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MCSH, a Lock with the Standard Interface 

WIM H. HESSELINK , University of Groningen, The Netherlands 

PETER A. BUHR , University of Waterloo, Canada 

The MCS lock of Mellor-Crummey and Scott (1991) is a very efficient first-come first-served mutual-exclusion 

algorithm that uses the atomic hardware primitives fetch-and-store and compare-and-swap. However, it has 

the disadvantage that the calling thread must provide a pointer to an allocated record. This additional param- 

eter violates the standard locking interface, which has only the lock as a parameter. Hence, it is impossible 

to switch to MCS without editing and recompiling an application that uses locks. 

This article provides a variation of MCS with the standard interface, which remains FCFS, called MCSH. 

One key ingredient is to stack allocate the necessary record in the acquire procedure of the lock, so its life-time 

only spans the delay to enter a critical section. A second key ingredient is communicating the allocated record 

between the acquire and release procedures through the lock to maintain the standard locking interface. Both 

of these practices are known to practitioners, but our solution combines them in a unique way. Furthermore, 

when these practices are used in prior papers, their correctness is often argued informally. The correctness of 

MCSH is verified rigorously with the proof assistant PVS, and experiments are run to compare its performance 

with MCS and similar locks. 
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 INTRODUCTION 

he mutual exclusion problem was introduced by Dijkstra in 1965 [ 7 , 8 ]. It can be phrased as
ollows. There are several concurrent processes or threads that communicate by shared variables
nd from time to time need exclusive access to shared resources. A shared resource and code
anipulating it form a pairing called a critical section (CS) , which is a many-to-one relationship;

.g., if multiple files are being written to by multiple threads, then only the pairings of simultaneous
rites to the same files are CSs. Regions of code where the thread is not interested in the resource

re combined into the non-critical section (NCS) . Exclusive access to a resource is provided by
11 
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utual exclusion (MX) . MX is implemented by some form of lock , where the CS is bracketed by
ock procedures acquire and release . Every thread thus executes an unbounded loop of the form 

0) loop of thread p: 
NCS ; 
acquire ( lock) ; CS ; release ( lock) ← MX/standard interface 

end loop . 

X guarantees there is never more than one thread in the CS. MX must also guarantee eventual
rogress: When there are competing threads, eventually some competing thread succeeds, i.e.,
cquires the CS, releases it and returns to the NCS. A stronger constraint is that every thread that
alls acquire eventually succeeds. 

.1 Standard Lock API 

he standard lock interface is defined in Reference [ 21 , pp. 58–59] (also called a context-free inter-
ace by Wang et al. [ 22 , Section 1.1]) as a lock type for declaring instances, and procedures acquire

nd release for locking and unlocking, which take a reference to the lock as the only parameter. The
ock reference can be passed implicitly as an object-oriented receiver or explicitly as an argument,
.e., lock.acquire() or acquire(lock) . The single parameter lock interface defines an Application

rogram Interface (API) [ 24 ] that programmers use to access different lock implementations
ithout changing code, possibly by just relinking to a different lock library. 
There are a number of techniques for converting a non-standard interface into a standard inter-

ace [ 21 , Figures 4.10 and 4.14]. All these techniques indirectly pass additional information to the
ock procedures or between them. Some of these techniques use only basic programming-language

echanisms and, hence, do not rely on the program’s Application Binary Interface (ABI) [ 23 ]
or correctness. For example, a lock procedure may create local variables in its activation record
or computing or storing temporary results. However, the duration of such local variables does not
xceed the call. 

Lock implementations that rely on an ABI, even with a standard interface, may fail to compile
r work incorrectly when linked with different binary program modules. For example, the origi-
al CLH lock does not have a standard interface and requires global memory-space per lock [ 17 ,
. 168]. 1 Scott [ 21 , Figure 14] presents a CLH with a standard interface but requires an array of
ize T , where T is the maximum number of executing threads in the program, e.g., a program may
reate at most 1,000 threads, but often C , the number of contending threads, is �T . Since C varies
ith workload, programmers often fall back on a large worst-case T (1000 threads), which is the
aximum number of threads created by all workloads. Generalizing this storage problem requires

ynamic allocation per thread or thread-local storage (TLS) [ 25 ] to support an arbitrary number
f threads. 
In many lock proofs, it is assumed an acquiring or releasing thread is not interrupted and di-

erted to other work. This assumption is violated when the lock is linked with a binary module
hat raises signals (interrupts). For example, in CLH acquire [ 17 , Figure 2]: 

h_acquire( int **L, **I, **P ) { 
**I = 1; 
atomic{ *P = *L; *L = *I; } /* fetch-and-store */ 
while ( **P! = 0 ) { }; /* spin */ 

 

 Scott’s version [ 21 , Figure 12] is a non-standard interface, because there are two parameters: implicit lock (receiver) and 

ode pointer. 

CM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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n interrupt after the atomic operation causes a failure if the signal handler recursively calls
h_acquire . The failure occurs because the second call relinks the link node onto the front of the
ueue from its prior position in the queue. Hence its new P link is no longer pointing to its prior
ueue position and the queue structure is broken. This failure is an instance of the serially reusable
roblem [ 13 ] and occurs because the link node is associated with the thread rather than the lock. 2

n contrast, MCS assumes each link node is associated with the lock, so a recursive call brings
 new node to link into the queue. Thus, for allocation approaches using thread specific mem-
ry, like the preallocated array, dynamic allocation per thread, or TLS, there is potential to violate
emory assumptions for a lock’s proof. This problem also occurs in using user-level threading
ith time-slicing, because user threads move across kernel threads at arbitrary times accessing
ifferent TLS. Hence, using a lock with a standard interface might fail, because its implementation
an have underlying ABI issues. 

In general, ABI conversions for converting a lock to the standard interface fall into the following
ategories. 

ABI Preserving Conversion: A preserving technique is inserting a message variable, msg , in
the lock, which is written in procedure acquire and read in procedure release . 

(1) type Lock = 

record 

...; 
Node msg ; 

end . 

Lock lock . 

loop of thread p: 
NCS ; 
acquire (lock ) { Node n p ; ... ; lock → msg = n }; 
CS ; 
release (lock ) { ... = lock → msg ; ... } 

end loop . 

Any information may be copied through the lock [ 5 ]. This transformation only uses basic
programming-language mechanisms, e.g., stack declarations and simple control struc-
tures, and does not rely on advanced language features (e.g., closures that change the
calling convention) or side-effects in the programming environment. 
The correctness of the converted systems, however, is not completely obvious, because
its mutual exclusion relies on the assumption that the sender of the message is also the
receiver, and the proof of the latter assumption needs mutual exclusion. 

