27,713 research outputs found

    Rely-guarantee Reasoning about Concurrent Reactive Systems: The PiCore Framework, Languages Integration and Applications

    Full text link
    The rely-guarantee approach is a promising way for compositional verification of concurrent reactive systems (CRSs), e.g. concurrent operating systems, interrupt-driven control systems and business process systems. However, specifications using heterogeneous reaction patterns, different abstraction levels, and the complexity of real-world CRSs are still challenging the rely-guarantee approach. This article proposes PiCore, a rely-guarantee reasoning framework for formal specification and verification of CRSs. We design an event specification language supporting complex reaction structures and its rely-guarantee proof system to detach the specification and logic of reactive aspects of CRSs from event behaviours. PiCore parametrizes the language and its rely-guarantee system for event behaviour using a rely-guarantee interface and allows to easily integrate 3rd-party languages via rely-guarantee adapters. By this design, we have successfully integrated two existing languages and their rely-guarantee proof systems without any change of their specification and proofs. PiCore has been applied to two real-world case studies, i.e. formal verification of concurrent memory management in Zephyr RTOS and a verified translation for a standardized Business Process Execution Language (BPEL) to PiCore.Comment: Submission to ACM Transactions on Programming Languages and Systems in 202

    Causality in concurrent systems

    Full text link
    Concurrent systems identify systems, either software, hardware or even biological systems, that are characterized by sets of independent actions that can be executed in any order or simultaneously. Computer scientists resort to a causal terminology to describe and analyse the relations between the actions in these systems. However, a thorough discussion about the meaning of causality in such a context has not been developed yet. This paper aims to fill the gap. First, the paper analyses the notion of causation in concurrent systems and attempts to build bridges with the existing philosophical literature, highlighting similarities and divergences between them. Second, the paper analyses the use of counterfactual reasoning in ex-post analysis in concurrent systems (i.e. execution trace analysis).Comment: This is an interdisciplinary paper. It addresses a class of causal models developed in computer science from an epistemic perspective, namely in terms of philosophy of causalit

    Towards Practical Graph-Based Verification for an Object-Oriented Concurrency Model

    Get PDF
    To harness the power of multi-core and distributed platforms, and to make the development of concurrent software more accessible to software engineers, different object-oriented concurrency models such as SCOOP have been proposed. Despite the practical importance of analysing SCOOP programs, there are currently no general verification approaches that operate directly on program code without additional annotations. One reason for this is the multitude of partially conflicting semantic formalisations for SCOOP (either in theory or by-implementation). Here, we propose a simple graph transformation system (GTS) based run-time semantics for SCOOP that grasps the most common features of all known semantics of the language. This run-time model is implemented in the state-of-the-art GTS tool GROOVE, which allows us to simulate, analyse, and verify a subset of SCOOP programs with respect to deadlocks and other behavioural properties. Besides proposing the first approach to verify SCOOP programs by automatic translation to GTS, we also highlight our experiences of applying GTS (and especially GROOVE) for specifying semantics in the form of a run-time model, which should be transferable to GTS models for other concurrent languages and libraries.Comment: In Proceedings GaM 2015, arXiv:1504.0244

    A Graph-Based Semantics Workbench for Concurrent Asynchronous Programs

    Get PDF
    A number of novel programming languages and libraries have been proposed that offer simpler-to-use models of concurrency than threads. It is challenging, however, to devise execution models that successfully realise their abstractions without forfeiting performance or introducing unintended behaviours. This is exemplified by SCOOP---a concurrent object-oriented message-passing language---which has seen multiple semantics proposed and implemented over its evolution. We propose a "semantics workbench" with fully and semi-automatic tools for SCOOP, that can be used to analyse and compare programs with respect to different execution models. We demonstrate its use in checking the consistency of semantics by applying it to a set of representative programs, and highlighting a deadlock-related discrepancy between the principal execution models of the language. Our workbench is based on a modular and parameterisable graph transformation semantics implemented in the GROOVE tool. We discuss how graph transformations are leveraged to atomically model intricate language abstractions, and how the visual yet algebraic nature of the model can be used to ascertain soundness.Comment: Accepted for publication in the proceedings of FASE 2016 (to appear

    An Algebraic Characterisation of Concurrent Composition

    Full text link
    We give an algebraic characterization of a form of synchronized parallel composition allowing for true concurrency, using ideas based on Peter Landin's "Program-Machine Symmetric Automata Theory".Comment: This is an old technical report from 1981. I submitted it to a special issue of HOSC in honour of Peter Landin, as explained in the Prelude, added in 2008. However, at an advanced stage, the handling editor became unresponsive, and the paper was never published. I am making it available via the arXiv for the same reasons given in the Prelud

    Algebraic Structure of Combined Traces

    Full text link
    Traces and their extension called combined traces (comtraces) are two formal models used in the analysis and verification of concurrent systems. Both models are based on concepts originating in the theory of formal languages, and they are able to capture the notions of causality and simultaneity of atomic actions which take place during the process of a system's operation. The aim of this paper is a transfer to the domain of comtraces and developing of some fundamental notions, which proved to be successful in the theory of traces. In particular, we introduce and then apply the notion of indivisible steps, the lexicographical canonical form of comtraces, as well as the representation of a comtrace utilising its linear projections to binary action subalphabets. We also provide two algorithms related to the new notions. Using them, one can solve, in an efficient way, the problem of step sequence equivalence in the context of comtraces. One may view our results as a first step towards the development of infinite combined traces, as well as recognisable languages of combined traces.Comment: Short variant of this paper, with no proofs, appeared in Proceedings of CONCUR 2012 conferenc

    A Note on the Expressiveness of BIP

    Get PDF
    We extend our previous algebraic formalisation of the notion of component-based framework in order to formally define two forms, strong and weak, of the notion of full expressiveness. Our earlier result shows that the BIP (Behaviour-Interaction-Priority) framework does not possess the strong full expressiveness. In this paper, we show that BIP has the weak form of this notion and provide results detailing weak and strong full expressiveness for classical BIP and several modifications, obtained by relaxing the constraints imposed on priority models.Comment: In Proceedings EXPRESS/SOS 2016, arXiv:1608.0269

    Algebraic Principles for Rely-Guarantee Style Concurrency Verification Tools

    Full text link
    We provide simple equational principles for deriving rely-guarantee-style inference rules and refinement laws based on idempotent semirings. We link the algebraic layer with concrete models of programs based on languages and execution traces. We have implemented the approach in Isabelle/HOL as a lightweight concurrency verification tool that supports reasoning about the control and data flow of concurrent programs with shared variables at different levels of abstraction. This is illustrated on two simple verification examples

    To boldly go:an occam-π mission to engineer emergence

    Get PDF
    Future systems will be too complex to design and implement explicitly. Instead, we will have to learn to engineer complex behaviours indirectly: through the discovery and application of local rules of behaviour, applied to simple process components, from which desired behaviours predictably emerge through dynamic interactions between massive numbers of instances. This paper describes a process-oriented architecture for fine-grained concurrent systems that enables experiments with such indirect engineering. Examples are presented showing the differing complex behaviours that can arise from minor (non-linear) adjustments to low-level parameters, the difficulties in suppressing the emergence of unwanted (bad) behaviour, the unexpected relationships between apparently unrelated physical phenomena (shown up by their separate emergence from the same primordial process swamp) and the ability to explore and engineer completely new physics (such as force fields) by their emergence from low-level process interactions whose mechanisms can only be imagined, but not built, at the current time
    corecore