263,073 research outputs found

    ARIES: Acquisition of Requirements and Incremental Evolution of Specifications

    Get PDF
    This paper describes a requirements/specification environment specifically designed for large-scale software systems. This environment is called ARIES (Acquisition of Requirements and Incremental Evolution of Specifications). ARIES provides assistance to requirements analysts for developing operational specifications of systems. This development begins with the acquisition of informal system requirements. The requirements are then formalized and gradually elaborated (transformed) into formal and complete specifications. ARIES provides guidance to the user in validating formal requirements by translating them into natural language representations and graphical diagrams. ARIES also provides ways of analyzing the specification to ensure that it is correct, e.g., testing the specification against a running simulation of the system to be built. Another important ARIES feature, especially when developing large systems, is the sharing and reuse of requirements knowledge. This leads to much less duplication of effort. ARIES combines all of its features in a single environment that makes the process of capturing a formal specification quicker and easier

    Requirements analysis of the VoD application using the tools in TRADE

    Get PDF
    This report contains a specification of requirements for a video-on-demand (VoD) application developed at Belgacom, used as a trial application in the 2RARE project. The specification contains three parts: an informal specification in natural language; a semiformal specification consisting of a number of diagrams intended to illustrate the informal specification; and a formal specification that makes the requiremants on the desired software system precise. The informal specification is structured in such a way that it resembles official specification documents conforming to standards such as that of IEEE or ESA. The semiformal specification uses some of the tools in from a requirements engineering toolkit called TRADE (Toolkit for Requirements And Design Engineering). The purpose of TRADE is to combine the best ideas in current structured and object-oriented analysis and design methods within a traditional systems engineering framework. In the case of the VoD system, the systems engineering framework is useful because it provides techniques for allocation and flowdown of system functions to components. TRADE consists of semiformal techniques taken from structured and object-oriented analysis as well as a formal specification langyage, which provides constructs that correspond to the semiformal constructs. The formal specification used in TRADE is LCM (Language for Conceptual Modeling), which is a syntactically sugared version of order-sorted dynamic logic with equality. The purpose of this report is to illustrate and validate the TRADE/LCM approach in the specification of distributed, communication-intensive systems

    Structured representation for requirements and specifications

    Get PDF
    This document was generated in support of NASA contract NAS1-18586, Design and Validation of Digital Flight Control Systems suitable for Fly-By-Wire Applications, Task Assignment 2. Task 2 is associated with a formal representation of requirements and specifications. In particular, this document contains results associated with the development of a Wide-Spectrum Requirements Specification Language (WSRSL) that can be used to express system requirements and specifications in both stylized and formal forms. Included with this development are prototype tools to support the specification language. In addition a preliminary requirements specification methodology based on the WSRSL has been developed. Lastly, the methodology has been applied to an Advanced Subsonic Civil Transport Flight Control System

    Declarative Specification

    Get PDF
    Deriving formal specifications from informal requirements is extremely difficult since one has to overcome the conceptual gap between an application domain and the domain of formal specification methods. To reduce this gap we introduce application-specific specification languages, i.e., graphical and textual notations that can be unambiguously mapped to formal specifications in a logic language. We describe a number of realised approaches based on this idea, and evaluate them with respect to their domain specificity vs. generalit

    Specifying collaborative software: a proposal

    Get PDF
    The aim of this paper is to illustrate how formal specifications for collaborative interactive systems might be written. It presents a new modelling paradigm for certain systems. It also shows how formal software engineering approaches can be useful. Specifically we choose to specify a simple collaborative editor. This example serves two purposes: it shows how clear and simple a formal specification can be and it provides a basis for making observations about the requirements for a specification language where the target is CSCW systems. The specification of the system has three parts: the semantics of the system; the syntax of the system; the semantics of the collaborative aspects of the system

    Requirements Problem and Solution Concepts for Adaptive Systems Engineering, and their Relationship to Mathematical Optimisation, Decision Analysis, and Expected Utility Theory

    Full text link
    Requirements Engineering (RE) focuses on eliciting, modelling, and analyzing the requirements and environment of a system-to-be in order to design its specification. The design of the specification, usually called the Requirements Problem (RP), is a complex problem solving task, as it involves, for each new system-to-be, the discovery and exploration of, and decision making in, new and ill-defined problem and solution spaces. The default RP in RE is to design a specification of the system-to-be which (i) is consistent with given requirements and conditions of its environment, and (ii) together with environment conditions satisfies requirements. This paper (i) shows that the Requirements Problem for Adaptive Systems (RPAS) is different from, and is not a subclass of the default RP, (ii) gives a formal definition of RPAS, and (iii) discusses implications for future research

    From English to formal specifications

    Get PDF
    Formal methods provide an approach in which design steps can be shown to satisfy a specification. However, if a formal specification is wrong, then although the design steps may satisfy the formal specification, they are unlikely to satisfy the requirements of the system. Since most users are unfamiliar with formal methods, requirements specifications are often written in English. Such requirements, expressed in English, are then somehow translated to formal specifications. This transition has some potential for introducing errors and inconsistencies. In this paper we propose an interactive approach to proceeding from an informal specification to a formal specification in a systematic manner. The approach uses research in the area of natural language understanding to analyse English specifications in order to detect ambiguities and to generate an entity relationship model. The entity relationship model is then used as a basis for producing VDM data types and the specifications of some common operations. We illustrate the effectiveness of our approach by applying it to the specification of part of a route planning database system
    • ā€¦
    corecore