
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 481–492
www.stacs-conf.org

THE DYNAMIC COMPLEXITY OF FORMAL LANGUAGES
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Abstract. The paper investigates the power of the dynamic complexity classes DynFO,
DynQF and DynPROP over string languages. The latter two classes contain problems that
can be maintained using quantifier-free first-order updates, with and without auxiliary
functions, respectively. It is shown that the languages maintainable in DynPROP exactly
are the regular languages, even when allowing arbitrary precomputation. This enables
lower bounds for DynPROP and separates DynPROP from DynQF and DynFO. Further,
it is shown that any context-free language can be maintained in DynFO and a number
of specific context-free languages, for example all Dyck-languages, are maintainable in
DynQF. Furthermore, the dynamic complexity of regular tree languages is investigated and
some results concerning arbitrary structures are obtained: there exist first-order definable
properties which are not maintainable in DynPROP. On the other hand any existential
first-order property can be maintained in DynQF when allowing precomputation.

1. Introduction

Traditional complexity theory asks for the necessary effort to decide whether a given
input has a certain property, more precisely, whether a given string is in a certain language.
In contrast, dynamic complexity asks for the effort to maintain sufficient knowledge to be
able to decide whether the input object has the property after a series of small changes of
the object. The complexity theoretic investigation of the dynamic complexity of algorithmic
problems was initiated by Patnaik and Immerman [18]. They defined the class DynFO
of dynamic problems where small changes in the input can be mastered by formulas of
(first-order) predicate logic (or, equivalently, poly-size circuits of bounded depth, see [8]).
More precisely, the dynamic program makes use of an auxiliary data structure and after
each update (say, insertion or deletion) the auxiliary data structure can be adapted by a
first-order formula.

Among others they showed that the dynamic complexity of the following problems is
in DynFO: Reachability in undirected graphs, minimum spanning forests, multiplication,
regular languages, the Dyck languages Dn. Subsequent work has yielded more problems in
DynFO [8] some of which are LOGCFL-complete [20] and even PTIME-complete [17, 18]
(even though the latter are highly artificial). Other work also considered stronger classes
(like Hesse’s result that Reachability in arbitrary directed graphs is in DynTC0 [13]), studied

Key words and phrases: Dynamic complexity, Regular languages, Context-free languages, DynFO.
Wouter Gelade is a Research Assistant of the Fund for Scientific Research - Flanders (Belgium) .

c© W. Gelade, M. Marquardt, and T. Schwentick
CC© Creative Commons Attribution-NoDerivs License

STACS 2009 
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 481-492 
http://drops.dagstuhl.de/opus/volltexte/2009/1829

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


482 W. GELADE, M. MARQUARDT, AND T. SCHWENTICK

REG
= Thm 3.5

DynPROP (
Thm 3.5, 4.5

D1

∈ Prop 4.5

DynPROP + SUCC

6= Thm 6.3

FO

⊆

Dn

∈ Prop 4.4

DynQF

⊇ Prop 6.4

EFO

⊆

CFL

(

Thm 4.1

Prop 4.2

DynFO

Figure 1: An overview of the main results in this paper.1

notions of completeness for dynamic problems [15], and elaborated on the handling of
precomputations [20].

The choice of first-order logic as update language in [18] was presumably triggered by
the hope that, in the light of lower bounds for AC0, it would be possible to prove that
certain problems do not have DynFO dynamic complexity. As it is easy to show that every
DynFO problem is in PTIME, a non-trivial lower bound result would have to show that
the dynamic complexity of some PTIME problem is not in DynFO. However, so far there
are no results of this kind.

The inability to prove lower bounds has naturally led to the consideration of subclasses
of DynFO. Hesse studied problems with quantifier-free update formulas, yielding DynPROP
if the maintained data structure is purely relational and DynQF if functions are allowed as
well [12, 14]. As further refinements the subclasses DynOR and DynProjections were stud-
ied. In [12] separation results for subclasses of DynPROP were shown and the separation
between DynPROP and DynP was stated as an open problem.

The framework of [18] allows more general update operations and some of the results
we mention depend on the actual choice of operations. Nevertheless, most research has
concentrated on insertions and deletions as the only available operations. Furthermore,
most work considered underlying structures of the following three kinds.

