
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008 397

IEEE Standard 1500 Compliance Verification
for Embedded Cores

Alfredo Benso, Senior Member, IEEE, Stefano Di Carlo, Member, IEEE, Paolo Prinetto, and
Yervant Zorian, Fellow, IEEE

Abstract—Core-based design and reuse are the two key elements
for an efficient system-on-chip (SoC) development. Unfortunately,
they also introduce new challenges in SoC testing, such as core test
reuse and the need of a common test infrastructure working with
cores originating from different vendors. The IEEE 1500 Standard
for Embedded Core Testing addresses these issues by proposing a
flexible hardware test wrapper architecture for embedded cores,
together with a core test language (CTL) used to describe the im-
plemented wrapper functionalities. Several intellectual property
providers have already announced IEEE Standard 1500 compli-
ance in both existing and future design blocks. In this paper, we
address the problem of guaranteeing the compliance of a wrapper
architecture and its CTL description to the IEEE Standard 1500.
This step is mandatory to fully trust the wrapper functionalities
in applying the test sequences to the core. We present a systematic
methodology to build a verification framework for IEEE Standard
1500 compliant cores, allowing core providers and/or integrators
to verify the compliance of their products (sold or purchased) to
the standard.

Index Terms—Electronic design automation (EDA) tools, IEEE
1500 Standard, unified modeling language (UML), verification of
embedded cores.

I. INTRODUCTION

THE INCREASED density and performance of advanced
silicon technologies made system-on-a-chip (SoC) appli-

cation-specific integrated circuits (ASICs) possible. SoCs bring
together a set of functions and technology features on a single
die of enormous complexity. Each component is available as
a predesigned functional block that comes as an intellectual
property (IP) embedded core, reusable in different designs.
These so-called embedded cores make it easier to import tech-
nologies to a new system and differentiate the corresponding
product by leveraging IP advantages. Most importantly, the
use of embedded cores shortens the time-to-market for new
systems thanks to a heavy design reuse [1].

What makes designing systems with IP cores an attractive
methodology (e.g., design reuse, heterogeneity, reconfigura-
bility, and customizability) also makes testing and debugging
of these systems a very complex challenge [2].

Manuscript received March 2, 2007.
A. Benso, S. Di Carlo, and P. Prinetto are with the Department of In-

formation and Automation Technologies, Politecnico di Torino, 10129
Torino, Italy (e-mail: alfredo.benso@polito.it; stefano.dicarlo@polito.it;
paolo.prinetto@polito.it).

Y. Zorian is with the Virage Logic, Fremont, CA 94538 USA (e-mail: zo-
rian@computer.org).

Digital Object Identifier 10.1109/TVLSI.2008.917412

There exist strong functional similarities between the tra-
ditional system-on-board and the SoC design. However, their
manufacturing test process is quite different.

In a system-on-board, the IC provider is responsible for the
design, manufacturing, and testing of the ICs components of
the system. In this context, the system integrator is, with re-
spect to testing for manufacturing defects, only responsible for
the interconnections between the ICs. The boundary scan test,
also known as JTAG or the IEEE Standard 1149.1 [3], is a
well-known technique to address this board-level interconnect
test problem. In the SoC design flow, the core provider delivers
a description of the core design to the system integrator at dif-
ferent possible levels: soft (register-transfer level), firm (netlist),
or hard (technology-dependent layout). Being the core delivered
only as a model, a manufacturing test is at this stage impossible.
Therefore, the test responsibility of the system integrator now
not only concerns the interconnect logic and wiring between the
cores, but also the IP cores themselves.

For an SoC design, the test of embedded cores constitutes a
large part of the overall IC test, and hence substantially impacts
the total IC quality level as well as its test development effort
and associated costs. The adoption and design of adequate test
and diagnosis strategies is therefore a major challenge in the
production of SoCs.

The IEEE Standard Testability Method for Embedded Core-
Based Integrated Circuits (IEEE Standard 1500 [4]) addresses
the specific challenges that come with testing deeply embedded
reusable cores supplied by diverse providers, who often use dif-
ferent hardware description levels and mixed technologies [2],
[5], [6]. The IEEE Standard 1500 defines a scalable standard ar-
chitecture to facilitate and support the testing of embedded cores
and the associated interconnect circuitry in a SoC.

The standard does not cover the core’s internal test methods
or chip-level test access configuration. The standardization ef-
fort focuses on non-merged cores (cores that are tested as stand-
alone units) and provides the following two main supports:

• standardized core test language (CTL), capable of ex-
pressing all test-related information that need to be
transferred from the core provider to the core user;

• standardized (but configurable and scalable) core test
wrapper, allowing easy test access to the core in an SoC
design.

Several publications presented solutions to build SoCs with
IEEE Standard 1500 testability features [7], [8]; nevertheless, by
analyzing the IEEE Standard 1500, it is clear that implementing
a fully compliant core is not trivial. The IEEE Standard 1500
is in fact articulated in a large set of architectural rules. Some
of them are very specific on particular design aspects, whereas

1063-8210/$25.00 © 2008 IEEE

398 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008

others do not introduce particular restrictions but define general
characteristics of the design. It is very easy therefore to forget
one of the specific rules or misunderstand a general rule, imple-
menting it with a custom architecture that does not respect the
standard as a whole.

Verifying the actual compliance of a wrapped core to the
IEEE Standard 1500 is therefore mandatory. Nevertheless,
without a formalized approach, this verification task can be
more expensive than the design of the core itself.

Looking at the available literature, only a few authors tried to
address the problem of verifying the compliance of an IP core
to the IEEE Standard 1500. In [9], Diamantidis et al. present an
approach based on a dynamic, constrained-random coverage-
driven verification methodology to verify the functionality of
the complete test infrastructure within a given SoC. The main
drawback of this contribution is that the authors verify the SoC
and wrapper functionalities without systematically addressing
every single aspect (rule) of the standard.

