
Chapman University
Chapman University Digital Commons

Engineering Faculty Articles and Research Fowler School of Engineering

2011

Towards Nominal Formal Languages
Alexander Kurz
Chapman University, akurz@chapman.edu

Tomoyuki Suzuki
University of Leicester

Emilio Tuosto
University of Leicester

Follow this and additional works at: https://digitalcommons.chapman.edu/engineering_articles

Part of the Algebra Commons, Logic and Foundations Commons, Other Computer Engineering
Commons, Other Computer Sciences Commons, and the Other Mathematics Commons

This Article is brought to you for free and open access by the Fowler School of Engineering at Chapman University Digital Commons. It has been
accepted for inclusion in Engineering Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For
more information, please contact laughtin@chapman.edu.

Recommended Citation
Alexander Kurz, Tomoyuki Suzuki, Emilio Tuosto: Towards Nominal Formal Languages. CoRR abs/1102.3174 (2011)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Chapman University Digital Commons

https://core.ac.uk/display/215787454?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.chapman.edu?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/engineering_articles?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/fowler_engineering?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.chapman.edu/engineering_articles?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/182?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/265?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=digitalcommons.chapman.edu%2Fengineering_articles%2F63&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:laughtin@chapman.edu

Towards Nominal Formal Languages
(long version)

Alexander Kurz, Tomoyuki Suzuki?, and Emilio Tuosto

Department of Computer Science, University of Leicester, UK

Abstract. We introduce formal languages over infinite alphabets where words
may contain binders. We define the notions of nominal language, nominal monoid,
and nominal regular expressions. Moreover, we extend history-dependent au-
tomata (HD-automata) by adding stack, and study the recognisability of nominal
languages.

1 Introduction

Automata over infinite alphabets have been receiving an increasing amount of attention,
see eg [11, 15, 1, 17]. In these approaches, the countably infinite alphabet N can be con-
sidered as a set of ‘names’, which can be tested only for equality. Typically, languages
of interest such as

L1 = {n1 . . .nk ∈N ∗ | ∃i 6= j .ni = n j} (1)

from [11] are invariant under name-permutations: If eg nmn is in the language, then so
is n′mn′ = (n n′) ·nmn, where (n n′) ·nmn stands for the application of the transposition
(n n′) to the word nmn. This suggests to think of the names as being bound and lan-
guages to be closed under α-equivalence. On the other hand, we may fix a name n1 and
consider the language

L2,n1 = {n1n2 . . .nk ∈N ∗ | ∀i 6= j .ni 6= n j} (2)

from [17]; we can think of n1 as a free name and of the n2, . . .nk as bound. This suggests
to study not only words over names, but also words which contain binders and allow
us to make explicit the distinction between bound and free names. Automata on words
with binders already appear in [16] in the study of the λ-calculus. In this paper we begin
the systematic study of words with binders from the point of view of the classical theory
of formal languages and automata.

In particular, our contributions are:

– nominal languages of words with binders (§ 2) as a natural generalisation of formal
languages over infinite alphabets;

– nominal monoids (§ 3) as the corresponding algebraic structures;
– nominal regular expressions (§ 4) as a generalisation of regular expressions;

? The author’s PhD research is supported by Yoshida Scholarship Foundation.

ar
X

iv
:1

10
2.

31
74

v2
 [

cs
.F

L
]

 1
6

Fe
b

20
11

2 A. Kurz, T. Suzuki and E. Tuosto

– HD-automata with stack (HDS) (§ 5) and Theorem 2 showing that nominal regular
expressions can be faithfully encoded into HDS.

One of the motivations to study words with binders comes from verification. For in-
stance, consider the Needham-Schroeder protocol

A→ B : {n,A}B

B→ A : {n,m}A

A→ B : {m}B

The (correct) runs of the protocol can be characterised by a nominal regular expression

〈n. ENCR n A FOR B 〈m. ENCR n m FOR A (ENCR m FOR B)〉〉∗ (3)

where the alphabet is now N ∪S with n,m ∈N and {ENCR,FOR,A,B}= S a finite set
of ‘letters’; finally, 〈n.e〉 binds all the free occurrences of n in e and generates a fresh
name n. From (3) one could obtain an HDS for monitoring the execution of a protocol,
i.e. the HDS would be able to detect if something goes wrong during the execution
(e.g., an intruder is performing an attack). From an automata theoretic point of view,
the interesting new feature appears more clearly if we abstract (3) to

〈n.n〈m.nm〉〉∗ (4)

and note that binding (fresh name generation) 〈 . 〉 appears under the Kleene star, which
is the reason why automata accepting such languages need to have a stack.

2 Nominal Languages

We introduce languages with name binders. This section appeals to our intuitive under-
standing of binding and α-equivalence as known from eg λ-calculus or first-order logic,
but see the next section for a formal treatment. To start with, the alphabet is divided
disjointly into a countably infinite set N (of names) and a finite set S (of letters).

Definition 1 (m-word). An m-word is a term built from constants N ∪ S ∪{ε}, and
two binary operations ◦, 〈〈 . 〉〉, according to

w def
= ε | n | s | w◦w | 〈〈n.w〉〉,

where n ranges over N and s over S . We denote by M the set of all m-words.

As in the classical case we assume that ε (the empty word) is the neutral element wrt
◦ and that ◦ is associative. We often write wv for the concatenation w◦ v. Furthermore,
we let 〈〈n.w〉〉 bind the free occurrences of n in w and take m-words up to α-equivalence.