ABI Non-Preserving Conversion: A non-preserving technique is using global or thread
variables, which are manipulated in procedures acquire and release . 

(2) thread-local Node n p ; 
acquire (lock ); ← n p used implicit 
release (lock ); ← n p used implicit 

However, this transformation relies on the programming environment to imple-
ment the TLS, which may have side effects for lock usage, as previously noted. Other
 In Fortran IV, a procedure had a single preallocated frame for use during a call, so recursive calls were disallowed. 

ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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A

non-preserving ABI conversions exist, e.g., dynamic allocation or fixed sized arrays, as
discussed above. 

nfortunately, the correctness of such a conversion is seldom verified. Moreover, issues of serial
eusability are usually ignored. 

.2 Contributions 

his work selects the well-known, highly used, first-come first-served (FCFS) MCS-lock [ 18 ,
ection 2.4], which does not have a standard interface, and transforms it using only basic
rogramming-language mechanisms into a new FCFS variant, MCSH, with a standard interface.
he transformation is formalized, and its correctness is proved. Finally, performance experiments
re run to compare MCSH with variants of MCS and similar locks. 

Section 2 presents MCS, and Section 3 then develops MCSH. Section 4 gives a brief introduction
o the formal treatment of concurrent algorithms. Section 5 proves the correctness of MCSH, where
ome details of this proof are moved to the Appendix. Section 6 compares MCSH with nine mutual-
xclusion locks with different locking properties. Section 7 concludes and suggests future work. 

 MCS ALGORITHM 

he MCS algorithm of Mellor-Crummey and Scott [ 18 ] is called a hardware lock, because it uses
tomic hardware instructions fetch-and-store (FAS) and compare-and-swap (CAS) . For perfor-
ance, it is among the best mutual exclusion algorithms available, see Buhr et al. [ 3 , Sections 20,

2]. The good performance is due to its local spinning property and decent remote memory

eference (RMR) complexity [ 21 , Section 4.5.1]. 
The classical MCS algorithm of Reference [ 18 ] is given in Figure 1 (see also Reference [ 21 ,

igure 4.8]). 3 It builds a queue of threads waiting for the CS as a linked list with pointers to records
f type qnode . The null pointer is denoted by ⊥ . If the queue is nonempty, then the shared variable
ock holds the tail; otherwise, lock = ⊥ . 

MCS usage has every thread p pass in a pointer to an allocated record n p , which is used in both
rocedures acquire and release . 

3) qnode* lock : = ⊥ . ← MCS lock 

loop of thread p: 
NCS ; 
qnode n p ; ← allocated record 

acquire ( & lock, & n p ); CS ; release ( & lock, & n p ) 
end loop . 

here n p must not be used for other locking activities during the acquire - release tenure. The lifes-
an of n p is the same or exceeds the acquire - release interval. 
In Figure 1 , the line with FAS is equivalent to the atomic command 

〈 prev p : = lock lock : = my p 〉 

nd the expression with CAS is equivalent to the atomic function 

〈 if lock = my p then lock : = ⊥ ; return true 

else return false endif 〉 . 
 All example pseudo-code assumes read/write atomicity and sequential consistency. 

CM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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he first argument of FAS and CAS is the address of lock , because lock is modified. In either case,
tomicity of the instruction means that there is no interference by other processes between the
wo references to lock . 

For a Boolean expression B, the command await (B) is equivalent to a busy-waiting loop 

while ¬ B do skip endwhile . 

MCS has the disadvantage that each thread p must have an allocated record n p and pass it to
he two locking procedures. In terms of Section 1.1 , the algorithm does not satisfy the standard
ock API. Auslander et al. [ 2 ] devised an alternative that fits the standard interface as part of the
42 project at IBM Research, see Reference [ 21 , Figure 4.10]. This proposal is no longer FIFO, has

he (theoretical) possibility of starvation and worse RMR properties than normal MCS. Similarly,
ang et al. [ 22 ] created MCSg with a standard interface but not FIFO and with starvation. K42

nd MCSg use special properties of the lock and its fields to remove thread-specific data. 

 MCSH ALGORITHM 

e propose a different alternative with a standard interface given in Figure 2 , which is obtained
rom MCS by two ABI preserving conversions. First, the thread holding the lock does not need its
ueue node. Therefore, the lifetime of the node can be reduced to the waiting duration in acquire
llowing the node to be stack allocated. Second, the lost queue data for the thread holding the lock
s preserved within the lock. Therefore, the release procedure can find the next node to reset its
pinning flag. A consequence of this approach is to simplify the release procedure by moving most
f the MCS release code to acquire. 
ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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Fig. 2. The new MCSH lock. 
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In detail, the MCSH algorithm works as follows. The global variable n p becomes the local vari-
ble mm p of procedure acquire . It is, therefore, automatically (stack) allocated when acquire is
alled. The address & amp; mm p serves as the pointer my p . As the local memory of acquire is de-

troyed after the call and is not available to release , some of the activity in release related to my p 

ust be transferred to acquire . A consequence of this change is that the call of CAS by thread p
an set tail : = ⊥ , before thread p has entered CS. 

Therefore, a shared Boolean variable flag is placed in the lock to prevent a new thread q finding
rev q = ⊥ and entering CS concurrently with p. As well, the variable msg is placed in the lock to

ransfer the value of succ p from acquire to release , giving a standard-lock interface. These two
hanges fall into the category of ABI Preserving Conversions that use only basic programming-
anguage mechanisms and no static or thread-local storage. 
CM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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Remarks. Procedure release has a local variable succ with the same role (and value) as succ in
cquire . 

The variable flag has at most one thread busy-waiting on it at any given time, giving the de-
irable local-waiting property. 

The first two lines of release must not be swapped (see hardware Fence), because if flag holds
efore msg is read, then a new thread may be able to modify msg . 

 FORMALIZATION 

ection 4.1 discusses how to formalize concurrent algorithms as threaded machines. Section 4.2
ives some theory of invariants for concurrent algorithms. 