This paper shows a systematic methodology to build a verifi-
cation framework for IEEE Standard 1500 compliant cores. This
methodology does not aim at providing a complete implemen-
tation of the verification framework but it focuses on defining
an abstract model that enables core providers and/or integrators
to build their custom verification frameworks to verify the com-
pliancy of their products (sold or purchased) to the IEEE Stan-
dard 1500. The model guarantees to systematically address the
different aspects of the standard. It is in fact an abstraction of
the standard itself and could be reused to build compliance ver-
ification frameworks for different standards as long as they are
structured similarly to the IEEE Standard 1500 (e.g., the JTAG
standard).

This paper is organized as follows. Section II overviews the
basic concepts of the IEEE Standard 1500, whereas Section III
introduces the basic elements composing the proposed IEEE
Standard 1500 Verification Framework. Sections IV and V de-
tail the different types of verification needed to build the frame-
work. Finally, Section VI presents a prototype of the IEEE Stan-
dard Verification Framework and Section VII summarizes the
main contributions and outline future research activities.

II. AN OVERVIEW OF THE IEEE STANDARD 1500

This section introduces the main features of the IEEE Stan-
dard 1500 that will be extensively used in this paper.

The IEEE Standard 1500 defines a scalable standard design-
for-testability architecture to facilitate testing and diagnosis of
embedded cores and associated circuitry in an SoC. The archi-
tecture is independent from the underlying core’s functionality
and technology.

The IEEE Standard 1500 architecture always includes the fol-
lowing.

• Core Test Wrapper: A wrapper placed around the bound-
aries of the core that allows accessing its testing function-
alities using a standard interface and protocol (see Fig. 1).
The wrapper is completely transparent when the core is not
in test mode.

• Information Model: A formal description of the IEEE Stan-
dard 1500 functionalities (mandatory and optional) imple-
mented by the core test wrapper. The Information Model

Fig. 1. IEEE 1500 core test wrapper architecture.

is the bridge between core providers and core users and
facilitates the automation of test data transfer and reuse
between these two entities. The Information Model is de-
scribed using the IEEE 1450.6 CTL [10]. The information
model includes the following:
— set of wrapper’s signals;
— timing of the wrapper signals (wrapper communication

protocol);
— information about the test patterns.

Fig. 1 shows the overall architecture of a general IEEE 1500
wrapper. It includes the following elements:

• wrapper instruction register (WIR) for controlling the
wrapper operational mode;

• chain of wrapper cells called wrapper boundary register
(WBR) to provide test functions at the core terminals;

• wrapper bypass register (WBY) for synchronously by-
passing the wrapper;

• wrapper interface port (WIP) for serially controlling the
wrapper using the wrapper serial input (WSI) and the
wrapper serial output (WSO), and, optionally, a test access
mechanism (TAM).

The IEEE Standard 1500 is an effort of reconciling and ac-
commodating different test strategies and motives. The greatest
effort has been put into supporting as many requirements as pos-
sible while still producing a cohesive and consistent standard.

In addition to the mandatory elements, the core designer is
free to define a set of wrapper defined registers (WDR) and/or
core defined registers (CDR). WDRs and CDRs are the mecha-
nism used by the IEEE Standard 1500 to accommodate the dif-
ferent test strategies coming from different core providers.

The strong effort put into providing high flexibility can be
finally translated into the definition of the following two levels
of compliance to the standard.

• IEEE Standard 1500 Compliant Core: This notion refers
to a core that incorporates an IEEE Standard 1500 wrapper
function and comes with an IEEE Standard 1500 CTL pro-
gram. The CTL program describes the core test knowledge,
including how to operate the wrapper, at the wrapper’s ex-
ternal terminals.

• IEEE Standard 1500 Ready Core: This notion refers to a
core which does not have a complete IEEE Standard 1500
wrapper, but does have a IEEE Standard 1500 CTL de-
scription. The CTL description can be used to synthesize an
IEEE Standard 1500 compliant wrapper to make the core

BENSO et al.: IEEE STANDARD 1500 COMPLIANCE VERIFICATION FOR EMBEDDED CORES 399

Fig. 2. IEEE 1500 Verification Framework UML use cases diagram.

fully compliant. The CTL program describes the core test
knowledge at the bare core terminals.

III. BUILDING THE IEEE STANDARD 1500
VERIFICATION FRAMEWORK

This section introduces the basic concepts needed to build
a verification framework for the IEEE Standard 1500. Wher-
ever possible, the framework will be described resorting to the
unified modeling language (UML) [11]. UML is a semiformal
specification language standardized by the object management
group (OMG) [12]. The usage of UML allows building a model
of the framework not biased towards a specific software imple-
mentation.

The first step to perform is the identification of the different
scenario where the framework may be used. Fig. 2 shows the
UML use cases diagram for the IEEE Standard 1500 Verifica-
tion Framework.

The verification framework represents the system to model
(identified by a rectangle in the diagram) and for this system we
have a single use case (identified by the oval in the diagram)
consisting in the verification of the compliance of a core test
wrapper with the IEEE Standard 1500.

An UML use case defines a sequence of interactions between
one or more actors, i.e., candidate users of the system, and the
system itself. For the IEEE Standard 1500 Verification Frame-
work, we envision the following two different actors.

• Core Provider: Core providers have a strong interest in pro-
viding IEEE Standard 1500 compliant designs to facilitate
the integration of their cores into system-level test infra-
structures. From the core provider perspective, selling a
product as IEEE Standard 1500 compliant when the core
is actually not fully compliant, is a high risk situation. Ver-
ifying the standard compliance after the core design has
been signed-off can be really complex. In fact, if an error
has been originated by an incorrect application of a rule,
during the simulation and verification phase of the core
the designer will very likely be unable to recognize the
problem. Moreover, in case of errors appearing in corner
cases of the core functionalities, the error can easily escape
the debug phase but can be excited by the user application.

