55,761 research outputs found

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Static analysis of energy consumption for LLVM IR programs

    Get PDF
    Energy models can be constructed by characterizing the energy consumed by executing each instruction in a processor's instruction set. This can be used to determine how much energy is required to execute a sequence of assembly instructions, without the need to instrument or measure hardware. However, statically analyzing low-level program structures is hard, and the gap between the high-level program structure and the low-level energy models needs to be bridged. We have developed techniques for performing a static analysis on the intermediate compiler representations of a program. Specifically, we target LLVM IR, a representation used by modern compilers, including Clang. Using these techniques we can automatically infer an estimate of the energy consumed when running a function under different platforms, using different compilers. One of the challenges in doing so is that of determining an energy cost of executing LLVM IR program segments, for which we have developed two different approaches. When this information is used in conjunction with our analysis, we are able to infer energy formulae that characterize the energy consumption for a particular program. This approach can be applied to any languages targeting the LLVM toolchain, including C and XC or architectures such as ARM Cortex-M or XMOS xCORE, with a focus towards embedded platforms. Our techniques are validated on these platforms by comparing the static analysis results to the physical measurements taken from the hardware. Static energy consumption estimation enables energy-aware software development, without requiring hardware knowledge

    Computer Architectures to Close the Loop in Real-time Optimization

    Get PDF
    © 2015 IEEE.Many modern control, automation, signal processing and machine learning applications rely on solving a sequence of optimization problems, which are updated with measurements of a real system that evolves in time. The solutions of each of these optimization problems are then used to make decisions, which may be followed by changing some parameters of the physical system, thereby resulting in a feedback loop between the computing and the physical system. Real-time optimization is not the same as fast optimization, due to the fact that the computation is affected by an uncertain system that evolves in time. The suitability of a design should therefore not be judged from the optimality of a single optimization problem, but based on the evolution of the entire cyber-physical system. The algorithms and hardware used for solving a single optimization problem in the office might therefore be far from ideal when solving a sequence of real-time optimization problems. Instead of there being a single, optimal design, one has to trade-off a number of objectives, including performance, robustness, energy usage, size and cost. We therefore provide here a tutorial introduction to some of the questions and implementation issues that arise in real-time optimization applications. We will concentrate on some of the decisions that have to be made when designing the computing architecture and algorithm and argue that the choice of one informs the other

    A Power Consumption Estimation Approach for Embedded Software Design using Trace Analysis

    Get PDF
    International audienceWith the explosion of advanced power control knobs such as dynamic voltage frequency scaling, mastering energy constraints in embedded systems is becoming challenging for software developers. Several power estimation techniques have been proposed over the past years, from electrical level to more abstract models such as SystemC/TLM. They offer various trade-offs between performance and accuracy, but suffer from a number of shortcomings. They are expensive and time-consuming, requiring intricate models of the architecture and finally, fail to be applied from the software developer perspective. In this paper, we propose a lightweight and cost-effective approach suitable for software developers. It relies on trace analysis and high-level modeling of architectures to perform quick and efficient power consumption estimations without loosing accuracy. This approach is fully supported by a tool and is validated using a simple thermal mitigation case study and checked against physical measurements. We show that, for our case study, the relative error between our tool and real values is 8% in average
    • …
    corecore