.1 Machines and Threaded Machines 

 machine or state machine is a tuple K = (X , X 0 , N ), where X is a set, X 0 is a subset of X , and
 is a reflexive binary relation on X . The elements of X are called states , where X 0 is the initial

ondition , and N is the next-state relation . 
An execution of machine K is a state sequence in X that begins in an initial state and in which

very pair of subsequent states satisfies the next-state relation. Formally, it is a function xs : N →
such that xs (0 ) ∈ X 0 and that ( xs (n) , xs (n + 1 ) ) ∈ N for all n ∈ N . 
A predicate is a Boolean function on the state space X . A predicate P can also be regarded as the

ubset of X where P holds. A predicate is called an invariant of machine K iff it contains all states
f all executions of K . 
A threaded machine has a set T of thread identifiers (natural numbers). Its next-state relation is

 union N = 1 X 

∪ ⋃ 

p∈T N p , where 1 X 

is the equality relation on X , and N p is a next-state relation
or thread p. The elements of N p are regarded as steps that thread p can perform. So, apart from
llowing a skip statement in 1 X 

, every step is done by some thread. The skip step is needed to
ake relation N reflexive. 
Remarks. Abadi and Lamport [ 1 ] defined a specification to be a state machine with a supplemen-

ary property . The executions of the machine that satisfy the property are called behaviours of the
pecification. The property is commonly used for liveness conditions. For the present purposes,
he property can be ignored. 

.2 Invariants 

his starts with a theory review concerning invariants and a method for obtaining and proving
hem. 

Let a subrelation of the next-state relation N be called a command . For a command S and pred-
cates P and Q , the Hoare triple { P } S { Q } is the proposition that 

∀ x , y : (x , y) ∈ S ∧ x ∈ P ⇒ y ∈ Q , or equivalently 

[ P ⇒ wp (S, Q )] , 

here wp stands for Dijkstra’s weakest precondition [ 9 , p. 16]. 
A predicate P is said to be preserved by command S iff { P } S { P } . Predicate P is called stable if it

s preserved by N . A predicate is called inductive iff it is stable and holds initially. Every inductive
redicate is an invariant. 
A predicate P is said to be threatened by a command S iff it is not preserved by S . If predicate P

s threatened by command S , then a predicate Q is called a remedy for P and S iff { P ∧ Q } S { P } . 
Let C be a set of commands such that N = 1 X 

∪ ⋃ C . A family of predicates is called complete

f any member of the family that is threatened by any command in C has some remedy consisting
f members of the family. The conjunction of a complete family is stable. The family is said to
ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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Fig. 3. State machine of the MCSH lock, with ghost variables. 
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e initialized if the initial condition implies every member of the family. The conjunction of an
nitialized complete family is an inductive predicate; every member of it is an invariant, because
t is implied by an invariant. The family approach is the method used below to obtain and prove
nvariants. It is presumably well known, but it was first made explicit in Reference [ 12 ]. 

For this article, the proof assistant PVS [ 20 ] is used to determine and verify the threats and the
emedies for the invariants. The PVS proof script for MCSH is publicly available [ 11 ]. Predicate
ames have the form Xqd to allow simple query-replacement in the PVS proof script. 

 THE CORRECTNESS OF THE LOCK MCSH 

n Section 5.1 , the algorithm MCSH is modelled by the transition system of Figure 3 . In Section 5.2 ,
he method of Section 4.2 is used to generate a family of invariants that proves mutual exclusion.
CM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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he family is so unwieldy that it has been transferred to an Appendix. Section 5.3 proves that the
lgorithm is deadlock free. 

.1 Modelling MCSH for Correctness 

o verify MCSH, the procedures acquire and release are put into the loop ( 0 ), and the atomic state-
ents are numbered. This combination gives the transition system of Figure 3 . 
The local variable mm p is eliminated in favor of its address my p = & amp; mm p . A shared vari-

ble local is introduced to hold the set of allowed pointers. Initially, it only holds the nil pointer
 . When thread p enters acquire , a new pointer my p � ⊥ is added to local . This pointer is

emoved again when the call of acquire terminates. This behaviour gives the proof obligation
hat all pointers are in local when referred to and are different from ⊥ when their fields are
nspected. 

The type qnode* is renamed to pointer and used as an index domain for two arrays next and
ocked declared by 

next : array ( pointer ) of pointer ; 
locked : array ( pointer ) of Boolean ; 

or every allocated pointer u , the array elements next (u ) and locked (u ) stand for the fields of the
ecord pointed to. We thus identify next ( u) = ( u → next ) and go ( u) = ( u → go ). 

Each line number stands for one atomic command. The implicit private variable pc q indicates

he line number that thread q is to execute next. At every line, it is implicitly incremented with
, unless a keyword if or loop indicates otherwise. The line numbers start with 11 to facilitate
uery-replace in the script for the mechanical theorem prover PVS. Note that line 14 is one atomic
ommand because of the atomicity of the FAS. Similarly, line 22 is one atomic statement because
f the atomicity of CAS. In line 26, succ p is reset to ⊥ to model that thread p leaves the scope of
ucc p . 

For ease of verification, four ghost variables are introduced. Recall that a ghost variable is an
uxiliary variable that does not influence the computation and is only used for the verification;
tomic commands of the program can be extended with modifications of ghost variables. Here,
very thread p gets a private ghost variable slot p that indicates its latest position in the waiting
ueue. It is initially 0 and gets a new value from the shared ghost variable high when thread p
xecutes line 14. The ghost variables low and high indicate the bounds of the slots of the competing
hreads. A persistent private ghost variable nxmy p is introduced to express the equality of the local

ariables succ p of acquire and release . This variable can be used in line 29, because low is a ghost
ariable as well. 

In this way, loop ( 1 ) instantiated with MCSH becomes the transition system of Figure 3 .
o indicate which threads are where in the execution, we use the state-dependent sets of
hreads: 

[ k] = {q | pc q = k }, 
[ j, k] = {q | j ≤ pc q ≤ k }. 

he first aim is to prove mutual exclusion. As CS is at line 27, this is expressed by the predicate 

X0 : q ∈ [27] ∧ r ∈ [27] ⇒ q = r . 

rom this point onward, the predicates are given with implicit universal quantification over all
ree variables (here q and r ). 
ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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.2 Mutual Exclusion for MCSH 

n this section, the method of Section 4.2 is used to generate enough invariants to prove mutual
xclusion. The transition system has only 20 transitions. Yet more than 40 invariants are needed
o prove mutual exclusion. 

For line number k and thread p, let N p,k be the command that corresponds to execution of
ine k by thread p. Let C be the set of all these commands. The idea is to construct a family of
redicates such that every member of it that is threatened by some command in C has a remedy
n the family. In most cases, the command is indicated by the line number, while the acting thread
is kept implicit. 
Before proceeding into meaningful invariants, note that by construction it always holds that
y q � ⊥ and that 1 ≤ low and 1 ≤ high . These obvious invariants are used implicitly. 
The first claim is that the ghost variables slot q and low satisfy the invariants 

q1 : slot q = slot r � 0 ⇒ q = r , 
q2 : q ∈ M ⇒ slot q = low , 

here M = M 1 ∪ M 2 ∪ M 3 ∪ M 4 and 

M 1 = {q | (q ∈ [15] ∧ prev q = ⊥ ) ∨ q ∈ [16] ) ∧ flag }, 
M 2 = {q | q ∈ [18] ∧ ¬ locked ( my q )}, 
M 3 = [19 , 29] , 
M 4 = {q | q ∈ [30] ∧ nxmy q � ⊥}. 

t is easy to see that the predicates Iq1 and Iq2 together imply MX0 . In fact, they imply the much
tronger assertion 

X1 : q ∈ M ∧ r ∈ M ⇒ q = r . 

