������	�
�������������	������	����	
��

Master of Science

Thomas Stokke

Wen-Chen Hu

Emanuel Grant

Binisha Shrestha

���������

iv

PERMISSION

Title Modelling of Microgrid using Z Notation

Department School of Electrical Engineering and Computer Science.

Degree Masters of Computer Science

In presenting this thesis in partial fulfillment of the requirements for a graduate degree from

the University of North Dakota, I agree that the library of this University shall make it freely

available for inspection. I further agree that permission for extensive copying for scholarly

purposes may be granted by the professor who supervised my thesis work. It is understood that

any copying or publication or other use of this thesis or part thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of North Dakota in any scholarly use which may be made of

any material in my thesis.

Binisha Shrestha

 Dec 9, 2020

v

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to the members of my advisory Committee for their

guidance and support during my time in the master’s program at the University of North

Dakota.

vi

 TABLE OF CONTENTS

LIST OF FIGURES viii

LIST OF TABLE ix

ABSTRACT x

CHAPTER 1 1

INTRODUCTION 1

1.1 Problem Definition 1

1.2 Scope of work 3

1.3 Motivation 3

1.4 Approach 4

1.5 Expected outcome 4

1.6 Thesis Structure 5

CHAPTER 2 6

BACKGROUND 6

2.1 The Unified Modeling Language 6

2.2 Formal specification 7

2.3 Model based software Development 8

2.4 Microgrid control architecture 9

2.4.1 Master-slave control: 10

2.4.2 Peer-to-peer control mode: 10

2.4.3 Hierarchical mode: 11

CHAPTER 3 12

LITERATURE REVIEW 12

3.1 Application of formal specification technique to microgrid representation 12

3.2 Formal validation of supervisory energy management systems for microgrids 13

3.3 Intelligent Agent-Based Microgrid Control 14

3.4 Formal requirements for microgrid using Kaos and reference architecture 15

CHAPTER 4 16

METHODOLOGY 16

4.1 Illustration of existing class diagram 17

4.2 Formalization of UML class diagram 18

4.2.1 Type definition: Basic, Composite, and global variables 19

vii

4.2.2 Representation of association and aggregation in Z 20

4.2.3 Representation of schema operation and state representation 21

4.3 Example error and modification of classes 22

4.4 Representation of class in formal specification based on the control architecture of
the microgrid 25

CHAPTER 5 27

RESULTS AND DISCUSSION 27

CHAPTER 6 35

CONCLUSION 35

6.1 Conclusions 35

6.2 Future work 36

APPENDIX I 37

REFERENCES 48

viii

LIST OF FIGURES

Figure 1. 1 Interactive operation of the microgrid .. 2
Figure 2. 1 Representation of Class as an example 7
Figure 2. 2 Representation of Z notation as an example.. 8
Figure 4. 1 Existing Class diagram 18
Figure 4. 2 Battery class... 19
Figure 4. 3 Representation of Z schema of battery .. 19
Figure 4. 4 Schema of the battery as an example .. 20
Figure 4. 5 A UML aggregation structure ... 21
Figure 4. 6 Schema of the aggregation structure ... 21
Figure 4. 7 Pre and postcondition of state of charge of the battery as an example 22
Figure 4. 8 Use of improper data types .. 23
Figure 4. 9 Representation of proof correctness of the specification 23
Figure 5. 1 Modified class diagram 28
Figure 5. 2 Z Schema for microgrid adjustment method for class microgrid_attributes 32
Figure 5. 3 Z Schema master unit operation .. 33
Figure 5. 4 Z Schema for state of charge of the battery ... 33

ix

LIST OF TABLE

Table 5. 1 Description and important constraints of each class. .. 29

x

ABSTRACT

A Microgrid is a group of electrical sources and connected loads that operate energy grids in

grid-connected or islanded mode. Microgrid usage has increased recently due to improved

technology and the effectiveness of renewable energy sources. To produce a balanced and

stable power supply from microgrids and meet the load demand is a challenging research area

in both the electrical engineering and software engineering fields. This work presents a formal

model for representing the microgrid system to prevent failure or inconsistencies in the power

generation and usage. A methodology for creating a formal model for a microgrid is a critical

approach to overcoming the challenges of microgrid management and is examined in this

work. The work was studied in two parts. The first part assessed the microgrid’s existing class

diagram that is then transformed into a precise representation in the Z notation. The Z notation

is a mathematical specification language used for describing system properties, and to reason

about possible refinements of a design. The second part involved verifying and validation of

microgrid system through the creation of a structured specification using Z. The research

addressed class diagram faults in model-based testing. Hence, the class diagrams are analyzed,

recreated, and then designed using the formal notation in an iterative process, resulting in a

precise description of the microgrid structure in a formal, unambiguous, and effective manner.

This description can then be analyzed to determine the correctness of the UML description that

will be used to design a microgrid power management system.

Index Terms - Microgrid, Renewable energy, Battery energy storage systems, energy storage

system, Distributed generator, Z notation

1

CHAPTER 1

INTRODUCTION

This chapter first introduces the background of the microgrid system and gives the general

problem description. Section 1.2 shows the scope of the work. The scope of the work consists

of the general methodology description. Section 1.3 presents the motivation of the research

towards the use of formal specification. Lastly, section 1.4 shows the approaches to solve the

problem and the expected results.

1.1 Problem Definition

A microgrid is a distributed power system that has distributed energy resources (DER)

effectively across multiple sources of power generations [1]. These sources include traditional

power sources such as diesel, natural gas to more renewable sources such as solar, wind, or

energy storage systems such as batteries. In addition to these DERs, the microgrid has the

capability to operate in a grid-connected or islanded mode. In the island mode, the microgrid

can operate if disconnected from the main grid. This allows it to continue operating even if the

main grid goes down. In the grid-connected mode, microgrid controls the supplied power from

microgrid to the main grid and exchanges the power when any fault or emergency occurs in

main grid.

Microgrids are used to achieve diversification of energy sources, improve reliability, and

reduce cost of load[2]. By enabling the integration of distributed resources such as wind and

solar, these systems can operate while the main grid is down or help mitigate grid disturbances.

The microgrid integrates distributed generators (DG), an energy storage system (ESS), and

load. Figure 1.1 shows the typical structure of a microgrids comprising DG, battery energy

storage system (BESS), solar photovoltaic systems (PV), and wind power systems connected

2

to distribution networks.

Figure 1. 1: Interactive operation of the microgrid

Traditionally, power grids are highly centralized, with power and energy flowing from large

synchronous generators being distributed to end users [1]. However, the technological issues

associated with traditional power grids have stimulated new power system technologies. With

the emergence of DERs, microgrid technologies are playing an essential role in the electric

power and energy system. The development of microgrids has brought many benefits, but does

present significant challenges. For instance, microgrids include renewable sources, energy

storage systems (ESS), distributed generator (DG), and software controls. To ensure power

grids operate as efficiently care must be taken to ensure all these systems work together. It is

necessary to ensure the operation of microgrids follow intelligent control strategies. To fulfill

the purpose of microgrids being controllable, reliable, and to ensure security, strict

3

specification is required to prevent severe failure. To make the system more reliable the use of

a formal specification has been adopted. A formal specification is a series of steps involving

verification and refinements, which leads to a precise and unambiguous description of the

system. This lets us help to determine the correctness of the design and implementation.

1.2 Scope of work

The scope of this work falls under the formal modeling of a microgrid system. Formal models

are used to describe the system being developed, detail designs and it is used to verify that the

requirements of the system being developed have been accurately specified. The components,

attributes modeled through formal modeling, have been thoroughly described. For the UML

modeling, I followed the IEEE 1547 “IEEE Standard for Interconnecting Distributed

Resources with Electric Power Systems” guidelines [3] [4]. The document provides the

uniform standard for the technical requirements for distributed energy resources and a suitable

set of rules.

