13,044 research outputs found

    Performance evaluation of Fractal component based systems

    Get PDF
    International audienceComponent based system development is now a well accepted design approach in software engineering. Numerous component models have been proposed and for most of them, specific software tools allow building Component Based System (CBS). Although these tools perform several checks on the built system, few of them provide formal verification of behavioural properties nor performance evaluation of the resulting system. In this context, we have developed a general method associating to a CBS, a formal model, based on Stochastic Well formed Nets, a class of high level Petri Nets, allowing qualitative behavioural analysis together with performance evaluation of this CBS. The definition of the model heavily depends on the (run time) component model used to describe the CBS. In this paper, we instantiate our method to Fractal CBS and its reference Java implementation Julia. The method starts from the Fractal architectural description of a system, and defines rules to systematically generate elements models of the CBS and their interactions. We then apply a structured method both for qualitative and performance analysis taking into account the given implementation of the Fractal model. The main interest of our method is to take advantage of the compositional definition of such systems to carry out an efficient analysis. The paper concentrates on performance evaluation and presents our method step by step with an illustrative example

    Contract Aware Components, 10 years after

    Get PDF
    The notion of contract aware components has been published roughly ten years ago and is now becoming mainstream in several fields where the usage of software components is seen as critical. The goal of this paper is to survey domains such as Embedded Systems or Service Oriented Architecture where the notion of contract aware components has been influential. For each of these domains we briefly describe what has been done with this idea and we discuss the remaining challenges.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Component Substitution through Dynamic Reconfigurations

    Get PDF
    Component substitution has numerous practical applications and constitutes an active research topic. This paper proposes to enrich an existing component-based framework--a model with dynamic reconfigurations making the system evolve--with a new reconfiguration operation which "substitutes" components by other components, and to study its impact on sequences of dynamic reconfigurations. Firstly, we define substitutability constraints which ensure the component encapsulation while performing reconfigurations by component substitutions. Then, we integrate them into a substitutability-based simulation to take these substituting reconfigurations into account on sequences of dynamic reconfigurations. Thirdly, as this new relation being in general undecidable for infinite-state systems, we propose a semi-algorithm to check it on the fly. Finally, we report on experimentations using the B tools to show the feasibility of the developed approach, and to illustrate the paper's proposals on an example of the HTTP server.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    The Value of Moderate Obsession: Insights from a New Model of Organizational Search

    Get PDF
    This study presents a new model of search on a “rugged landscape,” which employs modeling techniques from fractal geometry rather than the now-familiar NK modeling technique. In our simulations,firms search locally in a two-dimensional fitness landscape, choosing moves in a way that responds both to local payoff considerations and to a more global sense of opportunity represented by a firm-specific “preferred direction.” The latter concept provides a very simple device for introducing cognitive or motivational considerations into the formal account of search behavior, alongside payoff considerations. After describing the objectives and the structure of the model, we report a first experiment which explores how the ruggedness of the landscape affects the interplay of local payoff and cognitive considerations (preferred direction) in search. We show that an intermediate search strategy, combining the guidance of local search with a moderate level of non-local “obsession,” is distinctly advantageous in searching a rugged landscape. We also explore the effects of other considerations, including the objective validity of the preferred direction and the degree of dispersion of firm strategies. We conclude by noting available features of the model that are not exercised in this experiment. Given the inherent flexibility of the model, the range of questions that might potentially be explored is extremely large.Rugged Landscapes; Local Search; Cognition; Obsession; Fractal Geometry

    Structured Performance Analysis for Component Based Systems

    Get PDF
    International audienceThe Component Based System (CBS) paradigm is now largely used to design software systems. In addition, performance and behavioural analysis remains a required step for the design and the construction of efficient systems. This is especially the case of CBS, which involve interconnected components running concurrent processes. % This paper proposes a compositional method for modeling and structured performance analysis of CBS. Modeling is based on Stochastic Well-formed Nets (SWN), a high level model of Stochastic Petri nets, widely used for dependability analysis of concurrent systems. Starting from the definition of the system given in a suitable Architecture Description Language, and from the definition of the elementary components, we build an SWN of the global system together with a set of SWNs modeling the components of the CBS and their connections. From these models, we derive performances of the system thanks to a structured analysis induced by the structure of the CBS. We describe the application of our method through an example designed in the framework of the CORBA Component Model
    • …
    corecore