Graphs: Here, edges can be inserted or deleted. One of the main open questions
is whether Reachability (aka transitive closure) can be maintained in DynFO for
directed, possibly cyclic graphs.

Strings: Here, letters can be inserted or deleted. As mentioned above, [18] showed
that regular languages and Dyck languages can be maintained in DynFO. Later
on, Hesse proved that the dynamic complexity of regular languages is actually in
DynQF [14].

Databases: The dynamic complexity of database properties were studied in the
slightly different framework of First-Order Incremental Evaluation Systems (FOIES)
[7]. Many interesting results were shown including a separation between determin-
istic and nondeterministic systems [5] and inexpressibility results for auxiliary rela-
tions of small arity [4, 6]. Nevertheless, general lower bounds have not been shown
yet.

Continuing the above lines of research, this paper studies the dynamic complexity of formal
languages with a particular focus on dynamic classes between DynPROP and DynQF. Our
main contributions are as follows (see also Figure 1):

• We give an exact characterization of the dynamic complexity of regular languages:
a language can be maintained in DynPROP if and only if it is regular. This also
holds in the presence of arbitrary precomputed (aka built-in) relations. (Section 3)

1In this figure the dynamic complexity classes are allowed to operate with precomputation. Some of the
results also hold without precomputation, for example all results concerning formal languages.
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• We provide (presumably) better upper bounds for context-free languages: every
context-free language can be maintained in DynFO, Dyck languages even in DynQF,
Dyck languages with one kind of brackets in a slight extension of DynPROP, where
built-in successor and predecessor functions can be used. (Section 4)

• As an immediate consequence, we get a separation between DynPROP and DynQF,
thereby also separating DynPROP from DynFO and DynP.

• We investigate a slightly different semantics for dynamic string languages, and we
show that regular tree languages can be maintained in DynPROP, when allowing
precomputation and the use of built-in functions. (Section 5).

• Further, we study general structures, and show that (bounded-depth) alternating
reachability is not maintainable in DynPROP. From this we can conclude that not
all first-order definable properties are maintainable in DynPROP. On the other
hand, we prove that all existential first-order definable properties are maintainable
in DynQF when allowing precomputation. (Section 6)

Related work. We already discussed most of the related work above. A related re-
search area is the study of incremental computation and the complexity of problems in the
cell probe model. Here, the focus is not on structural (parallel) complexity of updates but
rather on (sequential) update time [16, 17]. In particular, [9, 10] give efficient incremen-
tal algorithms and analyse the complexity of formal language classes based on completely
different ideas.

Another area related to dynamic formal languages is the incremental maintenance of
schema information (aka regular tree languages) [1, 2] and XPath query evaluation [3] in
XML documents. There, the interest is mainly in fast algorithms, less in structural dynamic
complexity. Nevertheless techniques of dynamic algorithms on string languages also find
applications in these settings.

Due to lack of space all proofs are omitted, except for some proof sketches. They are
available in the full version of the paper [11].

2. Definitions

Let Σ = {σ1, ..., σk} be a fixed alphabet. We represent words over Σ encoded by word
structures, i.e., logical structures W with universe {1 . . . , n}, one unary relation Rσ for each
symbol σ ∈ Σ, and the canonical linear order < on {1 . . . , n}. We only consider structures
in which, for each i ≤ n, there is at most one σ ∈ Σ such that Rσ(i) holds, but there might
be none such σ. We write W (i) = σ if Rσ(i) holds and W (i) = ε if no such σ exists. We
call n the size of W .

The word w = word(W ) represented by a word structure W is simply the concatenation
W (1) ◦ · · · ◦W (n). Notice that, due to the fact that certain elements in W might not carry
a symbol, the actual length of the string can be less than n. In particular, every word w
can be encoded by infinitely many different word structures. Let [i, j] and ]i, j[ denote the
intervals from i to j, resp. from i+1 to j−1. For a word structure W , and positions i ≤ j in
[1, n], we write w[i, j] for the (sub-)string W (i) ◦ · · · ◦W (j). In particular w[i, i− 1] denotes
the empty substring between positions i and i− 1.