1.3 Motivation

Formal specification techniques and analysis have proven to be an efficient approach in

providing understanding of defining software requirements and of software design. The formal

specification is mostly being used in the field of safety-critical system development. In the

microgrid system, I have introduced formalizing the specification using Z notation as a means

of validation and verification of the system being developed. So the question arises, “why does

it matter in a safety-critical system, and why is the correctness needed?”. Microgrids having

intricate design fall under safety-critical systems which require a high degree of safety

assurance. Formal models functions as a concise and precise description of the behavior of the

system and helps to prevent ambiguity. Therefore, this approach is an important step in trying

4

to ensure the correction of the system.

1.4 Approach

As stated earlier, the work was studied in two parts. The first part assessed the microgrid’s

existing class diagram [5], which was then transformed into a precise representation in the Z

notation. UML class diagrams were used to outline the structure and relationship between the

parts of the microgrid. The second part involved transforming the UML class diagram into

corresponding formal specification with respect to data interactions and constraints using

mathematically defined types. The formal specification was used as an unambiguous form of

notation to analyze the requirements and during the implementation of the system. It allowed

us to verify the system design, resolve ambiguities, and detect errors on the specification before

system development. In this thesis, the formal specification of the microgrid involved various

conditions, including internal state, outputs, and execution of the faulty statements.

The work represented in this thesis follows the model-based software development (MBD)

technique. MBD employs the development of a series of UML requirements, design, and

deployment that are derived through iterative steps [6]. The methodologies for transforming

the class diagram into formal methods are specified by a set of rules. The rules are thoroughly

described in the methodology section. The UML class diagram doesn’t satisfy the techniques,

it might satisfy the requirements set by the techniques; otherwise the class diagram further

changes in an iterative process, based on the derived formal specification.

1.5 Expected outcome

The purpose of my research is to explore the concept of energy management systems (EMS)

with a focus on modeling, testing, and validation prior to the integration of a microgrid. In this

research, the expected outcome is to demonstrate the feasibility and benefits of applying formal

5

specification techniques in software development by documenting its use in developing energy

management systems for microgrids. Further, I also expect to obtain a formal specification to

analyze the correctness of the microgrid system.

1.6 Thesis Structure

The organization of the paper is as follows. Chapter II presents the theoretical background of

the research. It introduces the microgrid system, energy management system, UML class

diagram, formal method Z notation, and model-based software development techniques.

Chapter III outlines the methodology applied and the methods used for this research and

description of the process for developing Z notation. Chapter IV describes the result of the

work. And lastly, chapter V concludes with the conclusion along with suggestions for future

research.

6

CHAPTER 2

BACKGROUND

This chapter introduces the model-based software development technique and the concepts

used in this research. It discusses the formal specification language and UML class diagram

and control architecture of the microgrid system. Understanding the microgrid background,

energy storage, power supply, and the current models used to define microgrids will provide a

solid foundation for understanding how microgrid systems emerged and function. On

microgrid systems, I explore different concepts required to design control strategies for

distributed power systems. Additional information of the current technology provides

information on how I can accomplish the microgrid system's improvement using the formal

specification.

2.1 The Unified Modeling Language

Unified Modeling Language(UML) is the modeling language designed to model systems

adopted by Object Management Group (OMG). UML specifies and documents the entire

system at a high level of abstraction [7]. UML provides the system’s visual model, which helps

to give a behavioral overview of the system. UML works best with object-oriented modeling

software, and provides a more precise specification than most object-oriented notation [8]. For

the microgrid system, UML class diagrams are used to outline the structure of the system. The

class diagram is represented in the rectangular box with three compartments: class, the object

attributes, and the methods for the class. Initially, classes are identified, then attributes and

operations of each class and relationships between each class are shown with different types of

the arrow. The relationships includes the association, aggregations, compositions, and

generalization. Figure 2.1 represents the UML class diagram as an example.

7

The advantage of UML diagrams is it can provide a visual model of the system, enabling

developers to understand how a system works more efficiently. Furthermore, the use of a UML

class diagram in system development helps to describe the significant entities and the

relationship between them.

Figure 2. 1 Representation of Class as an example

2.2 Formal specification

A Specification language is a formal language that provides an unambiguous specification of

the system's static structural and behavior of features. Specification language is based on the

mathematical concept. The use of specification language can provide a reliable and precise

reference of the system at much higher level that a programming language. It provides a

reference for those testing the software, those implementing the software, and those writing

instruction manuals for the system [9]. The accuracy and preciseness needed in the

development of a formal specification can reduce the number of errors that occur and the

number of omissions. Furthermore, the specifications' mathematical nature enables it to be

automatically processed for error checking and consistency of the requirement specification of

the system.

In my research, I have used Z notation to provide a formal specification of the microgrid

system. Z notation is a strongly typed mathematical formal specification language. Although

8

UML diagrams are useful in modeling system behavior, there are limitations to what they can

describe. So, given modern mathematics expression, it is natural to adapt mathematics to a

system description. This provides a form of abstraction by enabling developers to focus on

precisely what the system does without worrying about the meaning of terms or phrases or

worrying about how to gather information from large and complex amounts of code. It also

allows for an unambiguous, concise specification of the software [10].

The reason for the use of Z notation is that class diagrams do not offer enough precise to create

unambiguous specification; it would be necessary to specify additional constraints about the

object in the model. Using Z helps to specify system constraints and concise specifications,

useful for software development. Z specifies changes in state, the relationship between the

inputs and outputs, the system's operation, description of valid inputs, and the invariant's

relationship of the system.

Z schema consists of two compartments, declaration, and predicate. First, a declaration of the

attributes or the variables is defined. Figure 3 represents the example of the Z notation. In the

example, variable ℝ (Real) is defined for the type Input. Similarly, an object is defined by

declaration, abbreviation, or by axiom. The predicate defines the structure of the declaration,

describing the variables and the constraints. The predicate in figure 3 describes an invariant

which must be satisfied by input. It asserts that the input must be between 5 and 12.

Figure 2. 2 Representation of Z notation as an example

2.3 Model based software Development

Model-based software development (MDSD) is a software development methodology that

9

focuses on an abstract representation of software systems' knowledge and activities [6].

Modeling serves to provide a detailed description of the system, the modeling of reusable

classifiers, automatic code generation, and early verification and validation. MDSD has

become a predominant paradigm in the development of safety-critical system development

[11]. MDSD helps to provide a perspective on correctness, and how safety affects software

development. The development process begins with gathering the requirements and

developing the architectural design. The architectural design refers to the modeling of the

software, which is the high-level decomposition of the system with the interfaces, interaction

with the components. Next, a software solution that satisfies the architectural design is

developed. This phase includes the definition of data structures and components of the assigned

modules. In this research, we have integrated formal techniques with the MDSD approach. The

resulting UML design is then analyzed by the formal modeling language.

This research focuses on developing techniques, methods, and processes to generate domain-

specific software development environments. Use of MDSD is meant to increase productivity

by maximizing compatibility between systems and simplifying design process [10]. In my

research, the goal is to provide concise and expressive models throughout the development

process such that they can provide developers detailed concepts and notations regarding the

characteristics of the system.

2.4 Microgrid control architecture

Microgrid integrate distributed energy resources (DER), distributed generators (DG), energy

storage systems (ESS), and the load used to supply the power. The prominent feature of the

microgrid is controllability [12]. Microgrid control consists of i) determination of operation

mode, either grid-connected, or islanded mode. ii) voltage and frequency regulation, power

control, and microgrid monitoring, and iii) power control for each local generation and energy

10

storage system. The control of microgrids rely on communication. Depending on the state of

DG in the microgrid, the control architecture can be: i) master-slave control, ii) peer-to-peer

control, or iii) hierarchical control [1].

2.4.1 Master-slave control:

When a microgrid is operated in grid-connected mode, the main grid provides the frequency

and voltage references for microgrid [1]. When microgrids operate in islanded mode, ESS and

DG operate as master controllers to provide voltage and frequency reference for microgrid.