The notion of m-word is the most general notion of word with binders: We only
require from words to form a monoid and behave well wrt α-equivalence. Due to the
scope introduced by binding, words now have a tree structure. This motivates the fol-
lowing, more special, but perhaps more naturally generalised, notion of words.

Towards Nominal Formal Languages 3

Definition 2 (g-word). A g-word is a term built from ε, unary operations n , s for each
n ∈N ,s ∈ S , and a binary operation 〈〈 . 〉〉, according to

w def
= ε | nw | sw | 〈〈n.w〉〉.

We denote by G the set of all g-words.

Regarding binding and α-equivalence, we follow the same conventions as for m-words.
To consider G as a monoid, we define ◦ : G×G→G as follows:

ε◦w def
= w nw◦v def

= n(w◦v)
sw◦v def

= s(w◦v) 〈〈n.w〉〉◦v def
= 〈〈n′.(w′◦v)〉〉

(5)

where n′ is fresh for v and 〈〈n′.w′〉〉 is an α-renaming of 〈〈n.w〉〉. Intuitively speaking, we
extrude the scope of the binding to the end of the word.

Next we allow binders to appear only at the beginning of a word.

Definition 3 (l-word). An l-word is a pair (p,w) where p ∈N ∗ and w ∈ (N ∪S)∗. We
denote by L the set of all l-words.

We interpret p as a prefix of name binders and w as the part of the word that has no
binders. ◦ : L×L→ L is given on the left below

(p,w)◦(q,v) def
= (pq,wv) [n](p,w) def

= (np,w) (6)

where we assume that p and q, p and v, and q and w have no names in common.
Whereas previously name-binding was built into the syntax via 〈〈 . 〉〉, we now define
explicitly, anticipating notation from § 3, a binding operation [] : N ×L→ L via the
clause on the right of (6).

Definition 4 (s-word). An s-word is a pair (S,w) where w ∈ (N ∪S)∗ and S is a subset
of the names appearing in w. We denote by S the set of all s-words.

On S, we define the two operations ◦ and [] as follows, assuming that S and T , S and
v, T and w have no names in common.

(S,w)◦(T,v) def
= (S∪T,wv) [n](S,w) def

=

{
(S∪{n},w) if n in w
(S,w) otherwise

(7)

Remark 1. We have embeddings S sl→ L lg→ G gm→M. For sl we assume that names are
ordered; the other main clauses are lg(np,w) = 〈〈n.lg(p,w)〉〉 and gm(nw) = n◦gm(w).

3 Nominal monoids

The somewhat informal treatment of § 2 should be sufficient to understand how au-
tomata process words with binders in § 5 and § 6. On the other hand, from a conceptual
point of view, it is important to have a unifying account. The presence of names and

4 A. Kurz, T. Suzuki and E. Tuosto

binders suggests to employ nominal sets [8]. This not only provides us with a math-
ematical theory, but also a clear conceptual guidance: Follow the classical universal
algebraic account of languages and automata, but replace sets by nominal sets. Here,
we apply this to languages and monoids.

Nominal sets and their logics come in different versions. We follow [9], for which
we need to refer to for details. More details can also be found in [12]. Let us just recall

Definition 5 (Nominal set). Denote by Perm(N) the group of permutations of N gen-
erated from the set of transpositions {(n m) | n,m ∈ N }. A set A equipped with a
Perm(N)-action Perm(N)×A ·−→ A is a nominal set, if every element in A is finitely
supported. This means that for each a ∈ A there is finite set S ⊆ N (called a support
of a) such that π|S = id ⇒ π · a = a for all π ∈ Perm(N) (where π|S denotes the
restriction of π to S). Maps between nominal sets are required to be equivariant, that is,
they respect the permutation action.

It follows that each element a ∈ A has a minimal support supp(a) and one writes n#a
(n is fresh for a) for n /∈ supp(a). This allows us to define abstraction [8, Lemma 5.1]
as [n]a def

= {(n,a)}∪{(m,(nm) ·a) | m#a} and [N]A def
= {[n]a | n ∈N ,a ∈ A}.

A nominal algebra A, see [9, Def 4.13], consists of a nominal set A, constants
n ∈N , and a map [N]A→ A. As in universal algebra, further operations and equations
may be added:

Definition 6. A nominal monoid is a nominal algebra A with additional constants s∈ S
and (equivariant) operations ε,◦ so that (A,ε,◦) is a monoid.

We say that w ∈ A is closed, or that w contains no free names, if supp(w) is empty.

Definition 7. Write Cm for the class of all nominal monoids. We consider the following
axioms where m,n∈N , s∈ S , and X ,Y are variables ranging over carriers of algebras.

Ax1 n#Y ` [n]X◦Y = [n](X◦Y) Ax2 ` s◦[m]Y = [m](s◦Y)
Ax3 n#m ` n◦[m]Y = [m](n◦Y) Ax4 ` [n][m]X = [m][n]X
Ax5 n#X ` [n]X = X Ax6 n#X ` X◦[n]Y = [n](X◦Y)

Cg, Cl , Cs are axiomatised by Ax1, Ax1-3, Ax1-5, respectively.

Remark 2. One possible reading of the operations and the axioms is as follows. In M,
we have sequential composition ◦, allocation 〈〈n of a resource named n, and deallocation
〉〉. In G, we don’t care about deallocation (garbage collection). In L, the timing of the
allocation does not matter and all resources may be allocated at the start. In S, the order
of allocation does not matter and the allocation of an unused resource is redundant.