• Core Integrator: Core integrators need to be sure that
IEEE Standard 1500 compliant cores actually comply
with the required functionalities at both standalone and
system-level. In case of errors in the wrapper design, the
whole SoC compliancy or even functionality may be com-
promised. Moreover, since core integrators usually have a

Fig. 3. IEEE 1500 Verification Framework UML class diagram.

very poor knowledge of the core’s internal structure, the
verification of the IEEE Standard 1500 compliance may
be even harder than for a core provider.

Modelling the IEEE Standard Verification Framework means
defining the actions performed by the “Verify the wrapper com-
pliance” use case and defining the elements involved in those
actions. The elements building the framework are modeled by
an UML Class Diagram. A class diagram partitions the system
into areas of responsibility (classes), and shows dependencies
(associations) between them.

Fig. 3 depicts the class diagram for the full IEEE Standard
1500 Verification Framework. The different elements (classes
and associations) of the diagram will be deeply explained in
Sections IV–VI and will be used to formalize the operations
performed by the framework.

Let us now consider the structure of the IEEE Standard 1500.
As already introduced in Section II, the standard defines a core
test wrapper and an information model defined as a set of CTL
[10] statements.

The information model is a key element of the standard. To
verify the compliancy of a core test wrapper with the IEEE Stan-
dard 1500, we have to first verify the correctness of the syntax
of the CTL description provided with the wrapper. This simple
constraint identifies the first element of the framework: a module
in charge of performing a syntax analysis of the information

400 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008

model. This module is modeled by a class (Syntax_Verifier) in
the class diagram of Fig. 3.

Beside the language used to specify the information model,
the IEEE Standard 1500 is then composed of a set of different
rules that define how an IEEE Standard 1500 compliant core
test wrapper has to be designed. Rules identify the following
two different aspects of the standard.

• Semantic Aspects: They mainly concern the information
model (CTL description) and can be verified without any
interaction with the actual core/wrapper implementation
(i.e., without any need of performing core/wrapper simu-
lations).

• Behavioral Aspects: They target the communication proto-
cols and the behavior of the wrapper. In general, the verifi-
cation of these aspects requires a functional simulation of
the wrapper.

The way semantic and behavioral aspects can be verified
is quite different; in the framework, they require two separate
modules in charge of performing the two types of verification.
The two modules are modeled by the Semantic_Verifier class
and the Behavioral_Verifier class of the diagram in Fig. 3.

At this point, we have three main modules in the IEEE Stan-
dard 1500 Verification Framework that correspond to the fol-
lowing three verification processes:

• syntax verification;
• semantic verification;
• behavioral verification.
Beforeaddingmoredetailstothemodel, it isimportanttodefine

a possible verification plan in order to highlight dependencies
between the results of the different verification steps. Moreover,
being that the verification process is one of the main cost factors
of a modern SoC, we have to define optimal verification plans
targeting the reduction of the overall verification time.

Fig. 4 shows the verification plan for the syntax, semantic,
and simulative verification in the proposed framework. It is
modeled using an UML sequence diagram describing how
groups of objects (instances of classes) collaborate to complete
a given task. Typically, a sequence diagram captures the be-
havior of a single use case and in this particular case, it models
the “Verify the wrapper compliance” use case of Fig. 2. The
collaboration between the objects is represented by an exchange
of messages between objects (calls to UML classes methods).

The verification process is managed by one of the actors of
the model. At this abstraction level there is no difference be-
tween the two classes of users identified in the use case diagram
of Fig. 2 (core integrator and core provider). As already intro-
duced in this section, being that the information contained in the
information model is an essential element for any other verifica-
tion action, the first action to perform is the syntax verification.

The action of performing the verification is modeled as an
exchange of a do_Verification() message between the Actor and
the Syntax_Verifier class. The Syntax_Verifier performs the re-
quired checks and returns a Boolean value (OK_Syn) to the
actor indicating whether the verification was successful or not.
If the syntax verification fails, it is not possible to proceed with
the next steps. The verification process ends and the core test
wrapper under analysis is considered not IEEE Standard 1500
compliant.

Fig. 4. IEEE 1500 UML Verification Framework basic verification plan.

If the syntax verification passes, it is then possible to move to
the next verification phases. In order to reduce the verification
effort in the case of non-compliant cores, the next scheduled ver-
ification is the semantic verification. This verification works on
information contained in the information model (does not need
a functional simulation of the wrapper) and can therefore be per-
formed much faster than the behavioral verification. Moreover,
the behavioral verification needs to use the information model,
which than needs to be analyzed first.

Again the semantic verification starts with a do_Verification()
message exchanged between the actor and the Semantic_Ver-
ifier class. The result of the message is a Boolean value
(OK_Sem) stating whether the verification passed or failed.

In the case of a positive response from the semantic verifica-
tion, it is possible to perform the last verification step (behav-
ioral verification) modeled in Fig. 4 as a message exchange be-
tween the actor and the behavioral verifier. Moreover, in some
situations it may be useful to perform the behavioral verification
even in the case of a negative response from the semantic veri-
fication in order to better diagnose the cause of the non-compli-
ancy. This possibility is modeled in Fig. 4 by the self-message
“?Perform behavioral verification” sent by the actor to itself.

In Sections IV–VI, to complete the definition of the IEEE
Standard 1500 Verification Framework, each verification step
modeled in Fig. 4 will be analyzed in details.

IV. SYNTAX VERIFICATION

As introduced in Section III, the syntax verification is the
first action performed by the IEEE Standard 1500 Verification
Framework (see Fig. 4).