When DG is used as a master controller, the microgrid can operate in the islanded mode for a

longer period than ESS alone. This is due to ESS having limited storage capabilities compared

to DG and a state of charge (SOC) limit during discharging state. However, the combination

of ESS and DG helps reduce voltage and frequency fluctuation. This method can allow the

microgrid system to stay in an islanded mode for a longer period.

2.4.2 Peer-to-peer control mode:

ESS is a control mode capable of adjusting the voltage and frequency based on the demand. If

the frequency of the ESS is decreased, the DG will increase its power output to maintain the

frequency. Similarly, if the voltage level drops, ESS will increase the reactive power output.

In comparison with master-slave control mode, peer-to-peer control can make decisions with

local information. Meanwhile, DG and ESS units still rely on master-slave control in the

power-sharing task, which is why it is not widely implemented in practical application of

microgrids.[1].

11

2.4.3 Hierarchical mode:

Hierarchical control is capable of predicting local demand and renewable power generation,

so a set of operation plans is developed accordingly. As a result, the operation mode is selected

based on the collected information. Through the use of this control architecture, transient

power demand-supply can be balanced, and manage the load based on DG outputs and load

demands. Even if the communication fails for a short while, microgrid can still maintain

normal operation. Compared to the other control modes, the hierarchical mode can operate

more efficiently and with more flexibly.

In this section, hierarchical and master-slave control is considered efficient architecture, and

the UML class diagram and formal specification are designed based on these two control

strategies.

12

CHAPTER 3

LITERATURE REVIEW

This chapter discusses the related work and identifies what aspects of previous work will be

applied. These studies focus on a few selected research that contribute to the use of formal

specification and how it can be implemented in many different system development phases.

This chapter's primary goal is to provide a review of the literature and present an overview of

the current research that contribute to the use of formal specification in system development.

Furthermore, this research shows some of the challenges in large scale system development,

the benefits of using the formal specification, and the differences between this research, and

previous work in this area.

3.1 Application of formal specification technique to microgrid representation

Previous research by Maksym Tkach [5] presented formal specification techniques to model

microgrids that can serve as a foundation for future work in the microgrid models. The author

used UML behavioral diagrams and Object Constraint Language (OCL) specification language

to describe the model behaviors. OCL is the formal declarative language used to describe

expressions in UML. UML diagram can be used to show the basic structure of the system.

OCL can help rigorously define the system design. It uses notation similar to object-oriented

programming languages like C++ and Java.

The microgrid modeling begins with a rigorous definition of a microgrid's essential

components in a thorough and error-free manner. Next, a class diagram was created to show

the microgrid's structural aspects following the requirement elicitation process. Finally, OCL

is used to define the system rigorously. OCL offers several essential features to support the

verification and validation of the microgrid. OCL also provides a detailed analysis of the model

description.

13

 OCL expression supplemented UML in three ways; first, the OCL removes ambiguity and

contradictions. Second, OCL expressions are used to create constraints. Constraints are

restrictions on attributes that must always hold. Third, OCL expressions are used to define

operations and specify the expected behavior of the system. Similarly, the UML-based

Specification Environment (USE) tool is used for model transformation and validation of

UML/OCL models. The study presented the USE as an invaluable error checking tool to ensure

the correctness of the OCL syntax and the model behavior.

The microgrid model described in this paper is focused on residential purposes with single

stakeholders. Similarly, this research addressed all the permissible variations of frequency and

voltage and defined all the object's actions using OCL. However, the result explained in the

context using OCL showed limited specification of the microgrid system. It failed to illustrate

all possible energy flow among the system's components but provided insight for using the

UML class diagram to see the comparison on the outputs.

3.2 Formal validation of supervisory energy management systems for microgrids

Research by G. Sugumar et al. [13] presents the verification and modeling of supervisory

energy management systems using timed automata and UPPAAL, a formal verification model

checker. UPPAAL is a model checking tool used to verify the correctness of real-time systems.

The system from Sugumar et al.’s study consists of a diesel generator, battery energy storage

system, photovoltaic array, and load. All of these distributed energy resources are connected

with the common DC bus to fulfill the DC load demands. The algorithm for the flow of power

in the microgrid system is the algorithm determined by examining the solar power system,

battery energy storage, potential power generated by the diesel generator, and power required

for the load. The algorithm addresses four major inputs: (i) when the load is satisfied by the

solar energy; the controller directs power directly to the load, and if excess capacity is available

14

from solar that excess can be used to charge the battery storage system. (ii) if the solar energy

available is inadequate and the battery storage system is sufficient to meet the load demand,

then the storage devices are discharged to drive the load. (iii) The use of diesel generators

initiates when the battery storage system and solar power is insufficient to meet the demand.

(iv) the overall energy flow from all available sources is insufficient. In this rare situation, non-

critical loads like heating devices, and chillers are shut down temporarily to meet the load

demand.

The proposed method of modelling and verification of a supervisory energy manage system

uses an efficient technique to validate the system, as it checks for all the addressed inputs and

ensures the power balance between the load and power source. It also uses formal methods and

timed automata (TA) using the UPAAL tool. The usefulness of TA seems very efficient for

the real-time system [14]. The use of formal verification to validate the design can clearly be

shown to be an efficient technique when demonstrating correctness in a formal specification.

From the principles used in this paper, it helped address the questions raised in this paper

providing better descriptions and controllability when defining formal specifications.

3.3 Intelligent Agent-Based Microgrid Control

The paper presented by Murali K. Kouluri and R. K. Pandey [15] explores implementing a

multi-agent system for microgrids using JADE. The multi-agent system contains a control

agent, DER agent, and load agent, each with respective responsibilities. The control agent

monitors the system voltage and frequency to detect emergency conditions and holds the

operation modes of monitoring grid or island. DER is responsible for the monitoring and

control of power levels. Load agents contain information on power consumption and load

number.

The paper presented – they did it the design and implementation of a multi-agent system for

outage control of a microgrid. To verify the multi-agent system, a simulation was developed to

15

test control actions to/from the microgrid model using MatLab Simulink. The multi-agent

system received and sent the messages to the circuits and performed control and management

actions. The author presented a case study based on outage control of a microgrid using grid-

connected mode, islanded mode, and the transition from grid-connected to islanded mode. This

research conducted a comprehensive experiment to study the effectiveness of the multi-agent

system through simulation. The paper presented an evaluation of an outage problem near the

main grid using grid-connected, islanded mode and transition mode. The case study outlines

that the control agent needs to sense the change in upstream outages, and it exchanges the

information between agents. The paper is important as it demonstrated how to balance the

frequency regulation and control the frequency disturbances.

While the paper presented an impressive capability of the multi-agent system, it focused on the

outage problem. However, their system process could be helpful with the microgrid model, as

the case study presented in this paper; it solves the timing problem that lacks the model of

microgrid used in this study.

3.4 Formal requirements for microgrid using Kaos and reference architecture

The paper by Miguel Angel et al. [16] presents a formal specification requirement to model a

smart grid system. This paper shows a lack of attention not needed in the design process,

resulting in unnecessary costs. Hence the author proposed a systemic approach that combined

reference architecture such as IntelliGrid, an architecture proposed by the Electric Power

Research [17] or the SGAM architecture [18] and modelled goal-oriented requirement

engineering methods for the microgrid design. This architecture recognizes the importance of

the requirement phase, which included requirement elicitation, modeling, and using UML. The

author followed the IEC 61850 architectures and chose the reference architecture to guide the

process. The goal-oriented requirement engineering (GORE) refers to the use of objectives for

16

defining, requirements, eliminating the tradition dichotomy between functional and non-

functional requirements. GORE is used through the KAOS tool (Knowledge Engineering

Object System) to model system requirements. KAOS defines specific needs from a generic

model based on different situations. It has four primary types of models: goal models, agent

models, operation models, and object models. A goal model provides the objective the system

should achieve. An agent responsible for meeting the objectives. The operation model specifies

the operations that the agent must perform, and an object model identifies the object used in

the KAOS model [19]. It provides traceability, completeness, and ambiguity. The formal

requirements specification is generated both by KAOS to a formal representation based on

based LTL (Linear Tree Logic).