But other interpretations are possible. With [n] as the νn of the π-calculus and ◦ as
|, Ax6 becomes the familiar law of scope extrusion. Interpreting [n] as ∀, Ax4-5 are
familiar laws of the universal quantifier. In [14], a binder satisfying Ax4-5 is called a
name-restriction operator.

We can now summarise the previous section conveniently in Table 1 and

Theorem 1. M,G,L,S are the initial monoids in, respectively, Cm, Cg, Cl and Cs.

Towards Nominal Formal Languages 5

Table 1. Summary of nominal monoids and the axioms

Classes Axioms Initial monoid Typical example

Cm M [n1](s1n1n4)[n0](n0[n3]s2)

Cg Ax1 G [n1](s1n1n4[n0](n0[n3]s2))

Cl Ax1-3 L [n1][n0][n3]s1n1n4n0s2

Cs Ax1-5 S [n0][n1]s1n1n4n0s2

Proof. The detailed proof can be found in [12]. ut

Remark 3. We have a mapping fM : 2M → 2(N ∪S)∗ to plain words (ie words without
binders) determined by fM({〈〈n.w〉〉}) = fM({w})∪{(n m) ·v | v ∈ fM({w}),m#v}. With
the embedding gm ◦ lg ◦ sl from Remark 1 this induces a map fS from languages of
s-words to subsets of (N ∪S)∗, eg fS({({n},n)}) = fM({〈〈n.n〉〉}) = N .

4 Nominal Regular Expressions

In analogy to the classical definition, we introduce nominal regular expressions:

e ::= 1 | 0 | n | s | e+ e | e◦e | 〈n.e〉 | e∗ (8)

where n ∈N and s ∈ S . The semantic interpretation L is defined as follows.

1. L(1) def
= {ε}, L(0) def

= /0, L(n) def
= {n}, L(s) def

= {s},
2. L(e1 + e2)

def
= L(e1)∪L(e2),

3. L(e1◦e2)
def
= L(e1)◦L(e2)

def
= {w1 ◦w2 | w1 ∈ L(e1),w2 ∈ L(e2)},

4. L(〈n.e〉) def
= [n]L(e) def

= {[n]w | w ∈ L(e)}.
5. L(e∗) def

=
⋃
i∈N

L(e)i, where L(e)i def
= L(e)◦ · · · ◦L(e)︸ ︷︷ ︸

itimes

,

Remark 4. The definitions of ◦ and [] are dependent on the choice of row in Table 1,
compare (5), (6), (7). For example, on M we have [n]L(e) = {〈〈n.w〉〉 | w ∈ L(e)} and on
L we have [n]L(e) = {(np,w) | (p,w) ∈ L(e)}. From § 5 onwards, we will interpret
regular expressions in M only.

Example 1. We have seen in (4) how 〈n.n〈m.nm〉〉∗ arises from the Needham-Schroeder
protocol. In § 6 we consider the simpler expression m(〈n.mn〉)∗ which intuitively rep-
resent the computations of a security protocol where (an unbound number of) new
‘nonces’ n are generated within a session m and should always be paired up with m. �

We can also interpret nominal regular expressions in plain words. For example, let
L take values in S and let fS : 2S→ 2(N ∪S)∗ denote the map of Remark 3.

6 A. Kurz, T. Suzuki and E. Tuosto

Example 2. If we interpret 〈n.n〉∗ in S (or L or G) we obtain the language

L2
def
= fS(L(〈n.n〉∗)) = {n1 · · ·nk | ∀i 6= j .ni 6= n j},

which is the complement of L1 from (1). L2 is not recognised by the FMAs of [11] but it
is recognised by the FRAs of [17]. The latter notes that L2 ∗L2 = {wv |w,v∈L2} shows
that languages recognised by FRAs are not closed under composition. On the other
hand, the presence of binders allows us to use ◦ (respecting the ’hidden’ binders) instead
of ∗ and we obtain L2 ◦L2 = fS(L(〈n.n〉∗))◦ fS(L(〈n.n〉∗))

def
= fS(L(〈n.n〉∗ ◦〈n.n〉∗)) =

fS(L(〈n.n〉∗)) = L2, where the second equality is our definition of ‘nominal concate-
nation’ on languages of plain words. This indicates that even for languages without
binders the composition with binders is a natural concept.

Similarly, if we interpret e = 〈l.l◦〈m.〈n.m◦n〉〉∗〉 in M we obtain another example
of Tzevelekos:

fM(L(e)) = {mn1
1n2

1n1
2n2

2 · · ·n1
kn2

k | ∀i ∈ N,∀ j ∈ {1,2}. m 6= n j
i &n1

i 6= n2
i }

5 History-dependent Automata with Stack

We build our nominal automata theory on HDA (after history-dependent automata) [13].
HDA are a computational model of nominal calculi defined on the notion of named sets
and extend classical automata with finite sets of names local to states and transitions.
We equip HDA with stack; this renders them suitable for recognising nominal lan-
guages interpreted in M. We argue that HDA are natural candidates to build a theory
of automata of nominal languages with binders. In fact, they are equipped with mecha-
nisms to capture name restriction of nominal calculi [3, 5, 4] and formally linked to the
nominal set theory in [10, 6].

