578 research outputs found

    Verifying Concurrent Stacks by Divergence-Sensitive Bisimulation

    Full text link
    The verification of linearizability -- a key correctness criterion for concurrent objects -- is based on trace refinement whose checking is PSPACE-complete. This paper suggests to use \emph{branching} bisimulation instead. Our approach is based on comparing an abstract specification in which object methods are executed atomically to a real object program. Exploiting divergence sensitivity, this also applies to progress properties such as lock-freedom. These results enable the use of \emph{polynomial-time} divergence-sensitive branching bisimulation checking techniques for verifying linearizability and progress. We conducted the experiment on concurrent lock-free stacks to validate the efficiency and effectiveness of our methods

    Verifikation Nicht-blockierender Datenstrukturen mit Manueller Speicherverwaltung

    Get PDF
    Verification of concurrent data structures is one of the most challenging tasks in software verification. The topic has received considerable attention over the course of the last decade. Nevertheless, human-driven techniques remain cumbersome and notoriously difficult while automated approaches suffer from limited applicability. This is particularly true in the absence of garbage collection. The intricacy of non-blocking manual memory management (manual memory reclamation) paired with the complexity of concurrent data structures has so far made automated verification prohibitive. We tackle the challenge of automated verification of non-blocking data structures which manually manage their memory. To that end, we contribute several insights that greatly simplify the verification task. The guiding theme of those simplifications are semantic reductions. We show that the verification of a data structure's complicated target semantics can be conducted in a simpler and smaller semantics which is more amenable to automatic techniques. Some of our reductions rely on good conduct properties of the data structure. The properties we use are derived from practice, for instance, by exploiting common programming patterns. Furthermore, we also show how to automatically check for those properties under the smaller semantics. The main contributions are: (i) A compositional verification approach that verifies the memory management and the data structure separately. (ii) A notion of weak ownership that applies when memory is reclaimed and reused, bridging the gap between garbage collection and manual memory management (iii) A notion of pointer races and harmful ABAs the absence of which ensures that the memory management does not influence the data structure, i.e., it behaves as if executed under garbage collection. Notably, we show that a check for pointer races and harmful ABAs only needs to consider executions where at most a single address is reused. (iv) A notion of strong pointer races the absence of which entails the absence of ordinary pointer races and harmful ABAs. We devise a highly-efficient type check for strong pointer races. After a successful type check, the actual verification can be performed under garbage collection using an off-the-shelf verifier. (v) Experimental evaluations of the aforementioned contributions. We are the first to fully automatically verify practical non-blocking data structures with manual memory management.Verifikation nebenlĂ€ufiger Datenstrukturen ist eine der herausforderndsten Aufgaben der Programmverifikation. Trotz vieler BeitrĂ€ge zu diesem Thema, bleiben die existierenden manuellen Techniken mĂŒhsam und kompliziert in der Anwendung. Auch automatisierte Verifikationsverfahren sind nur eingeschrĂ€nkt anwendbar. Diese SchwĂ€chen sind besonders ausgeprĂ€gt, wenn sich Programme nicht auf einen Garbage-Collector verlassen. Die KomplexitĂ€t manueller Speicherverwaltung gepaart mit komplexen nicht-blockierenden Datenstrukturen macht die automatisierte Programmverifikation derzeit unmöglich. Diese Arbeit betrachtet die automatisierte Verifikation nicht-blockierender Datenstrukturen, welche ihren Speicher manuell verwalten. Dazu werden Konzepte vorgestellt, die die Verifikation stark vereinfachen. Das Leitmotiv dabei ist die semantische Reduktion, welche die Verifikation in einer leichteren Semantik erlaubt, ohne die eigentliche komplexere Semantik zu betrachten. Einige dieser Reduktion beruhen auf einem Wohlverhalten des zu verifizierenden Programms. Dabei wird das Wohlverhalten mit Bezug auf praxisnahe Eigenschaften definiert, wie sie z.B. von gĂ€ngigen Programmiermustern vorgegeben werden. Ferner wird gezeigt, dass die Wohlverhaltenseigenschaften ebenfalls unter der einfacheren Semantik nachgewiesen werden können. Die Hauptresultate der vorliegenden Arbeit sind die Folgenden: (i) Ein kompositioneller Verifikationsansatz, welcher Speicherverwaltung und Datenstruktur getrennt verifiziert. (ii) Ein Begriff des Weak-Ownership, welcher selbst dann Anwendung findet, wenn Speicher wiederverwendet wird. (iii) Ein Begriff des Pointer-Race und des Harmful-ABA, deren Abwesenheit garantiert, dass die Speicherverwaltung keinen Einfluss auf die Datenstruktur ausĂŒbt und somit unter der Annahme von Garbage-Collection verifiziert werden kann. Bemerkenswerterweise genĂŒgt es diese Abwesenheit unter Reallokation nur einer fixex Speicherzelle zu prĂŒfen. (iv) Ein Begriff des Strong-Pointer-Race, dessen Abwesenheit sowohl Pointer-Races als auch Harmful-ABA ausschließt. Um ein Programm auf Strong-Pointer-Races zu prĂŒfen, prĂ€sentieren wir ein Typsystem. Ein erfolgreicher Typcheck erlaubt die tatsĂ€chlich zu ĂŒberprĂŒfende Eigenschaft unter der Annahme eines Garbage-Collectors nachzuweisen. (v) Experimentelle Evaluationen. Die vorgestellten Techniken sind die Ersten, die nicht-blockierende Datenstrukturen mit gĂ€ngigen Speicherverwaltungen vollstĂ€ndig automatisch verifizieren können