The paper initially extracted the microgrid operation requirements and modeling the needs

using the KAOS model. It is then formally analyzed using LTL. The paper demonstrated these

models through the diagrams based on the goal, object, operation, and responsibilities model.

The KAOS model was shown to be very efficient, although formal presentation through LTL

is very light in detail. The paper also mentioned a drawback of LTL of not being appropriated

for distributed systems and suggests other formal specification languages. This paper

demonstrates the potential benefit of using a formal specification techniques and reliability of

the GORE approach.

CHAPTER 4

METHODOLOGY

This chapter describes the Z formalization of the UML class diagram. The evaluation of related

work leads us to conclude there is a need for a verification approach for microgrids' stable

operation. The methodology employed in this work will transform existing UML class

17

diagrams to the Z notation by applying the rules specified in the following section. I obtained

the microgrid system's properties used in this study from the Electrical department [20] and

UML class diagram from [5]. Further, the notation of class, class instance, and association is

formally expressed in Z.

The software development process augmented by model-based software development is

considered for the modeling of microgrid systems. Model-based software development

provides an abstract model of the system, and simplifies the process of design[21]. Model is

used to show the system components' particular view and the communication between the

components of the system. The model-based software development methodology employs the

UML design and deployment development in the series of deployment steps. The UML class

diagram provides a nominal baseline of the system. It helps to understand the system and its

requirements. The Z formalization of the UML class diagram will facilitate the microgrid

system's precise and rigorous analysis. The formal notation is analyzed using Z/EVES, which

ensures the model's specification is accurate and complete. I made numerous changes and

revisions to the class diagram until Z/EVES did not detect any errors. I have illustrated the

formalization with an example in the following section.

4.1 Illustration of existing class diagram

As mentioned above, in section 3.1, I used the existing class diagram for formal specifications.

Figure 4.1 shows the class diagram designed. The are 7 classes, 41 attributes, and 57 functions.

To express the UML class diagram formally in Z notation, each attribute, object identifiers of

class, association, aggregation, and generalization are represented in Z schema. The illustration

of each step is discussed in the next section.

18

Figure 4. 1 A snapshot of initial class diagram

4.2 Formalization of UML class diagram

My approach to model the microgrid system started by naming the system's components and

expressing the constraints of the system. I described all the system states using sets, sequences,

relations, functions, and operations in pre and post conditions. Microsoft Z/EVES was the tools

used for Z notation. This tool is used to analyze Z specifications, which is applied to analyze

the systems schema expansions, pre-conditions, syntax, type checking, and to prove theorems.

The following steps are followed to create the specification using the class “Battery” as an

19

example.

4.2.1 Type definition: Basic, Composite, and global variables

In Z notation, the formal specification for an equivalent class can be represented by using a

schema. Z schema consists of the declaration part, in which variables are declared, and the

predicate part, which consists of the constraining predicates [22]. The attributes defined in the

class diagram correspond to the predicate part of the Z schema. Similarly, the data type of the

attributes correspond to the Z basic types. The type definition is listed in square brackets. As

an example, for the class “Battery”, shown in Figure 1, is represented in Z.

Figure 4. 2 A snapshot of battery class

Basic types: [BATTERY].
The Battery class schema represented in Z notation:

 Battery
batteryID: ℕ
stateofcharge: ℙ ℝ
battery_mode: STRING

Figure 4. 3 Representation of Z schema of battery

In the above schema, subsets of types to each type of the class diagram are assigned. As shown

in the figure, “batteryID” is represented as N, the set of natural numbers. P is defined as a

power set. “stateofcharge” is represented as the power set of real values. Similarly,

“battery_mode” is represented as STRING. In the class diagram, “battery_mode” is described

20

as enumeration with literals—charging and discharging. Hence, in Z schema, the combination

of colons and equality symbols are used to represent type definition as enumerated types—

description of name with the possible values—for example, the statement.

BatteryMode ::= charging | discharging

From this definition, the description of “battery_mode” has effects on the operation. The above

description of the Battery has a severe flaw since the type definition as STRING can accept any

type of string. So, to correct the implementation, “battery_mode” is defined as the existing

“BatteryMode” instances. The corrected z schema is given below.

 Battery
batteryID: ℕ
stateofcharge: ℙ ℝ
battery_mode: BatteryMode

Furthermore, the Figure below shows the detailed illustration of the battery with the statements

in the predicate part. As per the axiomatic description given below, “batteryID” consists of all

the natural numbers greater than zero, where the state of charge must be between 10 and 100.

Figure 4. 4 Schema of the battery as an example

4.2.2 Representation of association and aggregation in Z

In the UML class diagram, an associations represents the relationship shared among the objects

of the classes whereas an aggregation indicates a lifetime dependency among the related parts.

21

Figure 4.2.2 shows the aggregation structure in which microgrid is an aggregate class with a

battery class.

Figure 4. 5: A UML aggregation structure

The approach taken for the representation of aggregation and association followed the rules

specified in [23]. The schema illustrated below represents a predicate that defines a relationship

(Rel) with a domain (dom Rel), range (ran Rel), and multiplicities (mult1, mult2) of the

association between the microgrid and battery classes.

 Microgrid_Aggregate_Battery
microgrid: Microgrid_Collection
battery: Battery_Collection
microgrid_rel_battery: MICROGRID ↔ BATTERY

microgrid_rel_battery ∈ { Rel: MICROGRID ↣ BATTERY | dom Rel ⊆
microgrid. microgrid_instances ∧ ran Rel ⊆
battery. battery_instances ∧ (∀mult1: dom Rel ⦁ #{ mult1 } ∈ 1..1)
∧ (∀mult2: ran Rel ⦁ #{ mult2 }≥1)}

Figure 4. 6: Schema of the aggregation structure

4.2.3 Representation of schema operation and state representation

The following schema represents the operation for the class battery. To describe the operation

for the charging of the battery, I have to perform the operation based on the state of charge

illustrated in figure 4.2.3. Here, “battery_SOC” operations specified in the problem description

22

are used to show that if the “state of charge” is less than 100 is to be charged and vice versa.

Here is the schema that shows the specification used to determine the state of charging the

battery. The declaration Δ specifies that the schema is describing a state change followed by

the declaration of the inputs to the battery mode. An inputs always ends with a question mark.

The schema below specifies a precondition for “stateofCharge”, and if the precondition is

satisfied, then “batteryMode” is changed accordingly.

Figure 4. 7 Pre and post-condition of state of charge of the battery as an example

The specification is described in terms of relationships that have both inputs and outputs. The

specification's main goal is to clearly define the correct input and handling of the incorrect

input.

4.3 Example error and modification of classes

While creating the Z schema error checking is carried out in each step. All the tests were self-

checking. I discovered numerous errors caused by improper type definitions, syntax errors,

attributes conflicts, and some human errors, such as improper logical symbols, incorrect

implementation of logic and a typographical errors. As an example, when converting the

definition of “batteryMode” mentioned in section 4.2.1 resulted in an improper type definition

error. A snapshot of the specification analysis is shown in Figures 5.1 and 5.2. The first figure

displays the detected error due to syntax and improper data type declaration. After correcting

the reported errors, Figure 5.2 shows that the formal specification is syntactically correct, and

all the schema is also correct.

23

Figure 4. 8 A snapshot of error output

Figure 4. 9. A snapshot of proof correctness of the specification

Furthermore, when formalizing Z schema, it is equally important to mention the power mode

(Battery, generator, or DER) of the microgrid operation. This led me to do further research into

the standardization of the microgrid operation system and it’s control architecture. Hence, I

modified the UML class diagram using standard IEEE 1547 “IEEE Standard for

Interconnecting Basic Concepts and Distributed Resources with Electric Power Systems”

[3][4][24]. The resulting class integrates seven different classes: Main grid, microgrid, load,

distributed generator, battery energy storage system, wind, and solar. I used the star UML, an

open-source tool for modeling the class diagram. The following description is an overview of

each class.