By En we denote the structure with universe {1, .., n} representing the empty string ε
(thus in En all relations Rσ are empty).
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2.1. Dynamic Languages and Complexity Classes

In this section, we first define dynamic counterparts of formal languages. Informally,
a dynamic language consists of all sequences of insertions and deletions of symbols that
transform the empty string into a string of a particular (static) language L. Then we define
dynamic programs which are intended to keep track of whether the string resulting from
a sequence of updates is in L. Finally we define complexity classes of dynamic languages.
Most of our definitions are inspired by [18] but, as we consider strings as opposed to arbitrary
structures, we try to keep the formalism as simple as possible.

Dynamic Languages. We will associate with each string language L a dynamic language
Dyn(L). The idea is that words can be changed by insertions and deletions of letters and
Dyn(L) is basically the set of update sequences α which turn the empty string into a string
in L.

For an alphabet Σ we define the set ∆ := {insσ | σ ∈ Σ} ∪ {reset} of abstract updates.
A concrete update is a term of the form insσ(i) or reset(i), where i is a positive integer. A
concrete update is applicable in a word structure of size n if i ≤ n. By ∆n we denote the
set of applicable concrete updates for word structures of size n. If there is no danger of
confusion we will simply write “update” for concrete or abstract updates.

The semantics of applicable updates is defined as expected: δ(W ) is the structure
resulting from W by

• setting Rσ(i) to true and Rσ′(i) to false, for σ′ 6= σ, if δ = insσ(i), and
• setting all Rσ(i) to false, if δ = reset(i).

For a sequence α = δ1 . . . δk ∈ ∆+
n of updates we define α(W ) as δk(. . . (δ1(W )) . . .).

Definition 2.1. Let L be a language over alphabet Σ. The dynamic language Dyn(L) is
the set of all (non-empty) sequences α of updates, for which there is n > 0 such that α ∈ ∆+

n

and word(α(En)) ∈ L. We call L the underlying language of Dyn(L).2

Dynamic Programs. Informally, a dynamic program is a transition system which reads
sequences of concrete updates and stores the current string and some auxiliary relations
in its state. It also maintains the information whether the current string is in the (static)
language under consideration.

A program state S is a word structure W extended by (auxiliary) relations over the
universe of W . The schema of S is the set of names and arities of the auxiliary relations of
S. We require that each program has a 0-ary relation ACC.

A dynamic program P over alphabet Σ and schema R consists of an update function
φR
op(y;x1, . . . , xk), for every op ∈ ∆ and R ∈ R, where k = arity(R). A dynamic program
P operates as follows. Let S be a program state with word structure W . The application of
an applicable update δ = op(i) on S yields the new state S′ = δ(S) consisting of W ′ = δ(W )
and new relations R′ = {j̄ | S |= φR

op(i, j̄)}, for each R ∈ R. For each n ∈ N and update

sequence α = δ1 . . . δk ∈ ∆+
n we define α(S) as δk(. . . (δ1(S)) . . .). We say that a state S is

accepting iff S |= ACC, i.e., if the 0-ary ACC-relation contains the empty tuple.3

2There is a danger of confusion as we deal with two kinds of languages: “normal languages” consisting of
“normal strings” and dynamic languages consisting of sequences of updates. We use the terms “word” and
“string” only for “normal strings” and call the elements of dynamic languages “sequences”.

30-ary relations can be viewed as propositional variables: either they contain the empty tuple (corre-
sponding to TRUE) or not.
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We say that a dynamic program P recognizes the dynamic language Dyn(L) if for all
n ∈ N and all α ∈ ∆+

n it holds that α(En
′) is accepting iff word(α(En)) ∈ L, where En

′

denotes the state with word structure En and otherwise empty relations.

Dynamic Complexity Classes. DynFO is the class of all dynamic languages that are recog-
nized by dynamic programs whose update functions are definable by first-order formulas.
DynPROP is the subclass of DynFO where all these formulas are quantifier free.

2.2. Extended Dynamic Programs

To gain more insight into the subtle mechanics of dynamic computations, we study two
orthogonal extensions of dynamic programs: auxiliary functions and precomputations.

