23,711 research outputs found

    Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Full text link
    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model or application specific and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions, that enables full accounts of provenance, sharing and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed, that is automated, robust and repeatable, quick-to-draft, rigorously verified and consistent to the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics.Comment: 18 pages, 10 figures, 1 table. Submitted for publication and under revie

    A PVS-Simulink Integrated Environment for Model-Based Analysis of Cyber-Physical Systems

    Get PDF
    This paper presents a methodology, with supporting tool, for formal modeling and analysis of software components in cyber-physical systems. Using our approach, developers can integrate a simulation of logic-based specifications of software components and Simulink models of continuous processes. The integrated simulation is useful to validate the characteristics of discrete system components early in the development process. The same logic-based specifications can also be formally verified using the Prototype Verification System (PVS), to gain additional confidence that the software design complies with specific safety requirements. Modeling patterns are defined for generating the logic-based specifications from the more familiar automata-based formalism. The ultimate aim of this work is to facilitate the introduction of formal verification technologies in the software development process of cyber-physical systems, which typically requires the integrated use of different formalisms and tools. A case study from the medical domain is used to illustrate the approach. A PVS model of a pacemaker is interfaced with a Simulink model of the human heart. The overall cyber-physical system is co-simulated to validate design requirements through exploration of relevant test scenarios. Formal verification with the PVS theorem prover is demonstrated for the pacemaker model for specific safety aspects of the pacemaker design

    Enhancing Formal Modelling Tool Support with Increased Automation

    Get PDF
    Progress report for the qualification exam report for PhD Student Kenneth Lausdahl. Initial work on enhancing tool support for the formal method VDM and the concept of unifying a abstract syntax tree with the ability for isolated extensions is described. The tool support includes a connection to UML and a test automation principle based on traces written as a kind of regular expressions

    On the Partitioning of Syntax and Semantics For Hybrid Systems Tools

    Get PDF
    Interchange formats are notoriously difficult to finish. That is, once one is developed, it is highly nontrivial to prove (or disprove) generality, and difficult at best to gain acceptance from all major players in the application domain. This paper addresses such a problem for hybrid systems, but not from the perspective of a tool interchange format, but rather that of tool availability in a toolbox. Through the paper we explain why we think this is a good approach for hybrid systems, and we also analyze the domain of hybrid systems to discern the semantic partitions that can be formed to yield a classification of tools based on their semantics. These discoveries give us the foundation upon which to build semantic capabilities, and to guarantee operational interaction between tools based on matched operational semantics

    Workshop - Systems Design Meets Equation-based Languages

    Get PDF

    The 14th Overture Workshop: Towards Analytical Tool Chains

    Get PDF
    This report contains the proceedings from the 14th Overture workshop organized in connection with the Formal Methods 2016 symposium. This includes nine papers describing different technological progress in relation to the Overture/VDM tool support and its connection with other tools such as Crescendo, Symphony, INTO-CPS, TASTE and ViennaTalk

    Multi-paradigm modelling for cyber–physical systems: a descriptive framework

    Get PDF
    The complexity of cyber–physical systems (CPSS) is commonly addressed through complex workflows, involving models in a plethora of different formalisms, each with their own methods, techniques, and tools. Some workflow patterns, combined with particular types of formalisms and operations on models in these formalisms, are used successfully in engineering practice. To identify and reuse them, we refer to these combinations of workflow and formalism patterns as modelling paradigms. This paper proposes a unifying (Descriptive) Framework to describe these paradigms, as well as their combinations. This work is set in the context of Multi-Paradigm Modelling (MPM), which is based on the principle to model every part and aspect of a system explicitly, at the most appropriate level(s) of abstraction, using the most appropriate modelling formalism(s) and workflows. The purpose of the Descriptive Framework presented in this paper is to serve as a basis to reason about these formalisms, workflows, and their combinations. One crucial part of the framework is the ability to capture the structural essence of a paradigm through the concept of a paradigmatic structure. This is illustrated informally by means of two example paradigms commonly used in CPS: Discrete Event Dynamic Systems and Synchronous Data Flow. The presented framework also identifies the need to establish whether a paradigm candidate follows, or qualifies as, a (given) paradigm. To illustrate the ability of the framework to support combining paradigms, the paper shows examples of both workflow and formalism combinations. The presented framework is intended as a basis for characterisation and classification of paradigms, as a starting point for a rigorous formalisation of the framework (allowing formal analyses), and as a foundation for MPM tool development
    • …
    corecore