Main Grid: Microgrid is connected to the main grid to maintain voltage at the same level as

24

the main grid. I present the main grid to show it is connected to the microgrid, but our principal

focus is the microgrid.

Microgrid: Controls the operation of the microgrid determining if it should use islanded or

grid-connected mode. It receives its energy from the direct load, the energy storage system or

the distributed generator.

Battery Energy storage system (BESS): Class provides the charging and discharging mode’s

charging capacity and provides voltage and frequency references. As mentioned in the

background section, BESS plays an essential role in the operating capabilities of microgrids.

BESS is used to supply power during the islanded mode to mitigate frequency disturbances.

The SOC of the battery is monitored and kept in the range of 10-100%.

Distributed Generator (DG): The distributed generator is connected to the renewable energy

resources in microgrids. It is responsible for generating power, and maintaining voltage and

frequency within the acceptable range in islanded mode.

Solar: Solar energy is the unsteady power source generated from photovoltaic arrays from

sunlight. To generate electricity from the sunlight, a solar panel has to absorb the solar radiation

to generate electric current. The solar panel class helps keep the record of solar radiance. The

class is also responsible for providing the current temperature and reported forecasted times of

sunlight.

Wind: Wind turbines are integrated into the microgrid and are expected to provide the

frequency regulation of the wind turbines. This class report the power generated from wind

turbines through wind speed, pitch angle, rotor speed, and air density. The power output will

be regulated according to the reported wind speed, among other factors.

25

4.4 Representation of class in formal specification based on the control architecture of

the microgrid

As mentioned in section II, the operation of microgrid, ESS, and DG's power supply during

islanded mode is closely monitored in each case. When a microgrid operates in grid-connected

mode, ESS and DG's power supply is set to zero. ESS can operate as a generator in charging

or discharging mode based on the standard limit of the battery's state of charge i.e., greater than

20%. The switching from grid-connected to island connected is achieved during the following

cases.

- When a minor voltage fault occurs on the main grid, ESS will supply the required

power to fulfill the desired capacity.

- When the total load demand is equivalent to the load generation or the capacity is

larger than demand.

- When load generation and battery energy storage is equivalent to load demand.

- When the renewable energy output from solar and wind turbine generators is larger

than load demand.

The following control model is closely monitored to ensure the stability of the system.

- Received input voltages for all the sources and distributed power are monitored

- The system should be able to change the configuration of the running generator to

supply power load.

- Battery capacity, wind turbine status, and solar power input are monitored.

- Ensure the state of charge of the battery is within 10-100%.

To specify each operation, I considered all the operations very carefully. When the microgrid

operates in grid-connected mode, the main grid will provide the microgrid's voltage and

frequency references. If a fault occurs on the main grid microgrid needs to transfer to islanded

mode. The sudden transition from grid-connected to islanded mode causes a power unbalance

26

in the microgrid system. Failure to maintain power balance will cause frequency deviation.

Hence, ESS is used to improve frequency regulation. To ensure seamless transfer master-slave

control method has been introduce, with the intent of ensuring that batteries with a load

generator can improve the frequency regulation.

27

CHAPTER 5

RESULTS AND DISCUSSION

This chapter describes the results of the experiments on formal methods. It presents the

experimental design, results, and verification of the formal methods. This chapter initially talks

about the identified error on Z/EVES while performing formal specifications and methodology

applied to correct the encountered errors. Then, for the formal specification's correctness, five

research questions have been addressed in the following.

The experiment results are analyzed in turn, i.e., the class diagrams used are analyzed,

recreated, designed using the formal notation in an iterative process, and then compared to

each other. As mentioned in the methodology section 4.3, the class diagram was changed due

to the identified error during the formalization. The class diagram contained 7 classes with 41

attributes, 7 associations, with 57 operations evaluated.

The change in the class diagram is due to not adhering to the IEEE 1547 standard for the system

control architecture for integrating DERs and the errors reported from Z/EVES while

performing formal specification and verification. Furthermore, Several specification errors

were found during formalization, with attribute conflict in class diagrams being the most

common error. Similarly, I discovered other errors including improper variable assignments,

syntax errors, and inconsistent data type declarations throughout the formal specification.

Hence, it led me to change the class diagram on the association between DG, BESS and

microgrid, data types, and representation of the class name. Figure 5.1 shows the final UML

class diagram of the microgrid system.

28

Figure 5. 1 Modified class diagram

29

In the Z notation, the statement of all the specifications covered 354 lines. I had 28 verification

conditions, of which 7 were based on safety and functional properties. We kept close track of

all fault errors that occurred while testing using Z/EVES. Some of the faults that occurred

during the formalization of UML class diagrams were mostly based on improper paragraph

description, improper expression in the predicate part, wrong schema specification, and human

errors. The detailed specification is presented in APPENDIX I. The modeling of Z notation is

based on the following table 5.1 that shows the description and significant constraints of each

class.

Table 5. 1 Description and important constraints of each class.

Class Description Constraints

Microgrid Facilitates the

integration of DG,

BESS and load and

ensure the power is

equivalent to load

demand

Microgrid id should be a unique natural number

and greater than 0.

59<=Frequency <=60

220 <= voltage <=240

Power source: BESS < load demand, the

operation mode is changed to grid-connected else

islanded

Power source: BESS +DG < load demand,

operation mode is changed to grid-connected else

islanded

 Facilitates the power Load id should be a unique natural number and

30

Load and utilized to achieve

the power balance and

avoid peak demand

during load demand is

higher.

greater than 0.

Load demand: Check for the load demand

BESS

Facilitates the

integration of renewable

energy sources in a

microgrid to store the

excess energy.

State of charge < 80%, battery will be charged

State of charge = 100%, battery will be

discharged

State of charge< 10%, power output is discharged

 Energy Density, capacity, power Density should

always be greater than zero.

Generator Facilitates the steady

and sustained power

generated from wind

power systems and

photovoltaic system in

the microgrid

Generator output = load demand

Generator voltage and output should be greater

than 0.

DG+ BESS = load demand, act as a master

controller

DG = load demand, act as a master controller

Solar Renewable energy

sources from the sun

 18 ≤ Tilt ≤ 34

 15 ≤ Temperature ≤ 65

31

Wind Renewable energy

sources from the wind

 212 ≤ Tower height ≤ 328

13 ≤ Wind speed ≤ 15

-20 ≤ Temperature ≤ 50

-40 ≤ Rotor size ≤ 90

The modeling of the microgrid system using Z notation addressed five questions:

RQ1: If the fault occurs in the microgrid on grid-connected mode, will the microgrid

seamlessly transfer to islanded mode?

RQ2: If the energy capacity of ESS is limited, will the renewable energy sources provide the

operation of the islanded microgrid?

RQ3: If the ESS and DG fail to operate on islanded mode, will the microgrid seamlessly

transfer to grid-connected mode?

RQ4: If the battery's SOC is lower than the upper limit, will it be in the charging mode?

RQ5: If the battery's SOC is higher than the upper limit, will it be in the discharging mode?

The following notations were applied in the formal specification to identify the success and

failure of the research question.

To examine RQ1, load demand, voltage, and frequency limit were closely monitored. Main

Grid provides voltage and frequency references for microgrids. If the load demand is not

equivalent to grid output, microgrid switches from grid-connected to islanded mode. To

illustrate the notation, the figure below represents the schema and operation.

32

 Microgrid_Adjustment
ΔMicrogrid_Attributes
ΔBattery_Attributes
ΔGenerator_Attributes
ΔLoad_Attributes
operation_mode?: OperationMode
batterymode?: BatteryMode

((∀go: generator_output; la: load_amount ⦁ go < la) ⇒ (batterymode? = discharging))
((∀go: generator_output; la: load_amount ⦁ go > la) ⇒ (batterymode? = charging))
 ((∀go: generator_output; la: load_amount ⦁ go < la ∧ (∀ st: stateof_charge ⦁ st < 10))
⇒ (operation_mode? = grid_connected))
((∀go: generator_output; la: load_amount ⦁ go > la ∧ (∀ st: stateof_charge ⦁ st > 20))
⇒ (operation_mode? = islanded))

Figure 5. 2 Z Schema for microgrid adjustment method for class microgrid_attributes

It is essential to mention the ESS depends on the energy storage capacity and cannot operate

for a longer period as it keeps discharging and eventually run out of power. BESS can only

operate as the master unit for only a short period. So, the answer to RQ2 and RQ3 is the

following Z notation.