We now take Iq1 and Iq2 as the founding members of an initialized complete family. This family
s constructed in the following way. For each new member of the family, a list of line numbers of
hreatening commands is determined, and for each line number, a remedy that is a conjunction of
ne or more, possibly new, members. It turns out that 43 members are needed to make the family
omplete. All members hold initially. The complete list is given in the Appendix, as well as the
hreatenings and the remedies. This proves that Iq1 , Iq2 , MX1 , and all other members of the family
re invariants. 

In particular, it shows that the waiting threads form a queue because of the invariant 

q8 : q ∈ [15 , 26] ∧ r ∈ [15 , 26] ∧ next ( my q ) = my r ⇒ slot q + 1 = slot r . 

By Iq3 and Kq5 , the slots are bounded: 

q ∈ [15 , 29] ⇒ low ≤ slot q < high . 

he family also proves that the pointers are used only when they have the meaningful values: 

q3 : ⊥ ∈ local , 
q5 : tail ∈ local , 
q1 : q ∈ [12 , 26] ⇒ my q ∈ local , 
q4 : q ∈ [15 , 17] ⇒ prev q ∈ local , 

q4 : q ∈ [15 , 26] ⇒ next ( my (q)) ∈ local , 
q3 : q ∈ [21 , 30] ⇒ nxmy q ∈ local . 
he equality of the variables succ in acquire and release , and msg in between, is expressed in the

nvariants 
CM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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q9 : q ∈ [21 , 26] ∨ q ∈ [29 , 30] ⇒ succ q = nxmy q , 

q9 : q ∈ [26 , 28] ⇒ msg = nxmy q . 

According to Reference [ 14 ], a mutual exclusion algorithm has the FCFS property if the pro-
edure acquire is the sequential composition of two fragments: a wait-free fragment called the
oorway and a waiting fragment called Waiting , such that if thread p is in Waiting when thread q
nters the Doorway , then thread q does not enter CS before p does. In MCSH, the Doorway consists
f lines 12, 13, and 14. If thread p is in Waiting when thread q enters the Doorway , then thread p
as obtained a slot and thread q gets s lot q > s lot p . These numbers do not change while p and q
emain competing. According to Iq2 , thread p is in CS when slot p = low . As the variable low only
ncreases, thread p comes into CS before q. This proves FCFS. 

.3 No Deadlock States 

 thread is said to be competing if it is not at line 11. A state is called a deadlock state if there are
ompeting threads and none of them can do a step, i.e., execute a command. As the algorithm has
o internal loops, deadlock-freedom is equivalent to the absence of deadlock states. If a compet-

ng thread is not at an await statement, then it can do the step of its line number. We therefore
oncentrate on the await statements in the lines 16, 18, and 23. 

The proof of deadlock freedom needs three invariants with an existential quantification. Several
nvariants of the family in the Appendix are used. 

A thread remains waiting at line 16 iff flag is false, which only occurs with a thread in the
ritical section. This fact is expressed by the inductive invariant: 

q1 : flag ∨ ∃ q ∈ [20 , 29] . 

owever, the invariant Jq7 (see Appendix) implies that if q is at line 16, then there is no thread in
eference [19 , 24] . Together this gives 

t16 : q ∈ [16] ⇒ flag ∨ ∃ r ∈ [25 , 29] . 

The set local of the meaningful pointers satisfies the inductive invariant 

q2 : u ∈ local ⇒ u = ⊥ ∨ (∃ q : u = my q ∧ q ∈ [12 , 26] ). 

his invariant is one of the ingredients needed to prove 

t23 : q ∈ [23 , 24] ⇒ ∃ r ∈ [12 , 18] . 

ndeed, if q ∈ [23 , 24] , then Jq6 implies tail � ⊥ and Mq7 implies tail � my q . Therefore, Mq5

nd Nq2 imply that there is a thread r � q with my r = tail and r ∈ [12 , 26] . Finally, MX1 implies
 � [19 , 26] , concluding the proof of At23 . 

The third invariant with an existential quantification is 

q3 : q ∈ [18] ∧ locked ( my q ) 

⇒ ∃ r : r ∈ [15 , 24] ∧ next ( my r ) = my q 

∨ r ∈ [25 , 30] ∧ nxmy r = my q . 

his predicate is threatened by the commands 12, 13, 17, 21, and 22. At commands 12 and 13, it
as the remedy Lq2 . 
The proof at command 17 is complicated. First assume that p = q executes command 17 and

oes to 18. Using Nq2 and the new auxiliary invariant Nq4 (see below) to find a thread r ∈ [12 , 26]
ith my r = prev q . The invariants Lq7 and Mq6 imply r ∈ [15 , 23] . The command establishes

ext ( my r ) = my q . This proves that Nq3 is preserved when p = q. 
ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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Second assume that p � q executes command 17 and modifies next . By the prior assumption,
q3 holds in the precondition of the command. Nq3 is threatened only if next ( my r ) = my q and
y r = prev p . Then Jq8 and Lq1 imply slot q = slot p > 0 . By Iq1 this gives q = p, a contradiction.
redicate Nq4 is the obvious inductive invariant 

q4 : q ∈ [17] ⇒ prev q � ⊥ . 

t command 21, predicate Nq3 has the remedy 

q5 : q ∈ [21] ∧ r ∈ [18] ∧ next ( my q ) = my r 

⇒ nxmy q = ⊥ ∨ nxmy q = my r . 

t command 22, Nq3 has the remedies Iq3 , Jq8 , Kq2 . This proves that Nq3 is preserved when p � q.
Predicate Nq5 is threatened only by command 17. It has the remedies Kq4 and Mq8 . This com-

letes the proof of the invariant Nq3 , and thus the preparation of the proof of deadlock freedom. 

Theorem 5.1. Assume there are competing threads. Then some competing thread can do a step. 