Extending dynamic programs with functions. A dynamic program P with auxiliary functions
is a dynamic program over a schema R, possibly containing function symbols, which has,
for each σ ∈ Σ and each function symbol F ∈ R an update function ψF

σ (i;x1, ..., xk) where
k = arity(F ).

As we are mainly interested in quantifier free update functions for updating auxiliary
functions we restrict ourselves to update functions defined by update terms, defined as:

• Every xi is an update term.
• If F ∈ R is a function and t̄ contains only update terms then F (t̄) is an update

term.
• If φ is a quantifier free formula (possibly using update terms) and t1 and t2 are

update terms then ite(φ, t1, t2) is an update term.

The semantics of update terms is straightforward for the first two rules. A term
ite(φ, t1, t2) takes the value of t1 if φ evaluates to true and the value of t2 otherwise.

After an update δ, the auxiliary functions in the new state are defined by the update
functions in the straightforward way. Unless otherwise stated, the functions in the initial
state En

′ map every tuple to its first element.

Extending dynamic programs with precomputations. Sometimes it can be useful for a dy-
namic algorithm to have a precomputation which prepares some sophisticated data struc-
tures. Such precomputations can easily be incorporated into the model of dynamic pro-
grams.

In [18] the class DynFO+ allowed polynomial time precomputations on the auxiliary
relations. The structual properties of dynamic algorithms with precomputation were further
studied and refined in [20]. In this paper, we do not consider different complexities of
precomputations but distinguish only the cases where precomputations are allowed or not.

A dynamic program P with precomputations uses an additional set of initial auxiliary
relations (and possibly initial auxiliary functions). For each initial auxiliary relation symbol

R and each n, P has a relation Rinit
n over {1, . . . , n}. The semantics of dynamic programs

with precomputations is adapted as follows: in the initial state En
′ each initial auxiliary

relation R is interpreted by Rinit
n . Similarly, for initial auxiliary function symbol F and

each n there is a function F init
n over {1, . . . , n}.

Initial auxiliary relations and functions are never updated, i.e., P does not have update
functions for them.
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The extension of dynamic programs by functions and precomputations can be combined
and gives rise to different complexity classes: For I ∈ {⊥,Rel,Fun} and A ∈ {Rel,Fun} we
denote by DynC(I,A) the class of dynamic languages recognized by dynamic programs

• without precomputations, if I = ⊥,
• with initial auxiliary relations, if I = Rel,
• with initial auxiliary relations and functions, if I = Fun,
• with (updatable) auxiliary relations only, if A = Rel, and
• with (updatable) auxiliary relations and functions, if A = Fun.

Thus, we have DynFO = DynFO(⊥,Rel) and DynPROP = DynPROP(⊥,Rel). If the
base class DynC is DynPROP or DynFO, DynC(I,A) is clearly monotonic with respect to
the order ⊥ < Rel < Fun In particular,

DynPROP(Rel,Rel) ⊆ DynPROP(Fun,Rel) ⊆ DynPROP(Fun,Fun)

As we are particularly interested in the class DynPROP(⊥,Fun) we denote it also more
consisely by DynQF.

As auxiliary functions can be simulated by auxiliary relations if the update functions
are first-order formulas we also have DynFO(Rel,Rel) = DynFO(Fun,Fun) and DynFO =
DynFO(⊥,Fun). Thus, in our setting there are only two classes with base class DynFO:
the one with and the one without precomputations.

We will also examine the setting where we only allow a specific set of initial auxiliary
(numerical) functions, namely built-in successor and predecessor functions. For each uni-
verse size n let succ be the function that maps every universe element to its successor
(induced by the ordering) and the element n to itself, let pre be the function mapping to
predecessors and the element 1 to itself, and let min be the constant (i.e. nullary function)
mapping to the minimal element 1 in the universe. Then DynPROP(SUCC,Rel) is the class
of dynamic languages recognized by dynamic programs using quantifier-free formulas with
initial (precomputed) auxiliary relations, the auxiliary functions succ, pre and min and
updatable auxiliary relations.

3. Dynamic Complexity of Regular Languages

As already mentioned in the introduction, it was shown by Patnaik and Immerman [18]
that every regular language can be recognized by a DynFO program. Hesse [14] showed
that the full power of DynFO is actually not needed: every regular language is recognized
by some DynQF program.