This analysis verifies that the information model (CTL) [10]
provided together with an IEEE Standard 1500 compliant core
is syntactically correct. The syntax verification does not deal

BENSO et al.: IEEE STANDARD 1500 COMPLIANCE VERIFICATION FOR EMBEDDED CORES 401

Fig. 5. IEEE 1500 syntax verification UML component diagram.

with the information contained in the information model, it just
checks the syntax of the statements in the model.

The problem of verifying the syntax of a set of statements, ac-
cording to a given language definition, is a well-known problem
in the field of programming language compilers. It is usually
solved using special programs called lexers and parsers [13].

In computer science and linguistics, parsing is the process of
analyzing a sequence of tokens to determine its grammatical
structure with respect to a given formal grammar. A parser is
the component of a compiler that carries out this task. Parsing
transforms input text into a data structure, usually a tree, which
is suitable for later processing and which captures the implied
hierarchy of the input. Lexical analysis creates tokens from a
sequence of input characters. Tokens are processed by the parser
to build a data structure such as parse tree or abstract syntax
trees.

The syntax verification is modeled by the Syntax_Veri-
fier class (see Fig. 3) in the IEEE Standard 1500 Verification
Framework. The class implements the do_Verification() method
actually performing the syntax analysis of the CTL provided
with the information model. We can therefore say that: “the
Syntax_Verifier class analyzes the syntax of the information
model.” This dependency is modeled in Fig. 3 by an asso-
ciation (Analize) between the Syntax_Verifier class and the
Information_Model class that models the IEEE Standard 1500
information model.

The Syntax_Verifier class is finally composed of two main
elements: 1) a CTL lexer and 2) a CTL parser that collaborate
to analyze the syntax of the IEEE Standard 1500 information
model. This property is modeled by the UML component dia-
gram of Fig. 5 depicting the software components actually com-
posing the Syntax_Verifier.

In order to implement the syntax verification it is enough to
implement a parser and a lexer for the CTL language. Even if the
CTL is an extension of the STIL language [14] and a standard
itself [10], this implementation is not trivial since most of the
lexical rules that define the CTL language are described using
natural language and they have to be translated into a formal
grammar allowing the implementation of the lexer and parser
components.

V. IEEE STANDARD 1500 RULES VERIFICATION

The syntax verification, introduced in Section IV, is able to
guarantee the syntactic correctness of the IEEE Standard 1500
information model only. In order to guarantee the compliancy
of a core test wrapper with the IEEE Standard 1500 it is neces-
sary to perform a deeper analysis. As introduced in Section III,
this analysis has to be at the same time semantic, by using infor-
mation obtained from the information model itself, and behav-
ioral, by performing simulations of the wrapper using electronic
design automation (EDA) tools. Both semantic and behavioral

Fig. 6. IEEE Standard 1500 rules examples.

verification aim at proving that the features implemented in a
core test wrapper are compliant with the definitions of the stan-
dard.

The IEEE Standard 1500 basically consists in a collection
of rules. The concept of “IEEE 1500 rule” is a key point to
model the semantic and behavioral verification. Fig. 6 shows an
example of two different rules.

From the previous example, it is clear that some rules target
the semantic of the IEEE Standard 1500 information model
(e.g., Rule 17.2.1.d of Fig. 6), whereas other rules focus more on
the architectural or functional aspects of a component (e.g., Rule
11.3.1.d of Fig. 6). There are also rules that have both charac-
teristics. We therefore identify the following three different rule
categories:

• semantic rules;
• behavioral rules;
• mixed rules.
Each IEEE Standard 1500 rule is modeled in the IEEE

Standard 1500 verification framework by the IEEE_1500_rule
class (see Fig. 3). This class allows the formalization of a set
of concepts expressed in natural language (english) by the
standard. Each rule is characterized by the following attributes
(see Fig. 3).

• Name: The rule’s number as it appears in the IEEE Stan-
dard 1500 [4].

• Standard_Desc: The rule explanation as it appears in the
IEEE Standard 1500 (in natural language).

• Status: Identifies (for a given core test wrapper) whether
the rule has been verified with success, it failed, or still has
to be verified.

Each rule targets different architectural and functional aspects
of the core test wrapper. This dependency is modeled by the
Refer_To association between the IEEE_1500_Rule class and

402 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008

the Wrapper_Element class in Fig. 3. The Wrapper_Element
class is an abstract class that identifies a general part of the
wrapper. It is then specialized into the different actual compo-
nents of the wrapper, e.g., WIR, WBR, etc. (see Section II).

Finally, each rule needs to have a verifier able to proof the
correct implementation of the rule in the core test wrapper. From
the classification of IEEE 1500 rules into semantic, behavioral,
and mixed rules, we can identify the following two categories
of rule verifiers.

• Semantic Rule Verifiers: In charge of verifying the semantic
aspects of a rule.

• Behavioral Rule Verifiers: In charge of verifying the archi-
tectural and functional aspects of a rule.

The two types of rule verifiers are modeled in the frame-
work with the Semantic_Rule_Verifier class and the Be-
havioral_Rule_Verifier class, respectively (see Fig. 3). The
modeling and implementation of these two rule verifiers will
be deeply analyzed in the following two subsections.

As already introduced in Section III, one of the requirements
in the implementation of an IEEE Standard 1500 Verification
Framework is the optimization of the verification process. In
particular, it is necessary to understand whether, upon a rule
failure, it is necessary to abort the whole verification process
or not. To address this issue, we introduced a very detailed rule
hierarchy. This hierarchy is represented in Fig. 3 as the De-
pend_On association. Depend_On is a one to many association
that creates a relation between a rule and a set of other rules: if
rule A depends on rule B, it means that in order to verify the
compliancy to rule A it is necessary to first verify the compli-
ancy to rule B. The identification of the optimal hierarchy is a
key point in the definition of the verification plan and in the re-
duction of the verification costs. For the implementation of our
prototype (see Section VI), to create the rule hierarchy, we took
into account the following characteristics.