Proof. Every thread that is not at an await statement can do a step. Therefore, assume that
very thread is at one of the lines 11, 16, 18, and 23. If there is a thread at line 16, then the predicate
t16 implies that flag holds, because there are no threads in References [26 , 29] . Hence, every

hread at line 16 can do a step. Now, assume that every thread is at one of the lines 11, 18, and 23.
s there are competing threads, there is at least one thread at line 18 or 23. The predicate At23

ow implies that there is a thread at line 18. 
Now let p be the thread at line 18 with the lowest value of slot p . If ¬ locked ( my p ) holds, then

hread p can do a step. Otherwise, the invariant Nq3 implies there is a thread r with r ∈ [18] ∪
23] and next ( my r ) = my p . The invariant Jq8 implies that slot r + 1 = slot p . By minimality of p, it

ollows that thread r is not at line 18, and therefore at line 23. As next ( my r ) = my p � ⊥ , thread r
an do a step. �

 PERFORMANCE 

ock performance is dominated by contention among the threads. The two interesting contention
oints are minimal and maximal, i.e., when only one thread is using the lock or T threads si-
ultaneously. Often a lock algorithm is designed to optimize only one of these scenarios, often
ith a special fast-path [ 15 , Figure 2]. As contention diminishes, a lock’s performance quickly

pproaches its minimal (uncontended) performance, because threads arrive more and more at an
ncontended lock. Testing the two extremes gives a strong indicator of how a lock algorithm
erforms. 
The overall performance experiment compares MCSH and related algorithms to demonstrate in

eneral how MCSH compares. The goal is to show a range of performance among the algorithms.
his can be used by application developers, in conjunction with other factors, as a guide for al-
orithm selection. No attempt is made to rank the tested algorithms because of their differences.
or example, some algorithm do not have a standard interface, some are not FCFS, and some use
omplex ABI, like TLS. How does MCSH compare among these similar algorithms with different
ocking properties? 

Our performance experiment attempts to eliminate confounding factors such as complex ar-
hitecture designs and operating system effects, so algorithmic differences stand out. Therefore,
nly 1–32 threads are tested to reduce or eliminate factors related to different cache structures
nd NUMA effects. As well, the number of threads is one-to-one with the cores, and all threads
re pinned on cores to prevent operating-system scheduling effects during an experiment. 
CM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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MCSH and the following algorithms are tested for their overall performance. 

MCS (see Figure 1 ) has each acquiring thread provide a node containing a queue link and
flag. A waiting thread atomically chains its node to the end of the queue, where the lock
points at the tail node. After chaining, a waiting thread spins locally on the flag in its node.
The thread releasing the lock atomically checks if it is the last node (empty queue) and
resets the lock pointer to null; otherwise, it spins until its link field is set by the chaining
(following) thread and then uses this link to reset the flag of the chained thread. 

MCSFAS [ 18 , Figure 7] is a non-FCFS MCS lock with a modified release procedure solely to
replace the CAS in the release procedure with two FAS instructions. The change requires
additional logic to update the lock pointer if the queue is empty, and the spin still exists to
wait for the next thread to update the releasing thread’s link field so it can reset the next
thread’s flag. While not FCFS, the fairness results for the maximal contention experiment
(see Figure 7 ), show MCSFAS behaves like an FCFS algorithm (other workloads can result
in measurable non-FCFS behaviour). 

MCSK42 [ 21 , Figure 4.10] is a non-FCFS MCS lock with a modified acquire procedure to
obtain a standard interface. Like MCSH, this algorithm uses an extra field in the lock to
copy the next link from the node for the thread holding the lock, releasing this node in
acquire rather than release. Scott suggests a way to make it FCFS with more complexity
and “significantly poorer” performance [ 21 , p. 59]; no actual algorithm is presented or
analysed. 

QSpinLock [ 16 ] is a user-space variant of the version developed for the Linux kernel. It is a
FCFS lock containing an MCS lock and flag. Like MCSH, the MCS node is stack allocated
for the duration of the acquire call. An acquiring thread first acquires the MCS lock and
then spins on the lock flag. Hence, the thread spinning on the flag is the head of the
FCFS queue of contending threads. In all cases, the spinning is local either on the flag in
an MCS node or the lock. The releasing thread resets the lock flag; the acquiring thread
stops spinning and performs an MCS release, unblocking the next contending thread to
spin on the lock flag. Hence, lock release has no atomic instructions or spinning, and the
next acquiring thread loads its cache with the lock flag in preparation for the flag reset. 

CLH [ 17 , Figure 2] is a FCFS MCS, where each thread spins locally on its predecessor’s node
versus its own. While CLH reduces complexity in both acquire and release (no CAS or
spin), the downside is lifetime management of the link nodes (like hazard pointers for
lock-free data structures [ 19 ]). Each thread must provide a node to acquire, but release
returns the predecessor’s node in the contended case, because the current node still has
the next thread spinning on it. Hence, each thread must dynamically allocate a node for
use by itself or other participating threads, and subsequently delete the last node it re-
ceives from release. Note that once a lock is acquired by a thread, its node is available for
use to acquire another lock; therefore, only one node per thread is needed. Eliminating
the dynamic allocation requires a riskier approach, where the node is allocated from TLS,
requiring thread lifetimes to match at some level to prevent access of TLS for a terminated
thread. As mentioned in Section 1.1 , standard interface versions of CLH exist but require
more complex storage management. 

HemLock [ 6 , Listing 1] is a compact CLH lock, without lifetime management issues. Like
CLH, the lock points to the tail of the queue; however, each thread node contains just a
spinning flag, and the queue link-fields are stack allocated for the duration of the acquire
call. The upside is no lifetime management issues, because threads spin on their own flag;
the downside is the acquire procedure spins on an atomic FAS and the release procedure
spins on a flag. A standard interface version of HemLock exists using TLS storage. 
ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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Table 1. Lock Traits 

traits contended standard lock TLS release contended 

algorithms atomics FCFS interface data data spin space a 

MCS FAS + CAS yes no no no yes O (C )
MCSFAS 3 FAS no no no no yes O (C )
MCSK42 3 CAS no yes no no yes O (C )
MCSH FAS + CAS yes yes yes no no O (C )
QSpinLock FAS + CAS yes yes no no no O (C )
CLH FAS yes no or TLS yes maybe no O (T )
HemLock N FAS + 1 CAS yes no or TLS no maybe yes O (T )
SpinLock ∞ TAS no yes no no no O (1 )
PthreadLock N FAS + FUTEX settable yes no no no O (C )
a C ⇒ contending threads, T ⇒ total threads, C ≤ T . 
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SpinLock [ 18 , Figure 1] is a simple lock, commonly implemented as a test-test-and-set with
exponential backoff. The test-test-and-set works like double-check locking: If the lock is
open, then atomically attempt to set the lock closed. 

if (*lock == OPEN && TAS(lock) == OPEN) break; // acquired lock ? 