Let ? 6∈ N be a distinguished name; a stack Σ is a sequence of finite partial maps
σ : N →N ∪{?} (we use ⊥ to denote the empty map). The empty stack is denoted by
0, a stack with head σ is written σ :: Σ, and

x
Σ

def
=

{
Σ′, Σ = σ :: Σ′

0, Σ = 0

2x
Σ

def
=

x

(
x
Σ) Σ

> def
=

{
σ, Σ = σ :: Σ′

⊥, Σ = 0

respectively are the pop, pop twice, and top operations.

Definition 8 ([13]). A (basic) named set 〈Q, | |Q〉 is a set Q (of states) with a map
| |Q : Q→ Pω N sending q ∈ Q to a finite set of names |q|Q (called local names of q).

Basically, the elements q of a named set are equipped with a set of local names |q|Q.
Hereafter we omit subscripts when clear from the context and write a named set 〈Q, | |Q〉
as Q, in which case | | is understood as the map of local names of Q; also, the update
of a map f : X → Y at x with y is the map

f [x 7→ y] : X ∪{x}→ Y ∪{y} such that (f [x 7→ y])(a) =
{

f (a), if a 6= x
y, if a = x

Towards Nominal Formal Languages 7

Before giving the formal definition, we intuitively present HDA with stack. A tran-
sition 〈q′,α,σ〉 from a state q consists of the target state q′, a label α, and a map σ

keeping track of the correspondences of names. Labels α can be a local name n ∈ |q| of
the source state q, letters s ∈ S , or any of the distinguished symbols

ε y x 〈〈 〉〉

respectively representing internal transitions, push, pop, name allocation, and name
deallocation. Example 3 gives a convenient graphical representation of an HDS.

Example 3. Let q0, q, and q′ be states with |q0|= {x}, |q|= {z}, and q′ = /0. The HDS

x z
x

q q z q'0

has initial (resp. final) state q0 (resp. q′). Both q0 and q have a transition exposing their
(unique) local name (x and z respectively). Maps among local names are represented by
dashed arrows. Also, q has x transition to q′ with the empty map of local names. �

Definition 9. A (non-deterministic) history-dependent automaton with stack on N ∪S
(HDS) is a tuple 〈Q,q0,η,F, tr〉 where

– Q is a named set of states (the states of the automaton);
– q0 ∈ Q is the initial state;
– η is a partial function from |q0|Q to N ;
– F ⊆ Q is the named set of final states with | |F being the restriction of | |Q to F;
– tr is the transition function returning for each q ∈Q a finite set tr(q) of transitions,

namely tuples 〈q′,α,σ〉 such that
• if α ∈N then α ∈ |q|Q
• if α = 〈〈 then σ : |q′| → |q|∪{?}
• if α =y then σ : |q′| →N
• otherwise σ : |q′| → |q|

and, in either case, σ is a partial injective map (see Remark 6 on page 11).

Transitions in Def 9 allow HDS to accept names or letters or to manipulate the stack.
Besides the usual push (y) and pop (x) operations, HDS feature allocation (〈〈) and
deallocation (〉〉) of names.

Example 4. Let Q = {q0,q,q′}, F = {q′}. The HDS H= 〈Q,q0,η,F, tr〉 where

| | :


q0 7→ {x}
q 7→ {z}
q′ 7→ /0

tr :


q0 7→ {〈q,x,σ : z→ x〉}
q 7→ {〈q′,x,⊥〉,〈q,z,σ1 : z→ z〉}
q′ 7→ /0

formally defines the HDS in Example 3 (where η is not represented for simplicity). �

8 A. Kurz, T. Suzuki and E. Tuosto

We now define how HDS can recognise languages of M. Hereafter, we fix an HDS

H def
= 〈Q,q0,η,F, tr〉 (9)

and, for any stack Σ and any name mapping σ, we define Σ•σ by

0•σ
def
= σ :: 0 and Σ•σ

def
= (Σ>)[? 7→ ?]◦σ :: (

x
Σ)

that basically updates Σ by post-composing its top map Σ> (if any) with σ. Note that
this requires Σ> to be updated to allow composition when ? ∈ cod(σ).

A configuration of H in (9) is a triple 〈q,w,Σ〉 where q ∈ Q, w is an M, and Σ is a
stack. Call initial a configuration 〈q0,w,η :: 0〉 and accepting 〈q,ε,Σ〉 if q ∈ F .

Definition 10. Given q,q′ ∈Q and two configurations t = 〈q,w,Σ〉 and t ′ = 〈q′,w′,Σ′〉,
H in (9) moves from t to t ′ (written t H→ t ′) iff there is 〈q′,α,σ〉 ∈ tr(q) such that either
of the following cases applies

α ∈ |q| =⇒ w = nw′ ∧ Σ>(α) = n ∧ Σ′ = Σ•σ

α = s ∈ S =⇒ w = sw′ ∧ Σ′ = Σ•σ

α = ε =⇒ w′ = w ∧ Σ′ = Σ•σ

α =y =⇒ w′ = w ∧ Σ′ = σ :: Σ

α =x =⇒ w′ = w ∧ Σ′ = σ′ ::
2x
Σ where σ′ =

x
Σ

>
◦σ

α = 〈〈 =⇒ w = 〈〈n.w′ ∧ Σ′ = σ′ :: Σ, where σ′ = (Σ>[? 7→ n])◦σ

α = 〉〉 =⇒ w = 〉〉w′ ∧ Σ′ = σ′ ::
2x
Σ , where σ′ =

x
Σ

>
◦σ

The set recH (t) of states reached by H from t on w is defined as

recH (t) def
=

{
{q} if t = 〈q,ε,Σ〉⋃

t H→t ′
recH (t ′) otherwise

A run of H on an m-word w is a sequence of moves of H from 〈q0,w,η :: 0〉.