Our first result is a precise characterization of the dynamic languages Dyn(L) with an
underlying regular language L: they exactly constitute the class DynPROP. Before stating
the result formally and sketch its proof, we will give a small example to illustrate how
regular languages can be maintained in DynPROP.

Example 3.1. Consider the regular language (a + b)∗a(a + b)∗ over the alphabet {a, b}.
One has to maintain one binary relation A(i, j) that is true iff i < j and there exists
k ∈ ]i, j[ such that w[k, k] = a and two unary relations I(j) ≡ ∃k < j : w[k, k] = a and
F (i) ≡ ∃k > i : w[k, k] = a. We note that it is important here that A(i, j) refers to the
interval ]i, j[, and not [i, j], in order to maintain these relations in DynPROP.
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For the operation insa the update formulas are straightforward, therefore we will give
here just the update formulas for A and ACC after the operation insb. Exactly the same
formulas can be used for the reset operation.

φA
insb

(y;x1, x2) ≡
(

y /∈ ]x1, x2[ ∧A(x1, x2)
)

∨
(

y ∈ ]x1, x2[ ∧ (A(x1, y) ∨A(y, x2))
)

φACC
insb

(y) ≡ I(y) ∨ F (y)

Proposition 3.2. For every regular language L, Dyn(L) ∈ DynPROP.

Proof. Let A = (Q, δ, s, F ) be a DFA accepting L with transition function δ : Q× Σ → Q.
Let δ∗ : Q× Σ∗ → Q denote the reflexive-transitive closure of δ.

Like in the example above one has to maintain information about the open intervals
]i, j[, namely whether the substring w[i+ 1, j − 1] brings the automaton from a state p to
state q. Here, we only give the different auxiliary relations. For all states p and q we
maintain

• Rp,q = {(i, j) | i < j ∧ δ∗(p,w[i + 1, j − 1]) = q}
• Iq = {j | δ∗(s,w[1, j − 1]) = q} and Fp = {i | δ∗(p,w[i+ 1, n]) ∈ F}

As a matter of fact, the converse of Proposition 3.2 is also true, thus DynPROP is the
exact dynamic counterpart of the regular languages.

Proposition 3.3. Let L = Dyn(L′) be a dynamic language in DynPROP. Then L′ is
regular.

Proof. The idea of the proof is as follows. We consider a dynamic program P for L and see
what happens if, starting from the empty word, the positions of a word are set in a left-to-
right fashion. Since the acceptance of the word by P does not depend on the sequence of
updates used to produce the word, it suffices to care only about this one update sequence.

We make the following observations.

(1) After each update all tuples of positions that have not been set yet behave the same
with respect to the auxiliary relations.

(2) There is only a bounded number (depending only on P , namely on the number and the
maximal arity of the auxiliary relations) of possible ways these tuples behave.

(3) The change in behavior of the tuples by one update is uniquely determined by the
inserted symbol.

Together these observations enable us to define a finite automaton for L′.

Remark 3.4. Proposition 3.3 is a powerful tool for proving lower bounds as it, of course,
shows that, for every non-regular language L, Dyn(L) 6∈ DynPROP.

The proof of Proposition 3.3 intuitively relies on the fact that all remaining string
positions cannot be distinguished before they are set. Using a Ramsey argument, this
idea can be generalized to the setting with precomputations, thus showing that (relational)
precomputations do not increase the expressive power of DynPROP-programs. This fact
and the above two propositions can then be combined into the following theorem.

Theorem 3.5. Let L be a language. Then, the following are equivalent:

(1) L is regular;
(2) Dyn(L) ∈ DynPROP; and
(3) Dyn(L) ∈ DynPROP(Rel,Rel).
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4. Dynamic Complexity of Context-free Languages

In the previous section we have seen that the regular languages are exactly those lan-
guages that can be recognized by a DynPROP program. In this section, we will study the
dynamic complexity of context-free languages. We first show that any context-free language
can be maintained in DynFO. Later on, we exhibit languages that can be maintained in
DynQF or a weak extension of DynPROP.

Theorem 4.1. Let L be a context-free language. Then, Dyn(L) is in DynFO.

