6,599 research outputs found

    Relational parametricity for higher kinds

    Get PDF
    Reynolds’ notion of relational parametricity has been extremely influential and well studied for polymorphic programming languages and type theories based on System F. The extension of relational parametricity to higher kinded polymorphism, which allows quantification over type operators as well as types, has not received as much attention. We present a model of relational parametricity for System Fω, within the impredicative Calculus of Inductive Constructions, and show how it forms an instance of a general class of models defined by Hasegawa. We investigate some of the consequences of our model and show that it supports the definition of inductive types, indexed by an arbitrary kind, and with reasoning principles provided by initiality

    Elaborating Inductive Definitions

    Full text link
    We present an elaboration of inductive definitions down to a universe of datatypes. The universe of datatypes is an internal presentation of strictly positive families within type theory. By elaborating an inductive definition -- a syntactic artifact -- to its code -- its semantics -- we obtain an internalized account of inductives inside the type theory itself: we claim that reasoning about inductive definitions could be carried in the type theory, not in the meta-theory as it is usually the case. Besides, we give a formal specification of that elaboration process. It is therefore amenable to formal reasoning too. We prove the soundness of our translation and hint at its correctness with respect to Coq's Inductive definitions. The practical benefits of this approach are numerous. For the type theorist, this is a small step toward bootstrapping, ie. implementing the inductive fragment in the type theory itself. For the programmer, this means better support for generic programming: we shall present a lightweight deriving mechanism, entirely definable by the programmer and therefore not requiring any extension to the type theory.Comment: 32 pages, technical repor

    A Framework for Program Development Based on Schematic Proof

    Get PDF
    Often, calculi for manipulating and reasoning about programs can be recast as calculi for synthesizing programs. The difference involves often only a slight shift of perspective: admitting metavariables into proofs. We propose that such calculi should be implemented in logical frameworks that support this kind of proof construction and that such an implementation can unify program verification and synthesis. Our proposal is illustrated with a worked example developed in Paulson's Isabelle system. We also give examples of existent calculi that are closely related to the methodology we are proposing and others that can be profitably recast using our approach

    Theorem proving support in programming language semantics

    Get PDF
    We describe several views of the semantics of a simple programming language as formal documents in the calculus of inductive constructions that can be verified by the Coq proof system. Covered aspects are natural semantics, denotational semantics, axiomatic semantics, and abstract interpretation. Descriptions as recursive functions are also provided whenever suitable, thus yielding a a verification condition generator and a static analyser that can be run inside the theorem prover for use in reflective proofs. Extraction of an interpreter from the denotational semantics is also described. All different aspects are formally proved sound with respect to the natural semantics specification.Comment: Propos\'e pour publication dans l'ouvrage \`a la m\'emoire de Gilles Kah

    Virtual Evidence: A Constructive Semantics for Classical Logics

    Full text link
    This article presents a computational semantics for classical logic using constructive type theory. Such semantics seems impossible because classical logic allows the Law of Excluded Middle (LEM), not accepted in constructive logic since it does not have computational meaning. However, the apparently oracular powers expressed in the LEM, that for any proposition P either it or its negation, not P, is true can also be explained in terms of constructive evidence that does not refer to "oracles for truth." Types with virtual evidence and the constructive impossibility of negative evidence provide sufficient semantic grounds for classical truth and have a simple computational meaning. This idea is formalized using refinement types, a concept of constructive type theory used since 1984 and explained here. A new axiom creating virtual evidence fully retains the constructive meaning of the logical operators in classical contexts. Key Words: classical logic, constructive logic, intuitionistic logic, propositions-as-types, constructive type theory, refinement types, double negation translation, computational content, virtual evidenc

    Computer theorem proving in math

    Get PDF
    We give an overview of issues surrounding computer-verified theorem proving in the standard pure-mathematical context. This is based on my talk at the PQR conference (Brussels, June 2003)
    • …
    corecore