Intuitively, HDS “consume” the word in input moving from one configuration to another
(likewise classical automata). However, when the current word starts with a name n, the
automaton can progress only if the name “is known”; namely, it is necessary to find a
transition from the current state q for which the stack maps a local name of q to n.

HDS use a stack (i) to keep track of the names of the current state and, noticeably,
(ii) to (de)allocate bound names in input strings. More precisely, a binder is consumed
using a 〈〈 transition which updates the meaning of the names. This is basically done
by post-composing the mapping σ in the selected transition with the map on the top
of the stack (opportunely updated to take into account the allocation of n). Instead, a 〉〉

transition will pop the stack so reassigning previous meanings to names in the current
state by post-composing the map σ of the transition with “the second one” in the stack.

An automaton H recognises w if it has a run from its initial state to a final state that
consumes w.

Towards Nominal Formal Languages 9

Definition 11. The HDS H in (9) accepts (or recognises) w if F ∩ recH (〈q0,w,η ::
0〉) 6= /0. The language of H (written LH) is the set of words accepted by H .

Example 5. If H is the HDS in Example 4 and η : x 7→ n, then LH = {ni
∣∣ i > 0}. �

Defs 10 and 11 contain some subtleties worth spelling out. First, observe that the
language recognised by H depends on η which intuitively sets the meaning of the local
names of the initial state q0; instead, the language of H does not depend on the identities
of the local names of the states in H . Secondly, an alternative definition would allow
the initial stack to be empty and the correspondence between local names of the states
of H and those in the input word is incrementally built during recognition. This class
of HDSs would be equivalent to the one in Defs 9 and 10, but it would have made our
constructions more complex. Finally, as for classical push-down automata, we could
have equivalently required that an HDS recognises an m-word w only when it has a run
leading to a final state that consumes w and empties the stack. We opted for Def 11 as it
is conceptually simpler. For instance, the following lemma (used to prove Proposition 3)
states that only the top of the stack is relevant for accepting words.

Lemma 1. Any configuration reachable by an HDS as in (9) from 〈q0,w,η :: 0〉 is also
reachable from 〈q0,w,η :: Σ〉 for any stack Σ. ut

In § 6 we show how a nominal regular expression e can be mapped on an HDS LeM
that recognises the language of e. Theorem 2 is the main result

Theorem 2. For each nominal regular expression e, LLeM = L(e) interpreted on M.

Proof. The proof is by induction on the structure of e. The base cases are trivial while
the other cases follow by Propositions 1, 2, 3, and 4. ut

6 HDS and Nominal Regular Expressions

We use nominal regular expressions (8) to establish a correspondence between HDS
and nominal formal languages. More precisely, we give (Def 12) the map mentioned in
Theorem 2 as the homomorphic image of nominal regular expression on an algebra of
HDS given in the rest of this section.

Definition 12. The map L M from nominal regular expressions to HDS is defined as:

L1M = 〈{q0,q},q0,⊥,{q},q0 7→ {〈q,ε,⊥〉}〉 where |q0|= |q|= /0

L0M = 〈{q0},q0,⊥, /0,q0 7→ /0〉 where |q0|= /0

LnM = 〈{q0,q},q0,x 7→ n,{q},q0 7→ {〈q,x,⊥〉}〉 where |q0|= {x}, |q|= /0

LsM = 〈{q0,q},q0,⊥,{q},q0 7→ {〈q,s,⊥〉}〉 where |q0|= |q|= /0

Le1 + e2M = Le1M+ Le2M
Le1 ◦ e2M = Le1M◦ Le2M

Le∗M = LeM∗

L〈n.e〉M = [n]LeM

where the operations on HDS in the last four cases are defined in the following.

10 A. Kurz, T. Suzuki and E. Tuosto

The operations on HDS in Def 12 allow to combine them so that the language of the
resulting HDS has a clear relation with those the operations act upon as per Proposi-
tions 1, 2, 3, and 4 below. Theorem 2 can be proved by induction on the structure of
nominal regular expressions using such propositions.

Remark 5. The map L M in Def 12 depends on the choice of local names; however, as
noted in § 5, recognisability does not depend on the identity of such names.

The first two clauses in Def 6 do not involve names and stack. Notably, the third
clause states that the HDS corresponding to an expression n has simply a transition
from the initial to accepting state and in the initial configuration the unique name of the
former is mapped to n.

The set |H | of (local) names of an HDS H as in (9) is defined as |H | def
=

⋃
q∈Q |q|.

In the following, we fix two HDS

Hi
def
= 〈Qi,q0,i,ηi,Fi, tri〉 for i ∈ {1,2} (10)

and, without loss of generality, we assume that Q1∩Q2 = /0 and |H1|∩ |H2|= /0.

Definition 13. Let q0 6∈Q1∪Q2 be a new state. We define H1 +H2 to be the automaton
H + = 〈Q+,q+0 ,η

+,F+, tr+〉 where

– Q+ = Q1∪Q2∪{q+0 } where |q+0 |Q+ = |q0,1|Q1 ∪|q0,2|Q2 and F+ = F1∪F2
– tr+(q+

0) = {〈q0,i,ε, id|q0,i|〉
∣∣ for i ∈ {1,2}} and tr+|Qi = tri for i ∈ {1,2}, where

id|q0,i| is the identity from |q0,i|Qi to |q+0 |Q+

– η+ = η1 +η2, namely η+(x) = ηi(x) if x ∈ |q0,i|Qi .