Proof. Let L be a context-free language. Consider a grammar G = (V,Σ, S,D) for L and
assume w.l.o.g. that is in Chomsky normal form. For U ∈ V , and w ∈ (V ∪Σ)∗, we denote
by U →∗ w that w can be derived from U . Then, L = {w | w ∈ Σ∗ ∧ S →∗ w}.

Our dynamic program P recognizing L will maintain for all X,Y ∈ V the following
relation:

RX,Y = {(i1, i2, j1, j2) | [j1, j2] ⊆ [i1, i2] ∧X →∗ w[i1, j1 − 1]Y w[j2 + 1, i2]}

However, we cannot hope for an equivalence between DynFO and the context-free
languages, as for DynPROP and the regular languages before. This follows easily as opposed
to the class of context-free languages, DynFO is closed under intersection and complement.
Furthermore, one can show that non-contextfree languages can be maintained in DynQF
and DynPROP(SUCC,Rel). This is because unary counters can be implemented easily
by dynamic programs in these classes. Let EQUALr be the language over the alphabet
Σ = {a1, . . . , ar} containing all strings with an equal number of occurrences of each symbol
ai. Note that already EQUAL3 is not context-free. Using the counters one can prove the
following

Proposition 4.2.

(1) Dyn(EQUALr) ∈ DynPROP(SUCC,Rel)
(2) Dyn(EQUALr) ∈ DynQF

From Proposition 4.2 and Theorem 3.5 one can conclude the following

Corollary 4.3.

(1) DynPROP ( DynPROP(SUCC,Rel)
(2) DynPROP ( DynQF

One can also get better upper bounds for Dyck-languages, the languages of properly
balanced parentheses. For a set of opening brackets {(1, ..., (n} and the set of its closing
brackets {)1, ..., )n} the language Dn is the language produced by the context free grammar:

S → SS | (1S)1 | ... | (nS)n | ε

Proposition 4.4. For every n > 0, Dn ∈ DynQF.

The proof of Proposition 4.4 mainly relies on the fact that each terminal symbol oc-
curs in only one rule of the grammar and therefore corresponding positions (i.e. matching
brackets) can be maintained using auxiliary functions. Together with relations similar to
the proof of Theorem 4.1 these functions enable us to maintain Dn.

We expect the result to hold for a broader class of context-free languages which has
yet to be pinned down exactly. It is even conceivable that all deterministic or unambiguous
context-free languages are in DynQF.
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It turns out that for Dyck languages with only one kind of brackets, i.e., D1, auxiliary
functions are not needed, if built-in successor and predecessor functions are given.

Proposition 4.5. D1 ∈ DynPROP(SUCC,Rel)

Proof. The idea of the proof uses the well known level-trick for the Dyck-languages (cf.[18]).
All string positions of the same level are stored in a list, represented by the edge relation of
a directed graph forming a cycle. This representations allows to infer whether there exists
a string position of a given level and is maintainable in DynPROP(SUCC,Rel)

Thus, whereas built-in relations did not increase the power of DynPROP, already the
three simple functions succ, pre and min allow the maintenance of non-regular languages.

5. Variations

Alternative Semantics. Following [18], we have introduced in Section 2 dynamic languages
in which it is both allowed to insert or change labels at positions in the string and to delete
elements at positions. In a universe of size n, one can thus create all strings of length smaller
or equal than n.

However, one can also consider the setting in which each position in the string must at
any time be assigned a symbol. Although this setting is less “dynamic”, it has the advantage
that a word is always associated with its canonical logical structure. This can be achieved
by starting with an initial structure in which each symbol is already assigned a symbol, and
subsequently only allowing labels to be changed (and not deleted).

More formally, we assign to every language L, a dynamic language Dyn-alt(L) as follows.
For a distinguished initial symbol a ∈ Σ, and n ∈ N, let Ea

n be the word structure in which
Ra(i) is true, for all i, and Rσ is empty, for all σ 6= a. Further, ∆n = {insσ | σ ∈ Σ}. Then,
Dyn-alt(L) = {(n, δ) | δ ∈ ∆+

n ∧ word(δ(Ea
n)) ∈ L}4.