 Microgrid_Master_Operation
ΔBattery_Attributes
ΔMicrogrid_Attributes
ΔGenerator_Attributes
ΔLoad_Attributes
batterymode?: BatteryMode
operation_mode?: OperationMode
PowerMode?: PowerMode

(operation_mode? = islanded) ∧ (∀ g: generator_output; la: load_amount ⦁ go > la) ∧
(∀st: stateof_charge ⦁ st < 10) ⇒ PowerMode? = DG
(operation_mode? = islanded) ∧ (∀ go: generator_output; la: load_amount ⦁ go > la) ∧
(∀st: stateof_charge ⦁ st > 10) ⇒ PowerMode? = DGBESS
: = DG

33

Figure 5. 3 Z Schema master unit operation at the same time, it is equally important to monitor

the SOC of the battery, hence the following Z notation answers the RQ4 & RQ5.

 Battery_SOC
ΔBattery_Attributes
ΔMicrogrid_Attributes
battery_mode?: BatteryMode
operation_mode?: OperationMode

(∀st: stateof_charge ⦁ st < 100) ⇒ (battery_mode? = charging)
(∀st: stateof_charge ⦁ st = 100) ⇒ (battery_mode? = discharging)
(∀s : stateof_charge ⦁ nst < 10 ∧ operation_mode? = grid_connected) ⇒ (operation_mode? = islanded)

Figure 5. 4 Z Schema for state of charge of the battery

The energy capacity of ESS is limited, which is why it is integrated with distributed generators.

DG and BESS, as the combined master unit, can regulate the energy and fulfill the load

demand. This situation occurs when the power output from renewable energy sources, PV or

wind turbines, is lower than the load demand and the SOC is higher than the lower limit.

I also noticed that the use of Z notation was the most effective process for conducting a serious

analysis of the system and especially for detecting faults. However, although it addresses all

of the subsystems' reasoning, it is still essential to follow the specification very closely, and

future changes have to be addressed if addressed later for the specification of the system.

In the comparison, OCL and Z notation both support classes, attributes, and operations of the

class, pre/postcondition, associations, and invariants. However, according to the specification

language, Z supports user-defined base types, ability to combine operations (conjunction,

sequential, parallel), union data type, behaviors of its individual objects and notion of system

class [8]. Z notation is sequential and property oriented. It describes the input and output of the

system and focuses on the properties of the system. On the other hand, OCL supports the notion

of class, attribute, operation, data type, operations pre/post conditions, associations and

34

invariants. OCL is model oriented and provides an abstract model of the system [1]. Indeed,

both specification languages address the same semantics. The specification is aimed to

demonstrate the correctness of the microgrid system. Furthermore, the work initiated by

Maksym Tkach [5] needs more elaboration, and detailed specifications are needed on the

operation during the microgrid's islanded mode.

From the work effort, I also identified that for novices and programmers without a

mathematical background that many expressions from the Z notation are complicated to

understand. Simultaneously, I based the control architecture designed using Z notation on a

master-slave control unit. It may require extensive communication, and will be challenging to

implement in large systems as it might increase the microgrid cost. However, the formal

specification helped to achieve the formal Z notation representation from the informal UML

models.

35

CHAPTER 6

CONCLUSION

6.1 Conclusions

This research studied microgrid components for generating UML class diagrams and formal

models. This research also presented a rigorous form of specification of the microgrid system

using Z notation and ensured its correctness. This research addressed five research questions

through the design, and the conclusion of the study is summarized below.

First, this research defined the microgrid system's architecture based on unclear and ambiguous

requirements and the effort to use the formal specification to solve the problem. For this

research, I have used the existing class diagram from [5]. The formal model was designed

based on the existing class diagram which identified errors like inconsistent data types

declaration, attributes conflict, and improper data types during the Z specification. Then I

followed IEEE 1547 and FERC standard guidelines for the microgrid system distributed

interconnections and recreated the class diagram. The microgrid control system followed

master-slave control architecture, and five research questions based on energy flows among

the components were answered through the formal specification.

This research also compared the formal specification of microgrids using OCL and Z

notation. I demonstrated semantic consistency. OCL and Z notation is both being an

independent language. It is similar to the way we study, but some of the features of OCL are

not supported by Z notation and vice versa.

The specification in Z notation closely resembles the functionality of the program. The initial

stage of writing the Z notation took a lot of practice, as it involves preconditions, operators,

postconditions, and the algebraic notation with respective meaning to it. However, writing the

specification of microgrid helped us to rigorously address the problem. Most of the errors that

occurred while testing was type errors or the class definition errors.

36

 From the results, we can conclude that formal specification is a critical factor in increasing

the microgrid's reliability. Based on the model design, we can state that there is an optimal

configuration to approach the microgrid system's development.

Since the microgrid is dependent on renewable energy, it can be challenging to operate

microgrids smoothly, especially for island mode. However, the formal specification helped

achieve rigorous specification of the microgrid system into formal representation and carried

out the system design's corrective action.

6.2 Future work

In addition, it would be helpful to adapt to other control architecture that have been mentioned

above, more specifically, hierarchy control. Microgrid control systems are highly reliant on

good communication [1]. In hierarchical control, central controllers can predict the load

demand, and DERs power generation and electricity prices. Hence, I would like to implement

central controllers in my UML class diagram and extend the formal specification.

With regard to the class diagram, in the future, I would like to add extra DG. Meanwhile,

renewable power generation from (wind and solar PV) undertake the power-sharing task, but

the additional class of DG can minimize the system complexity, and I plan to study their

effectiveness based on the operating condition and DG control mode. For the research question

raised in this research, I want to try more coverage during formal specifications.

In the future, I would like to implement the formally specified requirements simulating the

specification to analyze the efficiency of microgrid systems quantitatively. Moreover, I will be

looking for the possibilities to use this specification in other real world processes.

37

APPENDIX I

[STRING]
[PERCENTAGE]
[MAINGRID]
[MICROGRID]
[LOAD]
[GENERATOR]
[BATTERY]
OperationMode ::= grid_connected | islanded
BatteryMode ::= charging | discharging
PowerMode ::= DG | BESS | DGBESS
GeneratorKind ::= wind | solar
LoadMode ::= normal | suspended
BOOLEAN ::= yes | no
Day == 1..31
Month == 1..12
Year == 1991..2999
Date == Day × Month × Year

voltage_limit: ℙ ℝ
frequency_limit: ℙ ℝ

voltage_limit = 220..240
frequency_limit = 59..60

38

day: Date → Day
month: Date → Month
year: Date → Year

∀dt: Date ⦁ ∃d:Day; m:Month; y:Year |(d, m, y) = dt ⦁ day(dt) = d ∧ month(dt) = m ∧ year(dt)=y
∀dt:Date ⦁ month(dt) ∈ {4,6,9,11} ⇒ day(dt) ≤30 ∧ (month(dt) = 2 ⇒
((year(dt) mod 4 = 0 ∧ year (dt) mod 100 ≠ 0)⇒ day(dt) ≤ 29)∧
((year(dt) mod 4 ≠ 0 ∨ year (dt) mod 100 = 0) ⇒ day(dt) ≤ 28))

SOLAR: ℙ GENERATOR

SOLAR ⊆ GENERATOR

WIND: ℙ GENERATOR

WIND ⊆ GENERATOR

 Maingrid_Attributes
grid_electricity_price: ℙ ℝ
grid_demand: ℙ ℝ
grid_voltage: ℙ ℝ
grid_frequency: ℙ ℝ