Proposition 1. LH + = LH1
∪LH2

Proof. The statement trivially follows from Def 10 as (i) q0 has only two outgoing ε-
transitions which lead to the initial states of either of H1 or H2 and (ii) η preserves the
name assignments η1 and η2. ut

Lemma 2. For each HDS H there is an HDS H ′ with a unique final states and such
that LH = LH ′ .

Proof. Given H in (9) and q̂ 6∈Q such that |q̂|= /0, we define H ′ def
= 〈Q∪{q̂},q0,η,{q̂}, tr′〉

where tr′(q̂) = /0, tr′ = tr when restricted to Q \F , and tr′(q) = tr(q)∪{〈,̂ε,q〉⊥} for
each q ∈ F . The proof that LH = LH ′ is similar to the proof of Proposition 1. ut

Lemma 2 allows, without loss of generality, H in (9) and each of H1 and H2 in (10) to
have a single final state, namely F = {q f }, F1 = {q f ,1} and F2 = {q f ,2}, respectively.

The following construction extends the names of an HDS without altering its lan-
guage and is used in Def 15.

Definition 14. Given H as in (9) and x ∈ N \ |H |, H †x = 〈Q†,q†
0,η

†,F†, tr†〉 is the
HDS such that

– Q† is the named set having the same elements of Q with | |Q† : q 7→ |q|Q∪{x}

Towards Nominal Formal Languages 11

– F† is the named set with the same states of F and | |F† : q 7→ |q|Q† ∪{x}
– tr†(q) = {(q′,α,σ[x 7→ x])

∣∣ (q′,α,σ) ∈ tr(q)}
– η† : |q|Q∪{x}→N is the partial map undefined on x and behaving as η otherwise.

Hereafter, we assume that x ∈N \ |H | when writing H †x; in fact, by the locality of the
names in the states of an HDS, if q is a state of H such that x ∈ |q|, we can replace x
with any name not in |q| by rearranging all the maps in the transitions reaching q.

Lemma 3. LH †x = LH .

Proof. The proof that LH ⊆ LH †x is trivial as all the transitions of H have a corre-
spondent in H †x with exactly the same labels and name mappings. The converse also
hold trivially as x cannot play any role in the recognition of a word in H †x as η′ is not
defined on x. ut

Definition 15. Let {x1, . . . ,x j}= |q0,2| and (. . .(H1†x1) . . .†)x j = 〈Q′1,q′0,1,η′,{q′f ,1}, tr′〉.
The HDS H1 ◦H2 is defined as 〈Q◦,q′0,1,η◦,F2, tr◦〉 where Q◦ = Q′1∪Q2 and

η
◦(x) =

{
η2(x) x ∈ |q0,2|
η′(x) otherwise

tr◦(q) =


tr′(q) q ∈ Q′1 \{q′f ,1}
tr2(q), q ∈ Q2

tr′(q)∪{〈q0,2,ε, id|q0,2|〉}, q = q′f ,1

The HDS H1 ◦H2 is built by connecting the accepting state of H1 to q0,2, the initial state
of H2, after adding |q0,2| to H1. Note that the newly introduced ε-transition maintains
the initial meaning of the names in |q0,2| since η◦ acts as η′ on |q0,2| (and by Def 14).

Remark 6. A definition more complex than Def 15 can be given to preserve the injec-
tivity of the initial mapping η◦ when η1 and η2 are injective. This requires to relax
the injectivity condition on σ in Def 9 requiring σ(x) = σ(y) ⇐⇒ σ(x) = ? for any
x,y ∈ dom(σ). We opted for the simpler Def 15 as it just allows more non-determism
without altering the expressiveness of HDS.

Proposition 2. LH1◦H2
= LH1 ◦LH2 .

Proof. The automaton H1 ◦H2 reaches a final state iff w = w1w2 where wi ∈ LHi
for

i = 1,2. In fact, to reach q f ,2 it is necessary to reach q f ,1 first and the unique transition
from q f ,1 to q0,2 maintains on the stack the meaning assigned to the names |q0,2| as per
the stack. ut

Definition 16. Let H be as in (9) with F = {q f }. The HDS H ∗ = 〈Q,q0,η,{q f }, tr∗〉
is such that

tr∗(q) = tr(q), for all q ∈ Q\{q0,q f }
tr∗(q0) = tr(q0)∪{〈q f ,ε,⊥〉}
tr∗(q f) = {〈q0,y,η〉}

The construction of H ∗ simply adds an ε-transition from q0 (the initial state of H) to
q f (the accepting state of H) and a y-transition from q f to q0 that re-establish the
mapping of the initial configuration preserving in the stack the meaning of the names.

12 A. Kurz, T. Suzuki and E. Tuosto

Proposition 3. LH ∗ = L∗H
Proof. (Sketch.) First, observe that trivially ε ∈ LH ∗ ∩L∗H because H ∗ has a transition
〈q̂,ε,⊥〉 from q0.

We now prove that LH ∗ ⊆ L∗H . If w 6= ε ∈ LH ∗ then H ∗ reaches a configuration
〈q̂,ε,Σ〉 for a suitable Σ. By construction and Def 10, H ∗ can visit q̂ only a finite number
of times k. Hence, w = w1 ◦ · · · ◦wk where wi is the word processed between the i-th
visit of q̂ and the previous visit of q̂ (or of q0 if i = 1).

