3,162 research outputs found

    A Category Theoretical Argument Against the Possibility of Artificial Life

    Get PDF
    One of Robert Rosen's main contributions to the scientific community is summarized in his book 'Life itself'. There Rosen presents a theoretical framework to define living systems; given this definition, he goes on to show that living systems are not realisable in computational universes. Despite being well known and often cited, Rosen's central proof has so far not been evaluated by the scientific community. In this article we review the essence of Rosen's ideas leading up to his rejection of the possibility of real artificial life in silico. We also evaluate his arguments and point out that some of Rosen's central notions are ill- defined. The conclusion of this article is that Rosen's central proof is wrong

    Measuring Complexity in an Aquatic Ecosystem

    Full text link
    We apply formal measures of emergence, self-organization, homeostasis, autopoiesis and complexity to an aquatic ecosystem; in particular to the physiochemical component of an Arctic lake. These measures are based on information theory. Variables with an homogeneous distribution have higher values of emergence, while variables with a more heterogeneous distribution have a higher self-organization. Variables with a high complexity reflect a balance between change (emergence) and regularity/order (self-organization). In addition, homeostasis values coincide with the variation of the winter and summer seasons. Autopoiesis values show a higher degree of independence of biological components over their environment. Our approach shows how the ecological dynamics can be described in terms of information.Comment: 6 pages, to be published in Proceedings of the CCBCOL 2013, 2nd Colombian Computational Biology Congress, Springe

    Preliminary Concepts for Economic Systems Analysis

    Get PDF
    In preparing theoretical tools to analyze economic systems we need several fundamental concepts that are often applied in various scientific investigations outside economic studies. Amongst others, the concept of autopoiesis, which was introduced by Niklas Luhmann into his sociological systems theory, is the most important in constructing a theoretical model to explain the working of economic systems. An autopoietic system may be regarded as the functional core by which other elementary concepts such as homeostasis, machinery, corporate system and social entropy can be logically connected. In conclusion, all economic systems are contained in distinct social systems of autopoietic character and incorporated with them as a subsystem or partially independent system.system, autopoiesis

    Enaction-Based Artificial Intelligence: Toward Coevolution with Humans in the Loop

    Full text link
    This article deals with the links between the enaction paradigm and artificial intelligence. Enaction is considered a metaphor for artificial intelligence, as a number of the notions which it deals with are deemed incompatible with the phenomenal field of the virtual. After explaining this stance, we shall review previous works regarding this issue in terms of artifical life and robotics. We shall focus on the lack of recognition of co-evolution at the heart of these approaches. We propose to explicitly integrate the evolution of the environment into our approach in order to refine the ontogenesis of the artificial system, and to compare it with the enaction paradigm. The growing complexity of the ontogenetic mechanisms to be activated can therefore be compensated by an interactive guidance system emanating from the environment. This proposition does not however resolve that of the relevance of the meaning created by the machine (sense-making). Such reflections lead us to integrate human interaction into this environment in order to construct relevant meaning in terms of participative artificial intelligence. This raises a number of questions with regards to setting up an enactive interaction. The article concludes by exploring a number of issues, thereby enabling us to associate current approaches with the principles of morphogenesis, guidance, the phenomenology of interactions and the use of minimal enactive interfaces in setting up experiments which will deal with the problem of artificial intelligence in a variety of enaction-based ways

    The World as Evolving Information

    Get PDF
    This paper discusses the benefits of describing the world as information, especially in the study of the evolution of life and cognition. Traditional studies encounter problems because it is difficult to describe life and cognition in terms of matter and energy, since their laws are valid only at the physical scale. However, if matter and energy, as well as life and cognition, are described in terms of information, evolution can be described consistently as information becoming more complex. The paper presents five tentative laws of information, valid at multiple scales, which are generalizations of Darwinian, cybernetic, thermodynamic, and complexity principles. These are further used to discuss the notions of life and cognition and their evolution

    Artificial life meets computational creativity?

    Get PDF
    I review the history of work in Artificial Life on the problem of the open-ended evolutionary growth of complexity in computational worlds. This is then put into the context of evolutionary epistemology and human creativity
    • 

    corecore