17,183 research outputs found

    Towards Nominal Formal Languages

    Get PDF
    We introduce formal languages over infinite alphabets where words may contain binders. We define the notions of nominal language, nominal monoid, and nominal regular expressions. Moreover, we extend history-dependent automata (HD-automata) by adding stack, and study the recognisability of nominal languages

    Factorization in Formal Languages

    Get PDF
    We consider several novel aspects of unique factorization in formal languages. We reprove the familiar fact that the set uf(L) of words having unique factorization into elements of L is regular if L is regular, and from this deduce an quadratic upper and lower bound on the length of the shortest word not in uf(L). We observe that uf(L) need not be context-free if L is context-free. Next, we consider variations on unique factorization. We define a notion of "semi-unique" factorization, where every factorization has the same number of terms, and show that, if L is regular or even finite, the set of words having such a factorization need not be context-free. Finally, we consider additional variations, such as unique factorization "up to permutation" and "up to subset"

    Formal Languages in Dynamical Systems

    Get PDF
    We treat here the interrelation between formal languages and those dynamical systems that can be described by cellular automata (CA). There is a well-known injective map which identifies any CA-invariant subshift with a central formal language. However, in the special case of a symbolic dynamics, i.e. where the CA is just the shift map, one gets a stronger result: the identification map can be extended to a functor between the categories of symbolic dynamics and formal languages. This functor additionally maps topological conjugacies between subshifts to empty-string-limited generalized sequential machines between languages. If the periodic points form a dense set, a case which arises in a commonly used notion of chaotic dynamics, then an even more natural map to assign a formal language to a subshift is offered. This map extends to a functor, too. The Chomsky hierarchy measuring the complexity of formal languages can be transferred via either of these functors from formal languages to symbolic dynamics and proves to be a conjugacy invariant there. In this way it acquires a dynamical meaning. After reviewing some results of the complexity of CA-invariant subshifts, special attention is given to a new kind of invariant subshift: the trapped set, which originates from the theory of chaotic scattering and for which one can study complexity transitions.Comment: 23 pages, LaTe

    Dynamic Complexity of Formal Languages

    Get PDF
    The paper investigates the power of the dynamic complexity classes DynFO, DynQF and DynPROP over string languages. The latter two classes contain problems that can be maintained using quantifier-free first-order updates, with and without auxiliary functions, respectively. It is shown that the languages maintainable in DynPROP exactly are the regular languages, even when allowing arbitrary precomputation. This enables lower bounds for DynPROP and separates DynPROP from DynQF and DynFO. Further, it is shown that any context-free language can be maintained in DynFO and a number of specific context-free languages, for example all Dyck-languages, are maintainable in DynQF. Furthermore, the dynamic complexity of regular tree languages is investigated and some results concerning arbitrary structures are obtained: there exist first-order definable properties which are not maintainable in DynPROP. On the other hand any existential first-order property can be maintained in DynQF when allowing precomputation.Comment: Contains the material presenten at STACS 2009, extendes with proofs and examples which were omitted due lack of spac
    • …
    corecore