Observing that each visit of q̂ is preceded by a visit of q f (since q̂ can only be
reached trough q f), we have that w1 ∈ LH (and hence in L∗H) because there q f can be
reached from the configuration 〈q0,w1,η :: 0〉. For the same reason, we can conclude
that wi+1 ∈ LH for each i ∈ {1, . . . ,k− 1}; in fact, the i-th visit of q̂ yields H ∗ in the
configuration 〈q̂,wi+1 ◦ . . .◦wk,Σ〉 for some stack Σ. Hence, using the unique transition
〈q0,y,η〉 from q̂, the automaton “resets” to the configuration 〈q0,wi+1 ◦ . . .◦wk,η :: Σ〉,
which basically amounts to say that wi can be recognised by H and the next work wi+1
is processed from a configuration where η is on the top of the stack and the thesis
follows by Lemma 1.

We prove that L∗H ⊆ LH ∗ . Any word w ∈ L∗H has the form w = w1 ◦ · · · ◦wk where
wi ∈ LH for each i ∈ {1, . . . ,k}, so we proceed by induction on k. If k = 0 the the-
sis follows trivially. If k > 0 then, from the configuration 〈q0,w1 ◦w2 ◦ . . .◦wk,η :: 0〉,
H ∗ reaches a configuration 〈q f ,w2 ◦ . . . ◦wk,Σ〉 since w1 ∈ LH by hypothesis. Since
〈q̂,ε,⊥〉∈ tr′(q f), the configuration 〈q̂,w2◦ . . .◦wk,Σ•⊥〉 is reachable from H ∗. There-
fore, H ∗ reaches the configuration 〈q0,w2 ◦ . . . ◦wk,η :: Σ •⊥〉 which yields the thesis
by Lemma 1. ut

Definition 17. Let n∈N , H be as in (9) with F = {q f }, and let q̂, q̂ f 6∈Q be new states
with |q̂|= |q0| \η−1(n) and |q̂ f |= /0. The HDS [n]H = 〈Q∪{q̂, q̂ f }, q̂,η||q̂|,{q̂ f }, tr′〉 is
such that

tr′(q̂) = {〈q0, 〈〈,σ〉}, tr′(q) = tr(q), ∀q ∈ Q\{q f }, tr′(q f) = tr(q f)∪{〈q̂ f , 〉〉,⊥〉}

where σ = id|q0|[x 7→ ?], if η−1(n) = {x}, otherwise σ = id|q0|.

Proposition 4. L[n]H = [n]LH .

Proof. By construction, 〈q̂,w,η||q̂| :: 0〉 reaches q̂ f iff there is a word w′ such that
w = 〈〈n.w′ and 〈q0,w′,σ′〉 reaches reaches q̂ f where σ′ is built as in Def 10. Again
by construction, this is possible iff 〈q0,w′,σ′〉 visits q f and the last transition which
consumes the word is a (deallocation) 〉〉-transition from q f to q̂ f . This is equivalent to
say that there is w′′ ∈ LH such that w′ = w′′〉〉 which, by Remark4, yields the thesis. ut

7 Mapping Nominal Regular Expressions to HDS

We build the HDS HLm(〈n.mn〉)∗M corresponding to the expression m(〈n.mn〉)∗ by applying
the constructions of § 6. By Definition 12, the HDS corresponding to the expression m
is HLmM with

LmM = HLmM = 〈{q0,m,q f ,m},q0,m,ηm,{q f ,m}, trm〉 (11)

Towards Nominal Formal Languages 13

where |q0,m|= {x}, |q f ,m|= /0, ηm : x 7→m, trm : q f ,m 7→ /0, and trm : q0,m 7→ {〈q f ,m,x,⊥〉}.
Analogously, the HDS corresponding to the expression n is HLnM with

LnM = HLnM = 〈{q0,n,q f ,n},q0,n,ηn,{q0,n}, trn〉

where |q0,n|= {y}, |q f ,n|= /0, ηn : y 7→ n, trn : q f ,n 7→ /0, and trn : q0,n 7→ {〈q f ,n⊥,y,}〉.
To compose HLmM and HLnM, we first have to compute HLmM†y; by Def 14, HLmM†y=

〈Q†,q0,†,η†,{q f ,†}, tr†〉 where Q† = {q0,†,q f ,†} and

| |† :

{
q0,† 7→ {x,y}
q f ,† 7→ {y}

η† :

{
x 7→ m
y 7→ ⊥

tr† :

{
q0,† 7→ {〈q f ,m,x,y 7→ y〉}
q f ,† 7→ /0

By Def 15, HLmM ◦HLnM = 〈Q◦,q0,†,η◦,{q f ,n}, tr◦〉 where Q◦ = {q0,†,q f ,†,q0,n,q f ,n},

η◦ :

{
x 7→ m
y 7→ n

and tr◦ :


q0,† 7→ {〈q f ,†,x,y 7→ y〉}
q f ,† 7→ {〈q0,n,ε,y 7→ y〉}
q0,n 7→ {〈q f ,n,y,⊥〉}
q f ,n 7→ /0

We now build HL〈n.mn〉M = [n](HLmM◦HLnM); let qs and qt be two new states with |qs|=
{x} and |qt | = /0, as prescribed by Def 17, we have HL〈n.mn〉M = 〈Q[n],qs,η[n],{qt}, tr[n]〉
where Q[n] =Q◦∪{qs,qt} and the initial setting η[n] by restricting η◦ on |qs|, i.e. η[n] : x 7→
m; moreover,

tr[n] :


qs 7→ {〈q0,†, 〈〈,σ〉}, where dom(σ) = {x,y} and σ(x) = y and σ(y) = ?

q f ,n 7→ {〈qt , 〉〉,⊥〉}
q 7→ tr†(q), if q ∈ Q† \{q f ,n}

Further, by Def 16, HL(〈n.mn〉)∗M is obtained by adding two extra transitions qs 7→
{〈qt ,ε,⊥〉} and qt 7→ {〈qs,y,η[n]〉}.