• Verification Effort: The time required to verify the rule.
Faster rules (e.g., semantic rules) are, if possible, placed
higher in the hierarchy.

• Component Complexity: The complexity of the compo-
nents targeted by the rule. Rules that, in case of failure,
require to fix the core itself are placed higher in the hier-
archy and are usually critical for the continuation of the
verification process.

• Component Isolation: The impact that the components tar-
geted by the rule have in the wrapper. If the component is
functionally isolated from the rest of the wrapper, then it is
possible to continue at least part of the remaining verifica-
tion process even if the rule fails.

An example of part of the rule hierarchy is presented in Fig. 7.

A. Semantic Rule Verifier

Semantic rules and part of the mixed rules can be verified by
simply analyzing the content of the IEEE Standard 1500 infor-
mation model provided with the core test wrapper. This is a fast
and powerful way to verify at least part of the IEEE Standard
1500 compliancy since it does not require any simulation of the
wrapper/core itself. Although simple and fast, this analysis is

Fig. 7. Example of IEEE Standard 1500 rule hierarchy.

by no means enough to guarantee IEEE Standard 1500 compli-
ancy. First of all, pure semantic rules are only a relatively small
subset of the whole rules set. Moreover, the semantic analysis is
performed on data contained in an information model supplied
by the core provider; there is no guarantee that the CTL descrip-
tion perfectly matches the actual hardware implementation.

Looking at the content of the IEEE Standard 1500 informa-
tion model the following types of CTL statements are respon-
sible for most of the required semantic information:

• ScanStructures;
• MacroDefs;
• environments.
The main issue with the information model is that it may in-

clude many user-defined structures; also, many mandatory or
optional hardware structures may be mapped on hardware com-
ponents already present in the core and therefore using different
naming conventions. Nevertheless, in order to be useful to the
semantic verifier, the semantic information needs to be orga-
nized in a more formal and less core-dependent way. To over-
come this problem, we propose to translate the CTL description
related to a particular core implementation into a more general
metadata model that can be more easily analyzed and proofed.

This operation can be efficiently performed during the
parsing operation executed at the beginning of the syntax
verification step (see Section IV). In particular, the semantic
information of the information model has to be translated
into the metadata structure and then renamed according to an
internal and core-independent naming convention. In this way,
all user-defined structures (and therefore signal/register names)
can be mapped to their corresponding general templates into

BENSO et al.: IEEE STANDARD 1500 COMPLIANCE VERIFICATION FOR EMBEDDED CORES 403

Fig. 8. IEEE 1500 Metadata UML class diagram.

the metadata model and all the semantic checks can now be per-
formed on the metadata model, where the naming convention
is independent from the corresponding core.

A very high level UML class diagram modeling an example
of the metadata model is provided in Fig. 8.

Thanks to its internal naming convention and corresponding
signal mapping, it becomes much easier to run checks on the
content of the metadata model. For example, a simple rule that
says

could be easily verified performing a control like

This operation will automatically check if a mapping exists
between the WS_Bypass template in the metadata model, and a
(user-defined) register in the CTL information model.

B. Behavioral Rules Verifier

The behavioral verification is the most complex step of the
verification process. Behavioral and mixed rules can only be val-
idated using a behavioral approach. Differently from the syntax
and semantic verification, the behavioral approach is based on
a functional simulation of the core test wrapper and of the core
itself. Simulation is the only effective approach to verify com-
pliancy of time-related rules, protocols, signal connections, and
correct instructions implementation. The IEEE Standard 1500
Verification Framework models the behavioral rule verifier with
the Behavioral_Rule_Verifier class in Fig. 3. The class imple-
ments the do_Verification() method that actually performs the
behavioral verification. The behavioral rule verifier needs to
simulate the core/wrapper it therefore has a Simulate associa-
tion with the IEEE_1500_Compliant_Core class (see Fig. 3).
The IEEE_1500_Compliant_Core class models the core under
verification (it usually corresponds to an HDL description of the
core).

A well-known approach to perform this type of verification
is the so-called dynamic, coverage-driven, constrained-random
simulation functional verification.

The term dynamic refers to the fact that the verification pat-
terns/stimulus are generated and applied to the design over a
number of clock cycles, and the corresponding results are col-
lected and compared against a reference/golden model. An EDA
simulator is used both to compute the values of all signals during
the simulation and to compare the expected values with the cal-
culated ones.

Simple dynamic verification has a main drawback: only a
subset of all possible behaviors can be verified in a time-bound
simulation run. Testing all possible behaviors under every pos-
sible combination of input stimuli is in most of the cases an un-
feasible task since the test space is too large to be fully covered
in a reasonable amount of time.

To overcome this problem, the number of verification pat-
terns applied to the wrapper has to be statistically significant
but not complete. To do this, verification input patterns are gen-
erated randomly under a set of constraints, which are expressed
as mathematical expressions limiting the set of legal values on
the input signals that drive the design. In this way, the simulator
generates random values and constraints ensure that the gener-
ated scenarios are valid and plausible.

To further optimize this constrained-random generation, cov-
erage-driven verification is used. Functional coverage metrics
are automatically and in real-time recorded in order to ascertain
whether (and how effectively) a particular test verified (or is ver-
ifying) a given feature; this information can then be fed back into
the generation process in order to drive additional verification
efforts more effectively towards the required goal. The coverage
metrics are evaluated on coverage monitoring points defined by
the user. The market offers a number of tools that are able to
support this dynamic (or functional) verification methodology.
The most used ones are Specman Elite (Cadence) [15] and Vera
(Synopsys) [16]. Besides the different verification and pattern
generation engines, all of them apply the verification patterns to
the target design using a verification component placed around
the core under analysis. The verification component, which is
a behavioral-level module described using a proprietary verifi-
cation language (e for Specman Elite, OpenVera for Vera), per-
forms the constrained-random generation of the verification pat-
terns, applies them, and is directly controlled by the verification
engine monitoring the current coverage reached in the verifica-
tion process.

