18,184 research outputs found
A Formalization of Robustness for Deep Neural Networks
Deep neural networks have been shown to lack robustness to small input
perturbations. The process of generating the perturbations that expose the lack
of robustness of neural networks is known as adversarial input generation. This
process depends on the goals and capabilities of the adversary, In this paper,
we propose a unifying formalization of the adversarial input generation process
from a formal methods perspective. We provide a definition of robustness that
is general enough to capture different formulations. The expressiveness of our
formalization is shown by modeling and comparing a variety of adversarial
attack techniques
Procedure-modular specification and verification of temporal safety properties
This paper describes ProMoVer, a tool for fully automated procedure-modular verification of Java programs equipped with method-local and global assertions that specify safety properties of sequences of method invocations. Modularity at the procedure-level is a natural instantiation of the modular verification paradigm, where correctness of global properties is relativized on the local properties of the methods rather than on their implementations. Here, it is based on the construction of maximal models for a program model that abstracts away from program data. This approach allows global properties to be verified in the presence of code evolution, multiple method implementations (as arising from software product lines), or even unknown method implementations (as in mobile code for open platforms). ProMoVer automates a typical verification scenario for a previously developed tool set for compositional verification of control flow safety properties, and provides appropriate pre- and post-processing. Both linear-time temporal logic and finite automata are supported as formalisms for expressing local and global safety properties, allowing the user to choose a suitable format for the property at hand. Modularity is exploited by a mechanism for proof reuse that detects and minimizes the verification tasks resulting from changes in the code and the specifications. The verification task is relatively light-weight due to support for abstraction from private methods and automatic extraction of candidate specifications from method implementations. We evaluate the tool on a number of applications from the domains of Java Card and web-based application
IEEE Standard 1500 Compliance Verification for Embedded Cores
Core-based design and reuse are the two key elements for an efficient system-on-chip (SoC) development. Unfortunately, they also introduce new challenges in SoC testing, such as core test reuse and the need of a common test infrastructure working with cores originating from different vendors. The IEEE 1500 Standard for Embedded Core Testing addresses these issues by proposing a flexible hardware test wrapper architecture for embedded cores, together with a core test language (CTL) used to describe the implemented wrapper functionalities. Several intellectual property providers have already announced IEEE Standard 1500 compliance in both existing and future design blocks. In this paper, we address the problem of guaranteeing the compliance of a wrapper architecture and its CTL description to the IEEE Standard 1500. This step is mandatory to fully trust the wrapper functionalities in applying the test sequences to the core. We present a systematic methodology to build a verification framework for IEEE Standard 1500 compliant cores, allowing core providers and/or integrators to verify the compliance of their products (sold or purchased) to the standar
Testing times: on model-driven test generation for non-deterministic real-time systems
Summary form only given. Although testing has always been the most important technique for the validation of software systems it has only become a topic of serious academic research in the past decade or so. In this period research on the use of formal methods for model-driven test generation and execution of functional test cases has led to a number of promising methods and tools for systematic black-box testing of systems, examples are based on A. Belinfante et al. (1999), J. Tretmans and E. Brinksma (2003), J.-C. Fernandez et al. (1996) and J.-C. Fernandez et al. (1997). Most of these approaches are limited to the qualitative behaviour of systems, and exclude quantitative aspects such as real-time properties. The explosive growth of embedded software, however, has also caused a growing need to extend existing testing theories to the testing of real-time reactive systems. In our presentation we present an extension of Tretmans' ioco theory for test generation as stated in J. Tretmans (1996) for input/output transition systems that includes real-time behaviour
A UML-based static verification framework for security
Secure software engineering is a new research area that has been proposed to address security issues during the development of software systems. This new area of research advocates that security characteristics should be considered from the early stages of the software development life cycle and should not be added as another layer in the system on an ad-hoc basis after the system is built. In this paper, we describe a UML-based Static Verification Framework (USVF) to support the design and verification of secure software systems in early stages of the software development life-cycle taking into consideration security and general requirements of the software system. USVF performs static verification on UML models consisting of UML class and state machine diagrams extended by an action language. We present an operational semantics of UML models, define a property specification language designed to reason about temporal and general properties of UML state machines using the semantic domains of the former, and implement the model checking process by translating models and properties into Promela, the input language of the SPIN model checker. We show that the methodology can be applied to the verification of security properties by representing the main aspects of security, namely availability, integrity and confidentiality, in the USVF property specification language
Efficient Monitoring of Parametric Context Free Patterns
Recent developments in runtime verification and monitoring show that parametric regular and temporal logic specifications can be efficiently monitored against large programs. However, these logics reduce to ordinary finite automata, limiting their expressivity. For example, neither can specify structured properties that refer to the call stack of the program. While context-free grammars (CFGs) are expressive and well-understood, existing techniques of monitoring CFGs generate massive runtime overhead in real-life applications. This paper shows for the first time that monitoring parametric CFGs is practical (on the order of 10% or lower for average cases, several times faster than the state-of-the-art). We present a monitor synthesis algorithm for CFGs based on an LR(1) parsing algorithm, modified with stack cloning to account for good prefix matching. In addition, a logic-independent mechanism is introduced to support partial matching, allowing patterns to be checked against fragments of execution traces
Research Priorities for Robust and Beneficial Artificial Intelligence
Success in the quest for artificial intelligence has the potential to bring
unprecedented benefits to humanity, and it is therefore worthwhile to
investigate how to maximize these benefits while avoiding potential pitfalls.
This article gives numerous examples (which should by no means be construed as
an exhaustive list) of such worthwhile research aimed at ensuring that AI
remains robust and beneficial.Comment: This article gives examples of the type of research advocated by the
open letter for robust & beneficial AI at
http://futureoflife.org/ai-open-lette
Dependability checking with StoCharts: Is train radio reliable enough for trains?
Performance, dependability and quality of service (QoS) are prime aspects of the UML modelling domain. To capture these aspects effectively in the design phase, we have recently proposed STOCHARTS, a conservative extension of UML statechart diagrams. In this paper, we apply the STOCHART formalism to a safety critical design problem. We model a part of the European Train Control System specification, focusing on the risks of wireless communication failures in future high-speed cross-European trains. Stochastic model checking with the model checker PROVER enables us to derive constraints under which the central quality requirements are satisfied by the STOCHART model. The paper illustrates the flexibility and maturity of STOCHARTS to model real problems in safety critical system design
- …
