7 research outputs found

    An automata-based automatic verification environment

    Get PDF
    With the continuing growth of computer systems including safety-critical computer control systems, the need for reliable tools to help construct, analyze, and verify such systems also continues to grow. The basic motivation of this work is to build such a formal verification environment for computer-based systems. An example of such a tool is the Design Oriented Verification and Evaluation (DOVE) created by Australian Defense Science and Technology Organization. One of the advantages of DOVE is that it combines ease of use provided by a graphical user interface for describing specifications in the form of extended state machines with the rigor of proving linear temporal logic properties in a robust theorem prover, Isabelle which was developed at Cambridge University, UK, and TU Munich, Germany. A different class of examples is that of model checkers, such as SPIN and SMV. In this work, we describe our technique to increase the utility of DOVE by extending it with the capability to build systems by specifying components. This added utility is demonstrated with a concrete example from a real project to study aspects of the control unit for an infusion pump being built at the Walter Reid Army Institute of Research. Secondly, we provide a formulation of linear temporal logic (LTL) in the theorem prover Isabelle. Next, we present a formalization of a variation of the algorithm for translating LTL into Büchi automata. The original translation algorithm is presented in Gerth et al and is the basis of model checkers such as SPIN. We also provide a formal proof of the termination and correctness of this algorithm. All definitions and proofs have been done fully formally within the generic theorem prover Isabelle, which guarantees the rigor of our work and the reliability of the results obtained. Finally, we introduce the automata theoretic framework for automatic verification as our future works

    Software Model Checking

    Full text link

    The VAT tool : automatic transformation of VHDL to timed automata

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2004.Includes bibliographical references (leaves 61-66).Embedded systems have become an integral part of the systems we use today. These types of systems are constrained by both stringent time requirements and limited resource availability. Traditionally, high-integrity embedded systems operated on well understood hardware platforms. The emergence of inexpensive FPGAs (Field Programmable Gate Arrays) and ASICs (Application Specific Integrated Circuits) as operational platforms for embedded software, has resulted in the system developer having to verify both the hardware and the software components. The stringent processes used over the system development lifecycle have to be augmented to account for this paradigm shift. One possible approach is to create a homogenous formal model that accounts for both the hardware and the software components of the system. This thesis focuses on making a contribution to the extraction of formal models from the VHDL specification of the operational platform. The research underlying this thesis was driven by the goals of: a) augmenting the system developer's verification and validation toolbox with a powerful yet easy-to-use tool; b) developing a tool that is modular, extensible, and adaptable to changing customer requirements; c) providing a transparent transformation process, which can be leveraged by both academia and industry. The thesis discusses in detail, the design and development of the VAT tool, that transforms VHDL specifications into finite state machines. It discusses the use of model checking on the extracted formal model and presents a visualization technique that enables manual inspection of the formal model.by Carl Nehme.S.M

    Formal Verification of a Partial-Order Reduction Technique for Model Checking

    No full text
    Mechanical theorem proving and model checking are the two main methods of formal verification, each with its own strengths and weaknesses. While mechanical theorem proving is more general, it requires intensive human guidance. model checking is automatic, but is applicable to a more restricted class of problems. It is appealing to combine these two methods in order to take advantage of their different strengths. Prior research in this direction has focused on how to decompose a verification problem into parts each of which is manageable by one of the two methods. In this paper we explore another possibility: we use mechanical theorem proving to formally verify a meta-theory of model checking. As a case study, we use the mechanical theorem prover HOL to verify the correctness of a partial-order reduction technique for cutting down the amount of state search performed by model checkers. We choose this example for two reasons. First, this reduction technique has been implemen..

    Providing a formal linkage between MDG and HOL based on a verified MDG system.

    Get PDF
    Formal verification techniques can be classified into two categories: deductive theorem proving and symbolic state enumeration. Each method has complementary advantages and disadvantages. In general, theorem provers are high reliability systems. They can be applied to the expressive formalisms that are capable of modelling complex designs such as processors. However, theorem provers use a glass-box approach. To complete a verification, it is necessary to understand the internal structure in detail. The learning curve is very steep and modeling and verifying a system is very time-consuming. In contrast, symbolic state enumeration tools use a black-box approach. When verifying a design, the user does not need to understand its internal structure. Their advantages are their speed and ease of use. But they can only be used to prove relatively simple designs and the system security is much lower than the theorem proving system. Many hybrid tools have been developed to reap the benefits of both theorem proving Systems and symbolic state enumeration Systems. Normally, the verification results from one system are translated to another system. In other words, there is a linkage between the two Systems. However, how can we ensure that this linkage can be trusted? How can we ensure the verification system itself is correct? The contribution of this thesis is that we have produced a methodology which can provide a formal linkage between a symbolic state enumeration system and a theorem proving system based on a verified symbolic state enumeration system. The methodology has been partly realized in two simplified versions of the MDG system (a symbolic state enumeration system) and the HOL system (a theorem proving system) which involves the following three steps. First, we have verified aspects of correctness of two simplified versions of the MDG system. We have made certain that the semantics of a program is preserved in those of its translated form. Secondly, we have provided a formal linkage between the MDG system and the HOL system based on importing theorems. The MDG verification results can be formally imported into HOL to form the HOL theorems. Thirdly, we have combined the translator correctness theorems with the importing theorems. This combination allows the low level MDG verification results to be imported into HOL in terms of the semantics of a high level language (MDG-HDL). We have also summarized a general method which is used to prove the existential theorem for the specification and implementation of the design. The feasibility of this approach has been demonstrated in a case study: the verification of the correctness and usability theorems of a vending machine

    Fourth NASA Langley Formal Methods Workshop

    Get PDF
    This publication consists of papers presented at NASA Langley Research Center's fourth workshop on the application of formal methods to the design and verification of life-critical systems. Topic considered include: Proving properties of accident; modeling and validating SAFER in VDM-SL; requirement analysis of real-time control systems using PVS; a tabular language for system design; automated deductive verification of parallel systems. Also included is a fundamental hardware design in PVS
    corecore