To efficiently apply this verification approach to perform the
behavioral verification of IEEE Standard 1500 rules it is neces-
sary to do the following.

• Create a rule verification component for each rule (or
subset of similar rules). The rule verification component
is in charge of generating the verification patterns that,
applied during the simulation, will allow checking that
all the architectural and behavioral aspects of the rule are
correctly implemented in the design.

• Identify in the design the rule coverage points for that rule.
A coverage point is a signal/register in the wrapper that
needs to be monitored in order to evaluate the coverage
reached during the verification process on that particular
rule.

The concept of coverage applied to the IEEE Standard 1500
rules is very important. Not only allows to compute the number

404 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008

Fig. 9. IEEE 1500 behavioral verifier component diagram.

of verified rules over the set of available ones, but also allows to
compute a compliancy level of each individual rule. As briefly
explained before, if the combination of possible input patterns/
internal states of the components involved in the rule is too large,
the verification engine resorts to the constrained-random pattern
generation. This will lead to the application of a subset of all
possible patterns and therefore to a rule coverage or compliancy
level possibly lower than 100%.

The most challenging issue in this phase is to write rule ver-
ification components and identify rule coverage points that are
independent from the specific core or wrapper under analysis.
Again, the name mapping stored in the metadata model de-
scribed in Section V-A can be used to abstract the verification
component from the specific core implementation.

Another very important issue to be considered in this phase
is whether the core under verification is a black- or a white-box.
The difference is in the amount of available information on the
core’s internal structure. In a black-box core the only available
information is the input/output (I/O) interface. For IP protection
the internal structure of a black-box core is unknown (except to
the core designer, of course). A core integrator, who buys cores
from different vendors, usually deals only with black-box cores.
On the other hand, a core designer always has all the information
regarding the core, and therefore uses the white-box approach.

From the IEEE Standard 1500 compliancy verification point
of view, the difference between a black- and a white-box core
directly impacts the degree of compliancy that can be verified,
whereas in a white-box core, all the internal signals of the core
can be controlled and/or observed and therefore all rules can be
thoroughly verified, in a black-box core only the rules (or the
portions of them) that do not require directly controlling or ob-
serving the core internal signals can be fully verified. Full IEEE
Standard 1500 verification compliancy can only be achieved
when dealing with white-box cores or with black-box cores im-
plementing only the basic requirements of the standard.

This very important aspect of the behavioral verifica-
tion is modeled in the IEEE Standard Verification frame-
work by the Black_Box_Core_Test_Wrapper class and the
White_Box_Core_Test_Wrapper class.

Fig. 9 finally summarizes the main components of the behav-
ioral verifier using an UML components diagram.

Fig. 10. Verification plan for semantic and behavioral rules.

C. Semantic and Behavioral Verification Plan

As already introduced in Section III, the definition of an ef-
ficient test plan is critical in reducing the overall verification
costs. The sequence diagram of Fig. 4 introduced a first level of
scheduling among the three different verification activities per-
formed by the IEEE Standard Verification Framework. We can
now enter into more details and model how these activities can
be integrated together.

1) Syntax Verification Test Plan: The syntax verification is
a one-step verification process. It just performs a single action
that consists in parsing the CTL files provided with the IEEE
Standard 1500 information model. No particular scheduling is
needed for this verification.

2) Semantic and Behavioral Verification Test Plan: Both se-
mantic and behavioral verification involve the verification of a
set of IEEE Standard 1500 rules. The order in which the rules
are verified is extremely important, first of all to guarantee the
correctness of the result of the verification process and second
to reduce the overall verification time by performing different
actions in parallel.

The definition of the rule hierarchy described in Section V
and modeled using the Depend_On association in the UML
class diagram of Fig. 3 implicitly defines a verification plan
for both semantic and behavioral rules. The plan is modeled by
the UML sequence diagram of Fig. 10. The semantic/behavioral
verifier sends a message to each rule object asking to perform
the verification. The message is an asynchronous message (half
arrow) that means that the verification of the full set of rules is
performed in parallel.

Each rule, before performing its actual verification, first con-
trols the status of the rules it is dependent on. It is possible to
have the following three different situations:

BENSO et al.: IEEE STANDARD 1500 COMPLIANCE VERIFICATION FOR EMBEDDED CORES 405

• all rules are already verified: it is possible to proceed with
the test;

• all rules are already verified but some of them failed: the
whole verification process may be aborted or not, de-
pending on the relationship severity of the involved rules;

• some rule is still working on its verification: the rule has to
wait.

When all rules have completed the verification, the semantic/
behavioral verifier collects the results and can inform the actor
about the compliancy of the wrapper.

Obviously, the two types of verification (semantic/behav-
ioral) will work on different sets of rules and the set of rules
that will be verified will depend on the features actually imple-
mented in the wrapper.

VI. IMPLEMENTATION

This section overviews a prototype implementation of the
abstract UML model of the IEEE Standard 1500 Verification
Framework presented in the previous sections. The full frame-
work has been implemented using the Java [17] developing
platform. The Java language is a full object oriented program-
ming language and it is a perfect candidate to implement UML
models.

Besides the general interface provided by the implementa-
tion, we will focus in this section on a possible implementation
of the three types of verifiers (i.e., syntax, semantic, and behav-
ioral), being these components the real core of the verification
framework. As already introduced in Section V-B, the most crit-
ical component in the framework is the behavioral rule verifier.
This component needs to perform a dynamic functional veri-
fication. Many commercial platforms are available to perform
this type of verification; for our implementation, we used the
Specman Elite [15] suite.