Hence, if the lock is closed, then the atomic TAS instruction is not executed. To reduce
spinning on the atomic TAS, threads spins on a stack allocated variable in the acquire call
for a short duration before the next attempt, called backoff. The backoff duration increases
exponentially up to a maximum, when it is reset and the exponential climb begins again.
The backoff means contending threads randomly interleave attempts to acquire the lock,
while mostly spinning locally. However, our results show SpinLock can be extremely un-
fair, as the underlying hardware can prefer to optimize NUMA location over waiting time.

PthreadLock [ 10 ] is a blocking lock with a single fast-path FAS to acquire the lock, like Spin-
Lock, and if that fails, then control drops into the kernel futex-path. Hence, PthreadLock
eliminates application spinning during lock acquire but relies on lock release to unblock a
kernel thread. PthreadLock is appropriate for guarding a long critical section, as it releases
resources for the OS to use with other applications. 

he code for all tested algorithms, except PthreadLock, is publicly available for inspection or ex-
eriments [ 4 ]. 
Table 1 shows the fundamental traits of the selected locks. The contended atomics estimates the

umber of atomic operations to acquire/release a lock, as these instructions can have a significant
ffect on the cache and pipeline. (Note that RMR cost on a store miss can be just as bad as a
oherence miss on a CAS/FAS/FAA but is difficult to quantify.) The value N for HemLock and
threadLock implies spinning on an atomic instruction, but the spinning is bounded, because the

ocks are FCFS. The value ∞ for SpinLock is unbounded, because a thread can experience starvation
hile spinning. The value FUTEX for PthreadLock is the blocking/unblocking cost for a kernel

hread, which involves crossing the application/kernel boundary and using another set of locks
o enqueue and dequeue threads on an OS wait channel. Lock data implies extra data stored in
 lock, and TLS data implies extra data stored with a thread. Contended space is the space used
hile threads are attempting to acquire a lock. 

.1 Experimental Setup 

igure 4 shows the outline of the test harness for the experimental setup, which creates T 

thread worker-threads, with T in the range 1–32; T = 1 is the minimal and T > 1 is the maximal
CM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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Fig. 4. Outline of the test harness for the experimental setup. 
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ontention experiments. After thread creation, the harness blocks for a fixed period and then sets a
lobal stop flag to indicate the experiment is over. The T worker-threads repeatedly attempt entry
nto a self-checking CS until the stop flag is set. The CS contains a loop with a short delay, 20 itera-
ions, and each iteration performs quick tests for mutual exclusion violation. As well, the NCS has a
hort delay of 20 iterations for T > 1 to disrupt threads convoying through the CS. These dynamic
ests buttress the formal proof of an algorithm but, more importantly, verify the algorithm imple-
entation on computers with different memory models, e.g., total order store (TSO) or weak

rder (WO) . The verification tests were invaluable during algorithm construction and testing. 
Each experiment is run for 60 seconds, during which each thread counts the number of times

t enters the CS. The higher the aggregate count, the better an algorithm, as it is able to process
ore requests for the CS per unit time (throughput). When the stop flag is set, a worker thread

tops entering the CS and atomically adds its subtotal entry-counter to a global total entry-counter.
hen the harness unblocks after 60 seconds, it busy waits until all threads have noticed the stop

ag and added their subtotal to the global counter, which is then stored. Five identical experiments
re performed for each T. The median value of the five results is plotted. 

The performance experiments were run on three different multi-core hardware systems to de-
ermine differences across platforms as follows: 

(1) Supermicro AS–1123US–TR4 AMD EPYC 7662 64–core socket, hyper-threading × 2 sock-
ets (256 processing units) 2.0 GHz, TSO memory model, running Linux v5.8.0–55–generic,
gcc–10 compiler 

(2) Huawei ARM TaiShan 2280 V2 Kunpeng 920 48–core socket × 2 sockets 2.6 GHz, WO
memory model, running Linux v5.4.0–109–generic, gcc–10 compiler 
ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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Fig. 5. Minimal Contention Throughput, T = 1 , higher value is better. 

A  

t  

W  

m
 

A  

I  

i  

t  

r
 

n  

m  

_  

c  

W  

_  

t

6

F  

e  

A  

d  

i  

a
 

m  

t  

a

A

(3) Supermicro SYS–6029U–TR4 Intel Xeon Gold 5220R 24–core socket, hyper-threading ×
2 sockets (48 processing units) 2.2 GHz, TSO memory model, running Linux v5.8.0–59–
generic, gcc–10 compiler 

ll three hardware architectures are different in threading (multithreading vs. hyper), cache struc-
ure (MESI/MESIF vs. MOESI), NUMA layout (QPI vs. HyperTransport), memory model (TSO vs.

O), and energy/thermal mechanisms (turbo-boost). Software that runs well on one architecture
ay run poorly or not at all on another. 
All 32-threads are run on a single socket to prevent large NUMA effects. The threads on the

RM are placed on consecutive cores with an L3 cache step at 24 cores. The threads on the
ntel and AMD are placed on hyper-threads per core and then consecutively on cores to min-
mize L3 steps (4 core step on AMD and 24 core step on Intel). Small NUMA effects occur be-
ween the L3 caches. No hyper-threading or NUMA effects were observed in the performance
esults. 

Finally, compilation used optimization level -O3 , most function calls are inlined (which may
ot be possible for pre-compiled implementations), and fencing is performed by inspection to
atch the architecture memory-model. The experiments were run with compiler fencing using

Atomic declarations (not shown) but ran equal to or slower than hand-generated fencing, be-
ause the compiler uses the stronger sequential-consistency model rather than the weaker TSO or
O models, respectively. Interestingly, the curves of the algorithms also changed positions using

Atomic across the different architectures; hence, drawing performance conclusions depends on
he memory model used. 

.2 Experimental Results 

igure 5 shows the entry counts (throughput) to the critical section for the minimal contention
xperiment, i.e., an access with no contention ( T = 1 ), for each locking algorithm run on the AMD,
RM, and Intel, respectively. The values are sorted to simplify the comparison. There is no NCS
elay for this experiment as it would only lengthen the experiment without providing any addition
nformation. Therefore, the performance values for T = 1 are not comparable to T > 1 , which have
n NCS delay. 