Proposition 5.1 shows that the situation is less appealing than in the original semantics.
In particular, there are regular languages which cannot be maintained without precompu-
tation; and with precomputation all regular, but also non-regular, languages can be main-
tained. Here, MIDDLE = {wbw′ | |w| = |w′|} is the language over the alphabet Σ = {a, b}
which contains all strings whose middle element is b, which is clearly not regular.

Proposition 5.1.

(1) Dyn-alt(L((aa)∗)) /∈ DynPROP
(2) For any regular language L, Dyn-alt(L) ∈ DynPROP(Rel,Rel)
(3) Dyn-alt(MIDDLE) ∈ DynPROP(Rel,Rel)

Notice that, contrary to Theorem 3.5, this proposition does not allow us to infer lower
bounds for DynPROP(Rel,Rel) under the current semantics. However, if we consider the
class of languages with neutral elements, this becomes possible again. We say that a lan-
guage L has a neutral element a if for all w,w′ ∈ Σ∗ it holds that ww′ ∈ L iff waw′ ∈ L.
Here, if a language has at least one neutral element we will assume that the initial symbol
for its dynamic algorithm is one of these neutral elements.

4Notice that Dyn(L) consists only of update sequences δ, whereas Dyn-alt(L) contains tuples (n, δ). This
change is necessary as the membership of a word of a language under the current semantics can depend both
on the size of the initial structure n, and the update sequence δ.
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Then, a straigthforward generalization of Theorem 3.5 yields the following proposi-
tion which implies, for instance, that Dyn-alt(L) /∈ DynPROP(Rel,Rel) for all non-regular
languages L which have a neutral element.

Proposition 5.2. Let L be a language which has a neutral element. Then, the following
are equivalent:

(1) L is regular;
(2) Dyn-alt(L) ∈ DynPROP; and
(3) Dyn-alt(L) ∈ DynPROP(Rel,Rel).

Regular Tree Languages. We now investigate the dynamic complexity of the regular tree
languages. Thereto, we first define dynamic tree language. A tree t over an alphabet
Σ is encoded by a logical structure T with as universe the first n elements of the list
(1, 11, 12, 111, 112, 121, 122, . . .), for some n ∈ N, and consisting of (1) one unary relation
Rσ, for each symbol σ ∈ Σ, (2) a constant root, denoting the element 1, and (3) binary
relations L-child and R-child, containing all tuples (u, u1) and (u, u2), respectively.

The updates are terms insσ(u) and reset(u), setting and resetting the label of node u
in T , exactly as in the string case. So, the logical structure T is a fixed balanced binary
tree in which the labels can change. Then, the tree t encoded by T is the largest subtree of
T whose root is the element 1 and in which all nodes are labelled with an alphabet symbol.
Notice that a node of T is included in t if it, and all its ancestors, carry an alphabet symbol.

Exactly as for the word languages, for a tree language L, we let Dyn(L) be the set of
update sequences leading to a tree t ∈ L. A dynamic program works on a dynamic tree
language exactly as it does on a dynamic language. We then obtain the following result.

Proposition 5.3. Let L be a regular tree language. Then, Dyn(L) ∈ DynPROP(Fun,Rel).

6. Beyond Formal Languages

The definitions given in Section 2 only concerned dynamic problems for word structures.
Following [20], we now extend these definitions to arbitrary structures. Thereto, let γ be
a vocabulary containing relation symbols of arbitrary arities. We assume that a structure
over γ of size n has as universe {1, . . . , n}. The empty structure over vocabulary γ of size
n and only empty relations is denoted En(γ).

The set of abstract updates ∆(γ) is defined as {insR,delR | R ∈ γ}. A concrete update
is a term of the form insR(i1, . . . , ik) or delR(i1, . . . , ik), where k = arity(R). A concrete
update is applicable in a structure of size n if ij ≤ n, for all j ∈ [1, k]. By ∆n(γ) we
denote the set of applicable concrete updates for structures over γ of size n. For a sequence
α = δ1 . . . δk ∈ (∆n(γ))+ of updates we define α(A) as δk(. . . (δ1(A)) . . .), where δ(A) is the
structure obtained from A by setting R(i1, . . . , ik) to true if δ = insR(i1, . . . , ik); and setting
R(i1, . . . , ik) to false if δ = delR(i1, . . . , ik).