A. Syntax Verification

Several technologies allow the automatic implementations of
parsers starting from the description of a formal grammar. We
successfully implemented a syntax analyzer by using two open-
source tools. JFLEX [18] is a lexical analyzer generator for Java,
developed by V. Paxson. JFLEX is designed to work together
with the parser generator CUP [19] by S. Hudson. The two tools
allow the description of a formal language grammar (in our case
the CTL grammar) and the automatic generation of a Java envi-
ronment (collection of Java classes) able to perform the syntax
analysis of a text file, according to the defined language. The
definition of the set of lexical rules and of the grammar needed
to implement the parser has been performed by analyzing the
IEEE CTL definition [10] and by translating a set of informal
definition contained in the standard into a formal definition suit-
able for the generation of the parsers.

Fig. 11 shows an example of how syntax definition of the
IEEE Standard 1450.6 (CTL) are translated into formal defini-
tions needed to generate the parser by using JFLEX and CUP. In
the example, we have three types of informal rules: rules #1 and
#2 describe with a simple, precise, and intuitive vocabulary how
the functional rules will be and indicate directly the definition
of a set of lexical definitions (i.e., “newline” and “tab”). Rule

Fig. 11. Lexical rules example.

#3 is more complex: formally, it gives a global surface descrip-
tion without providing, for instance, what type of characters are
allowed or not. To formally describe these types of rules, an ex-
tensive analysis of the IEEE Standard 1450.6 has been neces-
sary.

B. Semantic Verification

The implementation of the semantic verification mainly con-
sists in the implementation of the metadata structure defined in
Section V-A. We implemented the metadata as a collection of
Java classes as defined by the UML class diagram in Fig. 8. The
task of populating the metadata with the actual CTL information
is demanded to the CTL parser implemented in Section VI-A.
Finally, each IEEE Standard 1500 semantic rule has been trans-
lated into a set of queries performed on the metadata. Actually,
this type of implementation is not the more efficient one. Due to
the number of rules to verify and to the complexity of a real core,
the memory size and the complexity of the metadata structure in
memory may become very high. For a commercial implementa-
tion, the use of a data base management system (DBMS) would
be recommended.

C. Behavioral Verification

The implementation of the behavioral verification process re-
lies on the use of the Specman Elite verification environment
[15] interfaced with the Synopsys VCS simulator [20]. Specman
Elite allows the definition of functional verification plans by
using an object oriented language named e. e is a complete ver-
ification language that allows the definition of the following:

• built-in data generation from objects definition and con-
straints;

• notation of time like HDL simulators;
• built-in parallel execution;
• HDL interface; read from and write to HDL signals at any

hierarchical level; call HDL tasks;
• predefined verification capabilities; automates handling

checks without having to write complex procedural code;

406 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 16, NO. 4, APRIL 2008

• predefined flow execution.
In addition, it defines a so-called e-Reuse Methodology

(eRM) aiming at designing reusable, consistent, extensible,
plug-and-play verification environments, and “e” Verification
Components (eVCs). In the implementation of our prototype,
we followed this design methodology.

D. Application Cases

The functionalities of the IEEE Standard 1500 Verification
Framework prototype have been tested on a simple IEEE Stan-
dard 1500 compliant core implementing a four bit counter with
the following characteristics:

• CLOCK input used as counting clock;
• RESET input to reset the counting state;
• LOAD input to force a new start value for the counting;
• 4-bit input DIN that indicates the start value used when

LOAD is high;
• 4-bit output COUNT that indicates the actual counting

value.
This core has been wrapped with a IEEE Standard 1500 core
test wrapper having the following characteristics:

• instruction register (WIR), 3 bit length;
• bypass register (WBY), 1 bit length;
• boundary register (WBR), 8 bit length;
• optional TransferDR wrapper serial control;
• four implemented instructions: WS_BYPASS,

WS_PRELOAD, WS_INTEST, WS_EXTEST.
The verification process run on the wrapper/core was suc-

cessful from the very beginning, when it allowed to discover
design bugs we involuntarily introduced the wrapper design.

In order to carefully validate the verification capabilities of
the prototype, we generated a set of different core test wrap-
pers, systematically violating different rules of the standard. As
an example, Fig. 12 shows the result of the behavioral verifica-
tion in case of a non-compliant wrapper. In the example, rule
number 10.2.1.c fails. The prototype highlights this violation
and also provides the waveform obtained by the simulation to
provide a better understanding of the reasons that led to the rule
violation. On going work is focusing on creating a violation-pro-
grammable wrapper, where different violations can be enabled
or disabled in order to verify the efficiency of the verification
framework also in presence of multiple violations in the same
wrapper.

VII. CONCLUSION

In this paper, we presented a systematic methodology and an
associated formal model to build a verification framework for
IEEE Standard 1500 compliant cores. The framework is able to
check if the implementation of the wrapper provided with an
IP core correctly follows the architectural and behavioral rules
defined in the IEEE Standard 1500. The proposed framework
targets different possible users, from the core designer to the
core integrator, and therefore is able to guarantee various level
of compliancy depending on the amount of information about
the internal core structure available to the user. We also pre-
sented a proof-of-concept of the proposed model implementing
a prototype of the verification framwork in Java and with the
support of the Specman Elite verification toolkit. We believe that

Fig. 12. Behavioral rule violation example.

in the near future, with the introduction of IEEE Standard 1500
compliant wrappers in all IP cores on the market, a verification
framework following the model presented in this paper will be
able to increase productivity, reduce design time, and optimize
the test plan of very complex SoCs.

ACKNOWLEDGMENT

The authors would like to thank D. Scollo, G. Politano, A.
Mouth, and L. Melchionda for their help in the development of
this manuscript.

REFERENCES

[1] R. Gupta and Y. Zorian, “Introducing core-based system design,” IEEE
Des. Test. Comput., vol. 14, no. 2, pp. 15–25, Oct. 1997.

[2] Y. Zorian, E. Marinissen, and S. Dey, “Testing embedded-core-based
system chips,” IEEE Computer, vol. 32, no. 6, pp. 52–60, Jun. 1999.