∀gv: grid_voltage ⦁ gv ∈ voltage_limit
∀f: grid_frequency ⦁ f ∈ frequency_limit

 Maingrid_Classifier
Maingrid_Attributes
maingrid_attributes: MAINGRID ⇸ Maingrid_Attributes
maingrid_oid: MAINGRID

39

 Maingrid_OID
ΔMaingrid_Classifier

maingrid_oid′ = maingrid_oid

 Maingrid_Collection
maingrids: ℙ Maingrid_Classifier
maingrid_instance: MAINGRID ⇸ Maingrid_Classifier
maingrid_instances: ℙ MAINGRID

maingrid_instance = {main: maingrids ⦁ main.maingrid_oid ↦ main }
maingrid_instances = dom maingrid_instance

 Microgrid_Attributes
microgrid_id: ℙ ℕ
price: ℙ ℝ
operational_mode: OperationMode
frequency: ℙ ℝ

∀m1: microgrid_id ⦁ m1 > 0
(operational_mode = grid_connected) ∨ (operational_mode = islanded)

 Microgrid_Classifier
Microgrid_Attributes
microgrid_attributes: MICROGRID ⇸ Microgrid_Attributes
microgrid_oid: MICROGRID

 Microgrid_OID
ΔMicrogrid_Classifier

microgrid_oid′ = microgrid_oid

40

 Microgrid_Collection
microgrids: ℙ Microgrid_Classifier
microgrid_instance: MICROGRID ⇸ Microgrid_Classifier
microgrid_instances: ℙ MICROGRID

microgrid_instance = {main: microgrids ⦁ main.microgrid_oid ↦ main }
microgrid_instances = dom microgrid_instance

 Load_Attributes
LoadID: ℕ
load_amount: ℙ ℝ
is_critical: BOOLEAN
load_mode: LoadMode

LoadID > 0
is_critical = no ⇒ load_mode = normal
is_critical = yes ⇒ load_mode = suspended

 Load_Classifier
Load_Attributes
load_attributes: LOAD ⇸ Load_Attributes
load_oid: LOAD

 Load_OID
Δ Load_Classifier

load_oid′ = load_oid

 Load_Collection
loads: ℙ Load_Classifier
load_instance: LOAD ⇸ Load_Classifier
load_instances: ℙ LOAD

load_instance = {load: loads ⦁ load. load_oid ↦ load }
load_instances = dom load_instance

41

 Generator_Attributes
generator_id: ℕ
gen_voltage: ℙ ℝ
rampRate: ℙ ℝ
cost: ℙ ℝ
generator_rating: ℙ STRING
generator_kind: GeneratorKind
power_mode: PowerMode
generator_output: ℙ ℝ

generator_id > 0
∀gv: gen_voltage ⦁ gv ≥ 0
∀go: generator_output ⦁ go ≥0
∀c: cost ⦁ c ≥ 0

 Generator_Classifier
Generator_Attributes
generator_attributes: GENERATOR ⇸ Generator_Attributes
generator_oid: GENERATOR

 Generator_OID
Δ Generator_Classifier

generator_oid ′ = generator_oid

 Generator_Collection
generators: ℙ Generator_Classifier
generator_instance: GENERATOR ⇸ Generator_Classifier
generator_instances: ℙ GENERATOR

generator_instance = {gen : generators ⦁ gen.generator_oid ↦ gen }
generator_instances = dom generator_instance

42

 Battery_Attributes
battery_id: ℕ
voltage: ℙ ℝ
capacity: ℙ ℝ
energy_density: ℙ ℝ
specificenergy_density: ℙ ℝ
power_density: ℙ ℝ
maintainence_cost: ℙ ℝ
stateof_charge: ℙ ℝ
battery_mode: BatteryMode

battery_id > 0
 ∀ed: energy_density ⦁ ed > 0
∀sd: specificenergy_density ⦁ sd > 0
∀c: capacity ⦁ c > 0
∀pd: power_density ⦁ pd > 0
∀mc: maintainence_cost ⦁ mc > 0
∀st: stateof_charge ⦁ 10 ≤ st ≤ 100
∀v: voltage ⦁ v ∈ voltage_limit

 Battery_Classifier
Battery_Attributes
battery_attributes: BATTERY ⇸ Battery_Attributes
battery_oid: BATTERY

 Battery_OID
Δ Battery_Classifier

battery_oid′ = battery_oid

 Battery_Collection
batterys: ℙ Battery_Classifier
battery_instance: BATTERY ⇸ Battery_Classifier
battery_instances: ℙ BATTERY

battery_instance = {bat: batterys ⦁ bat.battery_oid ↦ bat }
battery_instances = dom battery_instance

43

 Solarpanel_Attributes
tilt: ℙ ℝ
inverter_efficiency: ℙ ℝ
temperature: ℙ ℝ
solar_irradiance: ℙ ℝ
timeof_day: Date

∀tilt: tilt ⦁ 18 ≤ tilt ≤ 34
∀temperature: temperature ⦁ 15 ≤ temperature ≤ 65

 Solarpanel_Classifier
Solarpanel_Attributes
solarpanel_attributes: SOLAR ⇸ Solarpanel_Attributes
solarpanel_oid: SOLAR

 Solarpanel_OID
Δ Solarpanel_Classifier

solarpanel_oid′ = solarpanel_oid

 Solarpanel_Collection
solarpanels: ℙ Solarpanel_Classifier
solarpanel_instance: SOLAR ⇸ Solarpanel_Classifier
solarpanel_instances: ℙ SOLAR

solarpanel_instance = {solar: solarpanels ⦁ solar. solarpanel_oid ↦ solar }
solarpanel_instances = dom solarpanel_instance

44

 WindTurbine_Attributes
rotor_size: ℙ ℝ
temperature: ℙ ℝ
blade_speed: ℙ ℝ
pitch_angle: ℙ ℝ
air_density: ℙ ℝ
wind_speed: ℙ ℝ
tower_height: ℙ ℝ

∀tower_height: tower_height ⦁ 212 ≤ tower_height ≤ 328
∀ wind_speed: wind_speed ⦁ 13 ≤ wind_speed ≤ 15
∀bs: blade_speed ⦁ bs ∈ wind_speed
∀ t: temperature ⦁ -20 ≤ t ≤ 50
∀ sizemet: rotor_size ⦁ -40 ≤ sizemet ≤ 90

 WindTurbine_Classifier
WindTurbine_Attributes
windturbine_attributes: WIND ⇸ WindTurbine_Attributes
wind_turbine_oid: WIND

 WindTurbine_OID
Δ WindTurbine_Classifier

wind_turbine_oid′ = wind_turbine_oid

 WindTurbine_Collection
wind_turbines: ℙ WindTurbine_Classifier
wind_turbine_instance: WIND ⇸ WindTurbine_Classifier
wind_turbine_instances: ℙ WIND

wind_turbine_instance = {wind : wind_turbines ⦁ wind. wind_turbine_oid↦wind }
wind_turbine_instances = dom wind_turbine_instance

45

 Generator_Assoc_Microgrid
microgrid: Microgrid_Collection
generator: Generator_Collection
generator_rel_microgrid: GENERATOR ↔ MICROGRID

generator_rel_microgrid ∈{ Rel: GENERATOR ↣ MICROGRID | dom Rel ⊆
generator. generator_instances ∧ ran Rel ⊆
microgrid. microgrid_instances ∧ (∀mult1: dom Rel ⦁# { mult1 } ≥ 1)
∧ (∀mult2: ran Rel ⦁ # { mult2 } ∈ 1..1) }

 Microgrid_Aggregate_Battery
microgrid: Microgrid_Collection
battery: Battery_Collection
microgrid_rel_battery: MICROGRID ↔ BATTERY

microgrid_rel_battery ∈ { Rel : MICROGRID ↣ BATTERY | dom Rel ⊆
microgrid. microgrid_instances ∧ ran Rel ⊆
battery. battery_instances ∧ (∀mult1: dom Rel ⦁ #{ mult1 } ∈ 1..1)
∧ (∀mult2: ran Rel ⦁ # { mult2 } ≥ 1)}