Finally, by Def 15, we obtain the HDS HLm(〈n.mn〉)∗M as follows. First, let H ′
LmM =

〈{q′0,m,q′f ,m},q′0,m,η′m,{q′f ,m}, tr′m〉 be obtained as in (11) by defining |q′0,m|= {x′}, |q′f ,m|=
/0, η′m : x′ 7→m, tr′m : q′f ,m 7→ /0, and tr′m : q′0,m 7→ {〈q′f ,m,x′,⊥〉}. Then, we set HLm(〈n.mn〉)∗M =

H ′
LmM ◦HL〈n.mn〉M = 〈Q ,q′0,m,η,{qt}, tr〉 where Q = Q[n]∪{q′0,m,q′f ,m} and

η :

{
x′ 7→ m
x 7→ m

tr :


q 7→ tr[n](q), if q ∈ Q[n]

q′0,m 7→ tr′m(q
′
f ,m)∪{〈q′f ,m,ε,⊥〉}

q′f ,m 7→ tr′m(q
′
f ,m)∪{〈qs,ε,y 7→ y〉}

η : x m
 x' m x

y y
x

y

y
q0,n

qf,n
y

qs qf

«*

»
x
x'

y
x'

q'0,m

ε

ε

q'f,m
ε

q 0,

q f,

η

14 A. Kurz, T. Suzuki and E. Tuosto

We conclude with some final remarks. Equivalent definitions could have been adopted;
for instance, η above is not required to be injective (adding some non-determinism
in Def 10) or some of the new states introduced by the constructions above could be
avoided to obtain more compact HDS. We decided to use conceptually simpler con-
structions instead of more effective, but more complex ones.

8 Conclusion

This paper developed the beginnings of a general theory of words with binders: nominal
languages, nominal monoids, nominal regular expressions, HD-automata with stacks.
We sketch some further work.

Coming back to Table 1 further classes maybe relevant, for example words satisfy-
ing Ax4-5 but not Ax1-3; it will also be of interest to mix different binders each obeying
its own axioms plus further axioms of their interaction.

HD-automata with stacks are more powerful than necessary if one is only interested
in recognising regular languages; a restricted class of HD-automata characterising reg-
ular languages of m-words can be described; the same should be done for g-words,
l-words, and s-words.

We will also investigate the connections (cf. Example 2) of our nominal languages
with languages (on infinite alphabets) without binders [1, 17, 7, 2].

Further, closure properties and decidability results for these classes of automata
should be studied; for verification purposes deterministic and minimal automata will be
of interest.

Last but not least, case studies showing the relevance of this line of research to
verification will have to be explored.

References

1. M. Bojanczyk. Data monoids. In STACS’11.
2. V. Ciancia and E. Tuosto. A novel class of automata for languages on infinite alphabets.

Technical Report CS-09-003, Leicester, 2009.
3. G. Ferrari, U. Montanari, and E. Tuosto. Model Checking for Nominal Calculi. In FoS-

SaCS’05.
4. G. Ferrari, U. Montanari, and E. Tuosto. Coalgebraic Minimisation of HD-automata for the

π-Calculus in a Polymorphic λ-Calculus. TCS, 331, 2005.
5. G. Ferrari, U. Montanari, E. Tuosto, B. Victor, and K. Yemane. Modelling and Minimising

the Fusion Calculus Using HD-Automata. In CALCO’05.
6. M. Fiore and S. Staton. Comparing Operational Models of Name-Passing Process Calculi.

Inf. & Comp., 204.
7. M. Gabbay and V. Ciancia. Freshness and name-restriction in sets of traces with names. In

FoSSaCS’11.
8. M. Gabbay and A. Pitts. A new approach to abstract syntax with variable binding. J. of

Formal Aspects of Computing, 13, 2002.
9. M. J. Gabbay and A. Mathijssen. Nominal (universal) algebra: Equational logic with names

and binding. J. Log. Comput., 2009.
10. F. Gadducci, M. Miculan, and U. Montanari. About permutation algebras, (pre)sheaves and

named sets. Higher-Order and Symbolic Computation, 19, 2006.

Towards Nominal Formal Languages 15

11. M. Kaminski and N. Francez. Finite-memory automata. TCS, 134, 1994.
12. A. Kurz, T. Suzuki, and E. Tuosto. Nominal monoids. Technical Report CS-10-004, Leices-

ter, 2010.
13. M. Pistore. History Dependent Automata. PhD thesis, Dip. di Informatica - Pisa, 1999.
14. A. M. Pitts. Nominal system T. In POPL’10.
15. L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In CSL’06.
16. C. Stirling. Dependency tree automata. In FoSSaCS’09.
17. N. Tzevelekos. Fresh-Register Automata. In POPL’11.

	Chapman University
	Chapman University Digital Commons
	2011

	Towards Nominal Formal Languages
	Alexander Kurz
	Tomoyuki Suzuki
	Emilio Tuosto
	Recommended Citation

	tmp.1549498501.pdf.YLpXK