[3] IEEE Standard Test Access Port and Boundary-Scan Architecture,
IEEE Std. 1149.1, 1990.

[4] IEEE Standard Testability Method for Embedded Core-Based Inte-
grated Circuits, IEEE Std. 1500, 2005.

[5] L. Jin-Fu, H. Hsin-Jung, C. Jeng-Bin, S. Chih-Pin, W. Cheng-Wen,
S.-I. C. C. Cheng, H. Chi-Yi, and L. Hsiao-Ping, “A hierarchical test
methodology for systems on chip,” IEEE Micro, vol. 22, no. 5, pp.
69–81, Sep. 2002.

[6] Y. Zorian, “Test requirements for embedded core-based systems and
IEEE p1500,” in Proc. IEEE Int. Test Conf. (ITC), Nov. 1997, pp.
191–199.

[7] T. McLaurin and S. Ghosh, “Etm10 incorporates hardware segment of
ieee p1500,” IEEE Des. Test. Comput., vol. 19, no. 3, pp. 6–11, May
2002.

[8] S. Picchiotino, M. Diaz-Nava, B. Forest, S. Engels, and R. Wilson,
“Platform to validate soc designs and methodologies targeting
nanometer cmos technologies,” in Proc. IP-SOC, Dec. 2004, pp.
39–44.

[9] I. Diamantidis, T. Oikonomou, and S. Diamantidis, “Towards an IEEE
verification infrastructure a comprehensive approach,” in Proc. ClubV,
Mar. 2005, p. 1500.

[10] IEEE Core Test Language, IEEE Std. 1450.6, 2005.
[11] Object Management Group, Needham, MA, “UML official website,”

2008 [Online]. Available: http://www.uml.org/
[12] Object Management Group, Needham, MA, “Object management

group official website,” 2008 [Online]. Available: http://www.omg.org/
[13] N. Wirth, Compiler Construction. Reading, MA: Addison-Wesley,

1996.
[14] Standard Test Interface Language (STIL) Standard Test Interface Lan-

guage (STIL) Standard Test Interface Language (STIL) Standard Inter-
face Test Language (STIL), IEEE Std. 1450.0, 1999.

BENSO et al.: IEEE STANDARD 1500 COMPLIANCE VERIFICATION FOR EMBEDDED CORES 407

[15] Cadence, San Jose, CA, “Specman elite home page,” 2008 [Online].
Available: http://www.verisity.com/products/specman.html

[16] Synopsys, Mountain View, CA, “Vera Web Site,” 2008 [Online]. Avail-
able: http://www.synopsys.com/products/vera/vera.html

[17] Sun Microsystems, “Java official website,” 2008 [Online]. Available:
http://www.java.com

[18] Gerwin Klein, “Jflex home page,” 2008 [Online]. Available:
http://jflex.de/index.html

[19] GVU Center, Georgia Institute of Technology, Atlanta, “Cup home
page,” 2008 [Online]. Available: http://www2.cs.tum.edu/projects/cup/

[20] Synopsys, Mountain View, CA, “Vcs home page,” [Online]. Available:
http://www.synopsys.com/products/simulation/simulation.html

Alfredo Benso (SM’07) currently holds a tenured
Associate Professor position with the Department
of Computer Engineering, Politecnico di Torino,
Torino, Italy, where he teaches Microprocessor
Systems and Advanced Programming Techniques.
In his scientific career, mainly focused on hardware
testing and dependability, he coauthored more
than 60 publications between books, journals, and
conference proceedings. He is also actively involved
in the Computer Society, where he has been the
leading volunteer for several projects such as the

Technical Committees Archives (TECA) database, and Conference Information
Management Application (CIMA).

Prof. Benso is a Computer Society Golden Core Member.

Stefano Di Carlo (M’03) received the M.S. degree
in computer engineering and the Ph.D. degree in in-
formation technologies from Politecnico di Torino,
Torino, Italy, in 1999 and 2004.

He is an Assistant Professor with the Department
of Computer Engineering, Politecnico di Torino. His
research interests mainly focus on DFT techniques,
SoC testing, BIST, and memory testing. He coau-
thored more than 30 publications between journals
and conference proceedings.

Prof. Di Carlo is a Golden Core Member of the
IEEE Computer Society.

Paolo Prinetto received the M.S. degree in electronic
engineering from Politecnico di Torino, Torino, Italy.

He is a Full Professor with the Department of
Computer Engineering, Politecnico di Torino and
a Joint Professor with the University of Illinois,
Chicago. His research interests include testing, test
generation, BIST, and dependability.

Prof. Prinetto is a Golden Core Member of the
IEEE Computer Society and he has served on the
IEEE Computer Society TTTC: Test Technology
Technical Council as an elected chair.

Yervant Zorian (F’99) received the M.Sc. degree
from the University of Southern California, Los An-
geles, and the Ph.D. degree from McGill University,
Montreal, QC, Canada.

He is the Vice President and Chief Scientist of
Virage Logic Corporation, Fremont, CA, and an
Adjunct Professor with the University of British
Columbia, Vancouver, BC, Canada. He was previ-
ously a Distinguished Member of the technical staff
with AT&T Bell Laboratories and Chief Technology
Advisor of LogicVision. He served as the IEEE

Computer Society Vice President for Conferences and Tutorials, Vice President
for Technical Activities, Chair of the IEEE Test Technology Technical Council,
and Editor-In-Chief of the IEEE DESIGN AND TEST OF COMPUTERS. He has
authored over 300 papers, holds 16 U.S. patents.

Dr. Zorian was a recipient of numerous Best Paper Awards, a Bell Labs’ R&D
Achievement Award, the 2005 prestigious IEEE Industrial Pioneer Award, and
the 2006 IEEE Hans Karlsson Award. He was selected by EE Times among the
top 13 influencers on the semiconductor industry.