The results for the minimal contention experiment show the algorithms are close in perfor-
ance, ±15%–20%. In general, MCSH performed below average across the three different archi-

ectures for T = 1 . Note that algorithm performance moves around significantly on the different
rchitectures, making it impossible to select a single algorithm as the best. 
CM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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Figure 6 shows the entry counts (throughput) to the critical section for the maximal contention
xperiment, T = N , for each locking algorithm run on the AMD, ARM, and Intel, respectively. The
raphs start at T = 2 , because the results for T = 1 are up to an order of magnitude greater than
 = 2 and a broken graph is used, because the results for SpinLock remain high as contention
ncreases. Note that the Y axis scale is different between the two parts of the graph. Without these
raphing techniques, the results for T = 2 .. 32 are compressed on the Y axis, making it difficult to
ee differences among them. 

Except for SpinLock, the lock algorithms varied by a factor of 1.5 to 2 times across all architec-
ures. (SpinLock performance is discussed next.) Of the locks with a standard interface, MCSK42,
SpinLock, HemLock, SpinLock, and PthreadLock, MCSH ranks about the same as MCSK42. Fur-

hermore, MCSH performed in the middle group of locks across the three different architectures.
ocks CLH and QSpinLock did well across the three different architectures, but CLH does not have
 standard interface, and several locks (including MCSH) are equal to or better than QSpinLock
n the Intel. Again, algorithm performance moves around on the different architectures, making
t impossible to select a single algorithm as the best. 

Figure 7 shows the relative standard deviation, rc v = 
σ
μ
× 100 , where σ is the standard devia-

ion and μ is the average, for the maximal contention experiment, which is a percentage of the
oefficient of variation ( c v ) representing a normalized measure of dispersion of fairness for each
lgorithm. This relative standard deviation is a measure of long-term fairness across the experi-
ent versus intermediate intervals of short term unfairness. If an algorithm is perfectly fair, then

he count values for each thread are essentially equal (modulo small differences at start-up and
lose-down), resulting in an rc v of essentially zero. The more entry counts differ, the higher the
ercentage of unfairness. MCSFAS is not FCFS, but at maximal contention, there is rarely a suc-
essor in the lock release, so it behaves like FCFS MCS. SpinLock and PthreadLock are not FCFS.
pinLock gains its unfairness from the atomic test-and-set instruction, which is particularly unfair
cross all tested architectures. Basically, the hardware favours threads for long periods of time, so
uring a timed experiment, some threads receive diminishing execution time. PthreadLock does
ot gain as much from its unfairness, because it occasionally blocks the kernel thread rather than
pinning, which has a substantial cost. 

During development of the performance experiments, we found that the results are dependent
n the application, workload, and architecture. For the application, the size of the NCS and CS has
 significant effect on lock performance. For the workload, the amount of contention on the lock is
he largest factor. For the architecture, the placement of threads on processor units, using hyper-
hreading, and the cache structure are important for good performance. Without explicit thread
lacement, the Linux operating system places threads far apart, because it assumes independent
equential programs. Also a best-effort attempt is made by the Linux scheduler to restart blocked
ernel threads on or near the last CPU that it ran to preserve cache locality. These different thread
lacement result in different performance results across general programs. Hence, other criteria
ay direct lock selection, such as the simplicity of the interface or the requirements on the ABI. 

 CONCLUSIONS 

he MCSH algorithm is a variation of the popular FCFS MCS lock with a standard interface re-
uiring only basic programming-language mechanisms and stack allocation; hence, it is a substi-
utable lock for programs using the standard-lock interface without ABI concerns. The MCSH lock
as been proven correct using both the proof assistant PVS and through extensive experimental
esting. The experimental results show MCSH is performance equivalent to other MCS-style locks.
herefore, application performance is unlikely to change significantly if MCSH is substituted. This
ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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Fig. 6. Critical-section entry-counts, maximal contention: T = 2 .. 32 , 60 seconds, algorithm performance, 

higher value is better. 
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Fig. 7. Relative standard deviation, maximal contention: T = 1 .. 32 , 60 seconds, fairness among threads, 

where 0% is prefect fairness. 
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erformance equivalence is obtained even though MCH, MCSFAS, CLH, and HemLock do not have
 standard interface, and MCSFAS, MCSK42, SpinLock, PthreadLock are not FCFS. Hence, MCSH
rovides application programmers with a new, competitive, alternative lock with strong interface
nd behaviour properties. 

 APPENDIX 

he invariants of Figure 3 needed for the proof of mutual exclusion. The founding members Iq1

nd Iq2 generate the following complete family. It uses the abbreviations M defined above and 

F = {q | (q ∈ [15] ∧ prev q = ⊥ ) ∨ q ∈ [16] }. 

q1 : slot q = slot r � 0 ⇒ q = r . 
q2 : q ∈ M ⇒ slot q = low . 
q3 : slot q < high . 
q4 : tail = ⊥ ∧ flag ⇒ low = high . 
q5 : q ∈ [14 , 17] ⇒ locked ( my q ). 

q6 : q ∈ F ∧ r ∈ [20 , 29] ⇒ low + 1 = slot q . 
q7 : q ∈ F ∧ r ∈ [21 , 30] ⇒ nxmy r = ⊥ . 
q8 : q ∈ [21 , 30] ⇒ nxmy q = ⊥ ∨ low = slot q . 

q9 : q ∈ [21 , 26] ∨ q ∈ [29 , 30] ⇒ succ q = nxmy q . 

q1 : q ∈ [21 , 30] ∧ nxmy q = my r ∧ r ∈ [15 , 26] ⇒ low + 1 = slot r . 

q2 : q ∈ [20 , 29] ⇒ ¬ flag . 
q3 : q ∈ [25 , 30] ∧ tail = ⊥ ⇒ nxmy q = ⊥ . 

q4 : q ∈ [25 , 29] ∧ tail = ⊥ ⇒ low + 1 = high . 
q5 : q ∈ [21 , 30] ∧ r ∈ [12 , 17] ⇒ nxmy q � my r . 

q6 : q ∈ [15 , 24] ⇒ tail � ⊥ . 
q7 : q ∈ F ⇒ r � [19 , 24] . 
q8 : q ∈ [15 , 26] ∧ r ∈ [15 , 26] ∧ next ( my q ) = my r ⇒ slot q + 1 = slot r . 

q9 : q ∈ [26 , 28] ⇒ msg = nxmy q . 

q1 : q ∈ [21 , 26] ∧ my q = tail ⇒ nxmy q = ⊥ . 

q2 : q ∈ [15 , 26] ∧ my q = tail ⇒ slot q + 1 = high . 

q3 : q ∈ [21 , 30] ⇒ nxmy q ∈ local . 
q4 : q ∈ [15 , 26] ∧ r ∈ [12 , 26] ∧ next ( my q ) = my r ⇒ r ∈ [18] . 