Definition 6.1. Let γ be a vocabulary, and F be a set of γ-structures. The dynamic
problem Dyn(F ) is the set of all pairs (n, α), with n > 0 and α ∈ (∆n(γ))+ such that
α(En(γ)) ∈ F . We call F the underlying static problem of Dyn(F ).

Dynamic programs operate on dynamic problems just as they do on dynamic languages.
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Incomparability of FO and DynPROP. As we have seen in the previous sections, when
restricted to monadic input schemas, DynPROP in a sense has the power of MSO. However,
if we add one binary relation DynPROP cannot even capture first-order logic. This is also
true if we allow the program to use precomputed functions from the set SUCC.

Thereto we will consider alternating graphs, coded via the binary edge relation E and
two unary relations A and B that form a decomposition of the universe V into the set
of existential and universal nodes. Given a node s ∈ V , the set of all reachable nodes
Reach(s) is defined as the smallest set satisfying (1) s ∈ Reach(s), (2) if u ∈ A and there
is an v ∈ Reach(s) such that (u, v) ∈ E, then u ∈ Reach(s) and (3) if u ∈ B and for all
nodes v such that (u, v) ∈ E we have v ∈ Reach(s), then v ∈ Reach(s). Now we define
ALT-REACH as the problem, given an alternating graph G = (A∪̇B,E) and two nodes s
and t, is t ∈ Reach(s). We note that ALT-REACH is P-complete (see for example [19]).

Proposition 6.2. Dyn(ALT-REACH) /∈ DynPROP(SUCC,Rel)

In fact from the proof of the above proposition one can conclude an even stronger
statement. The graphs used in the proof are very restricted in the sense that the length
of the longest path is bounded by a constant. Let ALT-REACHdepth≤d be the alternating
reachability problem on graphs of depth at most d. It is easily seen that ALT-REACHdepth≤d

is expressible by a FO-formula, so we get the following

Theorem 6.3. There exists a problem F ∈ FO such that Dyn(F ) /∈ DynPROP(SUCC,Rel).

On the other hand the reachability problem on acyclic deterministic directed graphs
can be maintained in DynPROP (Hesse [14]) but cannot be expressed via an FO-formula
(as can be easily seen by standard EF-games arguments). So these classes are incomparable.

Using functions to maintain EFO. Next we exhibit a class of properties which can be
maintained in DynQF with precomputation. An existential first-order (EFO) sentence is a
first-order sentence of the form ∃x1, . . . xkφ(x̄), where φ(x̄) is a quantifier free formula.

Theorem 6.4. For any EFO-definable problem F , Dyn(F ) ∈ DynPROP(Fun,Fun)

The proof of this theorem relies on the fact that an EFO sentence can only assert
whether a tuple of elements in the structure has certain properties, i.e. has a certain type.
Then, using precomputed addition and subtraction functions, it is possible to count the
number of tuples in a structure which have a certain type, and thus decide whether an EFO
sentence is satisfied in the structure.

7. Conclusion

We have studied the dynamic complexity of formal languages and, by characterizing
the languages maintainable in DynPROP as exactly the regular languages, obtained the
first lower bounds for DynPROP. This yields a separation of DynPROP from DynQF and
DynFO. We proved that every context-free language can be maintained in DynFO and
investigated the power of functions for dynamic programs in maintaining specific context-
free and non context-free languages.

As a modest extension we also proved a lower bound for DynPROP with built-in suc-
cessor functions. Hence, we are now one step closer to proving lower bounds for DynFO,
but, of course, a number of questions arise:
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• Can the results on the Dyck languages be extended to show that an entire subclass
of the context-free languages, such as the deterministic or unambiguous context-free
languages, can be maintained in DynQF?

• We have seen that D1 ∈ DynPROP(SUCC,Rel). Can it be shown that D2 /∈
DynPROP(SUCC,Rel)?

• Can some of the lower bound techniques for DynPROP be extended to DynQF, in
order to separate DynQF from DynFO, or at least from DynP? Is there a context-
free language that is not maintainable in DynQF?
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