    MCSH, a lock with the standard interface

    Get PDF
    The MCS lock of Mellor-Crummey and Scott (1991), 23 pages. is a very efficient first-come first-served mutual-exclusion algorithm that uses the atomic hardware primitives fetch-and-store and compare-and-swap. However, it has the disadvantage that the calling thread must provide a pointer to an allocated record. This additional parameter violates the standard locking interface, which has only the lock as a parameter. Hence, it is impossible to switch to MCS without editing and recompiling an application that uses locks.This article provides a variation of MCS with the standard interface, which remains FCFS, called MCSH. One key ingredient is to stack allocate the necessary record in the acquire procedure of the lock, so its life-time only spans the delay to enter a critical section. A second key ingredient is communicating the allocated record between the acquire and release procedures through the lock to maintain the standard locking interface. Both of these practices are known to practitioners, but our solution combines them in a unique way. Furthermore, when these practices are used in prior papers, their correctness is often argued informally. The correctness of MCSH is verified rigorously with the proof assistant PVS, and experiments are run to compare its performance with MCS and similar locks

    Simple, safe, and efficient memory management using linear pointers

    Full text link
    Efficient and safe memory management is a hard problem. Garbage collection promises automatic memory management but comes with the cost of increased memory footprint, reduced parallelism in multi-threaded programs, unpredictable pause time, and intricate tuning parameters balancing the program's workload and designated memory usage in order for an application to perform reasonably well. Existing research mitigates the above problems to some extent, but programmer error could still cause memory leak by erroneously keeping memory references when they are no longer needed. We need a methodology for programmers to become resource aware, so that efficient, scalable, predictable and high performance programs may be written without the fear of resource leak. Linear logic has been recognized as the formalism of choice for resource tracking. It requires explicit introduction and elimination of resources and guarantees that a resource cannot be implicitly shared or abandoned, hence must be linear. Early languages based on linear logic focused on Curry-Howard correspondence. They began by limiting the expressive powers of the language and then reintroduced them by allowing controlled sharing which is necessary for recursive functions. However, only by deviating from Curry-Howard correspondence could later development actually address programming errors in resource usage. The contribution of this dissertation is a simple, safe, and efficient approach introducing linear resource ownership semantics into C++ (which is still a widely used language after 30 years since inception) through linear pointer, a smart pointer inspired by linear logic. By implementing various linear data structures and a parallel, multi-threaded memory allocator based on these data structures, this work shows that linear pointer is practical and efficient in the real world, and that it is possible to build a memory management stack that is entirely leak free. The dissertation offers some closing remarks on the difficulties a formal system would encounter when reasoning about a concurrent linear data algorithm, and what might be done to solve these problems

    Synchronising C/C++ and POWER

    Get PDF
    Shared memory concurrency relies on synchronisation primitives: compare-and-swap, load-reserve/store-conditional (aka LL/SC), language-level mutexes, and so on. In a sequentially consistent setting, or even in the TSO setting of x86 and Sparc, these have well-understood semantics. But in the very relaxed settings of IBMÂź, POWERÂź, ARM, or C/C++, it remains surprisingly unclear exactly what the programmer can depend on. This paper studies relaxed-memory synchronisation. On the hardware side, we give a clear semantic characterisation of the load-reserve/store-conditional primitives as provided by POWER multiprocessors, for the first time since they were introduced 20 years ago; we cover their interaction with relaxed loads, stores, barriers, and dependencies. Our model, while not officially sanctioned by the vendor, is validated by extensive testing, comparing actual implementation behaviour against an oracle generated from the model, and by detailed discussion with IBM staff. We believe the ARM semantics to be similar. On the software side, we prove sound a proposed compilation scheme of the C/C++ synchronisation constructs to POWER, including C/C++ spinlock mutexes, fences, and read-modify-write operations, together with the simpler atomic operations for which soundness is already known from our previous work; this is a first step in verifying concurrent algorithms that use load-reserve/store-conditional with respect to a realistic semantics. We also build confidence in the C/C++ model in its own terms, fixing some omissions and contributing to the C standards committee adoption of the C++11 concurrency model
    • 

    corecore