 Microgrid_Assoc_Load
microgrid: Microgrid_Collection
load: Load_Collection
load_rel_microgrid: LOAD ↔ MICROGRID

load_rel_microgrid ∈ { Rel : LOAD ↣ MICROGRID | dom Rel ⊆
load. load_instances ∧ ran Rel ⊆
microgrid. microgrid_instances ∧ (∀mult1: dom Rel ⦁ # { mult1 } ≥ 0)
∧ (∀mult2: ran Rel ⦁ # { mult2 } ∈ 1..1) }

 Microgrid_Assoc_Maingrid
microgrid: Microgrid_Collection
maingrid: Maingrid_Collection
maingrid_rel_microgrid: MAINGRID ↔ MICROGRID

maingrid_rel_microgrid ∈ { Rel : MAINGRID ↣ MICROGRID | dom Rel ⊆
maingrid. maingrid_instances ∧ ran Rel ⊆
microgrid. microgrid_instances ∧ (∀mult1: dom Rel ⦁ # { mult1} ≥ 0)
∧ (∀mult2: ran Rel ⦁ # {mult2} ∈ 1..1) }

46

 Microgrid_ChangeOperation
ΔMicrogrid_Attributes
operation_mode?: OperationMode

(operation_mode? = islanded) ⇒ (operation_mode? = grid_connected) ∨
((operation_mode? = grid_connected) ⇒ (operation_mode? = islanded))

 Microgrid_Adjustment
ΔMicrogrid_Attributes
ΔBattery_Attributes
ΔGenerator_Attributes
ΔLoad_Attributes
operation_mode?: OperationMode
batterymode?: BatteryMode

((∀ go: generator_output; la: load_amount ⦁ go < la) ⇒ (batterymode? = discharging))
((∀ go: generator_output; la: load_amount ⦁ go > la) ⇒ (batterymode? = charging))
 ((∀ go: generator_output; la: load_amount ⦁ go < la ∧ (∀ st: stateof_charge ⦁ st < 10))
⇒ (operation_mode? = grid_connected))
((∀ go: generator_output ; la: load_amount ⦁ go > la ∧ (∀ st: stateof_charge ⦁ st > 20))
⇒ (operation_mode? = islanded))

 Battery_SOC
ΔBattery_Attributes
ΔMicrogrid_Attributes
battery_mode?: BatteryMode
operation_mode?: OperationMode

(∀st: stateof_charge ⦁ st < 100) ⇒ (battery_mode? = charging)
(∀st: stateof_charge ⦁ st = 100) ⇒ (battery_mode? = discharging)
(∀s : stateof_charge ⦁ nst < 10 ∧ operation_mode? = grid_connected) ⇒ (operation_mode? = islanded)

47

 Microgrid_Master_Operation
ΔBattery_Attributes
ΔMicrogrid_Attributes
ΔGenerator_Attributes
ΔLoad_Attributes
batterymode?: BatteryMode
operation_mode?: OperationMode
PowerMode?: PowerMode

(operation_mode? = islanded) ∧ (∀ go: generator_output; la: load_amount ⦁ go > la) ∧
(∀st: stateof_charge ⦁ st < 10) ⇒ PowerMode? = DG
(operation_mode? = islanded) ∧ (∀ go : generator_output; la: load_amount ⦁ go > la) ∧
(∀st : stateof_charge ⦁ st > 10) ⇒ PowerMode? = DGBESS
: = DG

48

REFERENCES

[1] Gao, David Wenzhong. Energy storage for sustainable microgrids. Academic Press, 2015.

[2] Wu, Lei, Tom Ortmeyer, and Jie Li. "The community microgrid distribution system of the

future." The Electricity Journal 29.10 (2016): 16-21.

[3] IEEE Draft Standard for the Specification of Microgrid Controllers," in IEEE P2030.7/D11,

August 2017 , vol., no., pp.1-42, 1 Jan. 2017.

[4] IEEE Draft Standard for the Testing of Microgrid Controllers," in IEEE P2030.8/D12,

March 2018 , vol., no., pp.1-43, 1 Jan. 2018.

[5] Maksym Tkach, Application of formal specification technique to microgrid representation,

Technical Report, School of Electrical Engineering and Computer Science, University of

North Dakota, USA, 2020

[6] R. France and B. Rumpe, “Model-driven development of complex software: A Research

roadmap,” in Proc. FOSE '07 Future of Software Engineering, Washington, DC, 2007, pp.

37-54.

[7] Harmon, Paul, and Mark Watson. Understanding UML: the developer's guide. Morgan

Kaufmann, 1998.

[8] Bettaz, Mohamed, and Mourad Maouche. "UML/OCL or Object-Z?." 2017 International

Conference on Infocom Technologies and Unmanned Systems (Trends and Future

Directions)(ICTUS). IEEE, 2017.

[9] Spivey, J. Michael, and J. R. Abrial. The Z notation. Hemel Hempstead: Prentice Hall,

1992.

[10] Kneuper, R. (1997). Limits of formal methods. Formal Aspects of Computing, 9(4),

379–394.

49

[11] Bialy, M., Pantelic, V., Jaskolka, J., Schaap, A., Patcas, L., Lawford, M., & Wassyng,

A. (2017). Software Engineering for Model-Based Development by Domain Experts.

Handbook of System Safety and Security, 39–64.

[12] Bani-Ahmed, Abedalsalam, et al. "Reliability analysis of a decentralized microgrid

control architecture." IEEE Transactions on Smart Grid 10.4 (2018): 3910-3918.

[13] G. Sugumar, R. Selvamuthukumaran, M. Novak and T. Dragicevic, "Supervisory

Energy-Management Systems for Microgrids: Modeling and Formal Verification," in IEEE

Industrial Electronics Magazine, vol. 13, no. 1, pp. 26-37, March 2019

[14] Wang, Farn. (2004). Formal verification of timed systems: A survey and perspective.

Proceedings of the IEEE. 92. 1283 - 1305.

[15] Murali Krishna Kouluri and R. K. Pandey, "Intelligent agent-based micro grid control,"

2011 2nd International Conference on Intelligent Agent & Multi-Agent Systems, Chennai,

2011, pp. 62-66

[16] Postigo, Miguel Angel Orellana, Javier Martinez, and Jose Reinaldo Silva. "Formal

Requirements For Microgrid Using Kaos And Reference Architecture."

[17] Commission, I. E. et al. (2008). Intelligrid Methodology for Developing Requirements

for Energy Systems, IEC.

[18] Uslar, M., Specht, M., D¨anekas, C., Trefke, J., Rohjans, S., Gonz´alez, J. M., Rosinger,

C. and Bleiker, R. (2012). Standardization in smart grids: introduction to IT-related

methodologies, architectures and standards, Springer Science & Business Media

[19] Brown, Greg, et al. "Goal-oriented specification of adaptation requirements

engineering in adaptive systems." Proceedings of the 2006 international workshop on Self-

adaptation and self-managing systems. 2006.

[20] Akula, Shravan Kumar, and Hossein Salehfar. "Energy Management System for

Interconnected Microgrids using Alternating Direction Method of Multipliers (ADMM)."

50

2018 North American Power Symposium (NAPS). IEEE, 2018.

[21] Basha, N. Md Jubair, Salman Abdul Moiz, and Mohammed Rizwanullah. "Model based

software development: issues & challenges." Special Issue of International Journal of

Computer Science & Informatics (IJCSI), ISSN (PRINT) 2.1 (2012): 2.

[22] Spivey, J. Michael, and J. R. Abrial. The Z notation. Hemel Hempstead: Prentice Hall,

1992.

[23] Grant, Emanuel S. "Towards an Approach to Formally Define Requirements for a

Health & Status Monitoring for Safety-Critical Software Systems." Lecture Notes on

Software Engineering 4.3 (2016): 169.

[24] Whittingham, S. History, Evolution, and Future Status of Energy Storage. Proceedings

of the IEEE, Vol. 100, May 13, 2012.