q5 : q ∈ [15 , 29] ⇒ low ≤ slot q . 
q6 : q ∈ F ∧ r ∈ F ⇒ q = r . 
q7 : q ∈ F ∧ r ∈ [18] ⇒ locked ( my r ). 
q8 : q ∈ [13 , 14] ⇒ next ( my q ) = ⊥ . 

q1 : q ∈ [15 , 26] ∧ r ∈ [15 , 17] ∧ my q = prev r ⇒ slot q + 1 = slot r . 

q2 : q ∈ [12 , 26] ∧ r ∈ [12 , 26] ∧ my q = my r ⇒ q = r . 

q3 : tail = ⊥ ∨ next ( tail ) = ⊥ . 
q4 : q ∈ [15 , 26] ⇒ next ( my (q)) ∈ local . 
q5 : low ≤ high . 
q6 : q ∈ [30] ⇒ flag ∨ nxmy q = ⊥ . 

q7 : q ∈ [12 , 14] ∧ r ∈ [15 , 17] ⇒ my q � prev r . 

q8 : q ∈ [12 , 14] ⇒ my q � tail . 
q1 : q ∈ [12 , 26] ⇒ my q ∈ local . 
CM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 



MCSH, a Lock with the Standard Interface 11:21 

M

M

M

M

M

M

M

M

 

b  

l

I

I

I

I

I

I

I

I

I

J

J

J

J

J

J

J

J

K

K

K

K

K

K

K

K

L

L

L

L

L

L

L

L

M

q2 : q ∈ [15 , 17] ⇒ prev q � tail . 
q3 : ⊥ ∈ local . 
q4 : q ∈ [15 , 17] ⇒ prev q ∈ local . 
q5 : tail ∈ local . 
q6 : q ∈ [24 , 26] ∧ r ∈ [15 , 17] ⇒ my q � prev r . 

q7 : q ∈ [23 , 26] ⇒ my q � tail . 
q8 : q ∈ [21 , 26] ∧ r ∈ [15 , 17] ∧ my q = prev r ⇒ nxmy q = ⊥ . 

q9 : q ∈ [15 , 26] ∧ r ∈ [15 , 17] ∧ my q = prev r ⇒ next ( my q ) = ⊥ . 

These predicates form a directed graph, when an edge is drawn from P to Q if P is threatened
y some command (line number), and Q belongs to a conjunction that serves as a remedy. In the
ist below, MX1 can be replaced by Iq1 & Iq2 . The graph is described as follows. 

q1 is threatened by line 14 with remedy Iq3 . 
q2 threatened by 14: Iq4 ; 17: Iq5 ; 29: Iq1 & Iq6 & Iq7 ; 30: Iq1 & Iq8 & Iq9 & Jq1 . 
q3 is inductive. 
q4 threatened by 22: Jq2 ; 29: Jq3 & Jq4 , 30: Iq9 & Jq3 . 
q5 threatened by 30: Iq9 & Jq5 . 
q6 threatened by 14: Jq4 & Jq6 ; 19: Jq7 ; 29: MX1 ; 30: Iq1 & Iq2 & Iq8 & Iq9 . 
q7 threatened by 14: Jq3 & Jq6 ; 20, 24: Jq7 . 
q8 threatened by 20, 24: Iq2 ; 29: Iq1 & Iq2 ; 30: Iq1 & Iq9 . 
q9 threatened by 28: MX1 & Jq9 . 
q1 threatened by 14: Jq5 ; 20, 24: Iq2 & Jq8 ; 29, 30: MX1 & Iq9 . 
q2 threatened by 29: MX1 . 
q3 threatened by 21, 24: Jq6 ; 22: Iq1 & Iq2 & Iq8 & Kq1 . 
q4 threatened by 21, 24: Jq6 ; 22: Iq2 & Kq2 ; 29: MX1 ; 30: MX1 & Iq9 . 
q5 threatened by 11: Kq3 ; 20, 24: Kq4 . 
q6 threatened by 22: Iq1 & Iq2 & Iq3 & Kq2 & Kq5 . 
q7 threatened by 14: Jq6 ; 16: Kq6 ; 18: Kq7 . 
q8 threatened by 14: Kq4 & Kq8 ; 17: Jq9 threatened by 25: MX1 & Iq9 . 
q1 threatened by 14: Lq2 ; 20, 24: Lq3 . 
q2 threatened by 14: Lq2 . 
q3 threatened by 20, 24: Lq4 ; 26: Iq2 & Jq1 . 
q4 threatened by 11: Lq4 ; 14; Kq8 ; 17: Lq2 ; 18: Iq1 & Iq2 & Jq8 & Kq5 . 
q5 threatened by 14: Lq5 ; 29: Iq1 & Iq2 & Lq5 ; 30: Iq1 & Iq8 & Iq9 . 
q6 threatened by 14: Jq6 . 
q7 threatened by 14: Jq6 , 17: Iq5 ; 30: MX1 & Iq9 & Lq6 . 
q8 threatened by 17: Lq7 . 
q1 threatened by 14: Kq2 & Lq7 & Lq8 . 
q2 threatened by 11: Mq1 . 
q3 threatened by 14: Kq8 ; 17: Mq2 . 
q4 threatened by 12: Mq3 ; 14: Kq8 & Mq3 ; 17: Mq1 ; 26: Iq2 & Jq8 & Kq5 . 
q5 threatened by 29: Iq2 & Iq3 ; 30: Iq3 & Iq8 & Iq9 . 
q6 threatened by 19: MX1 . 
q7 threatened by 11: Mq4 ; 14: Lq8 . 
q8 threatened by 11: Mq5 ; 14: Lq2 . 
q1 threatened by 26: Lq2 . 
ACM Transactions on Parallel Computing, Vol. 10, No. 2, Article 11. Publication date: June 2023. 
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q2 threatened by 14: Lq7 & Lq8 ; 22: Iq1 & Iq2 & Iq3 & Kq2 & Kq5 . 
q3 is inductive. 
q4 threatened by 14: Mq5 ; 26: Mq6 . 
q5 threatened by 14: Mq1 ; 22: Mq3 ; 26: Mq7 . 
q6 threatened by 14: Mq7 ; 21: Iq9 & Mq8 ; 22: Mq2 ; 23: Mq9 . 
q7 threatened by 14: Lq2 ; 21: Iq9 & Kq1 . 
q8 threatened by 14: Kq1 ; 20, 24: Mq9 . 
q9 threatened by 14: Kq8 & Lq3 ; 17: Iq1 & Lq1 . 
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