3,675 research outputs found

    Forensic Analysis of the ChatSecure Instant Messaging Application on Android Smartphones

    Get PDF
    We present the forensic analysis of the artifacts generated on Android smartphones by ChatSecure, a secure Instant Messaging application that provides strong encryption for transmitted and locally-stored data to ensure the privacy of its users. We show that ChatSecure stores local copies of both exchanged messages and files into two distinct, AES-256 encrypted databases, and we devise a technique able to decrypt them when the secret passphrase, chosen by the user as the initial step of the encryption process, is known. Furthermore, we show how this passphrase can be identified and extracted from the volatile memory of the device, where it persists for the entire execution of ChatSecure after having been entered by the user, thus allowing one to carry out decryption even if the passphrase is not revealed by the user. Finally, we discuss how to analyze and correlate the data stored in the databases used by ChatSecure to identify the IM accounts used by the user and his/her buddies to communicate, as well as to reconstruct the chronology and contents of the messages and files that have been exchanged among them. For our study we devise and use an experimental methodology, based on the use of emulated devices, that provides a very high degree of reproducibility of the results, and we validate the results it yields against those obtained from real smartphones

    Forensic Analysis of WhatsApp Messenger on Android Smartphones

    Full text link
    We present the forensic analysis of the artifacts left on Android devices by \textit{WhatsApp Messenger}, the client of the WhatsApp instant messaging system. We provide a complete description of all the artifacts generated by WhatsApp Messenger, we discuss the decoding and the interpretation of each one of them, and we show how they can be correlated together to infer various types of information that cannot be obtained by considering each one of them in isolation. By using the results discussed in this paper, an analyst will be able to reconstruct the list of contacts and the chronology of the messages that have been exchanged by users. Furthermore, thanks to the correlation of multiple artifacts, (s)he will be able to infer information like when a specific contact has been added, to recover deleted contacts and their time of deletion, to determine which messages have been deleted, when these messages have been exchanged, and the users that exchanged them.Comment: (c)2014. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0

    Mobile device forensics: a snapshot

    Get PDF
    In the increasingly dynamic environment of mobile forensics, this paper provides an overview of the capabilities of three popular mobile forensic tools on three mobile phones based on Apple’s iOS, Google’s Android and RIM’s BlackBerry operating systems. The paper identifies where each specific tool is best applied and also describes the limitations of each in accessing contacts, call history, message data (SMS, MMS and emails), media files and other data. New releases of forensic tools and mobile operating systems may change the way the data are acquired and preserved in the future. It is therefore hoped that future research will continue to provide the digital forensics community with the most up-to-date overview of mobile forensics capabilities

    Forensic analysis of secure ephemeral messaging applications on Android platforms

    Get PDF
    Secure messaging applications have been used for the purposes of major crime, creating the need for forensic research into the area. This paper forensically analyses two secure messaging applications, Wickr and Telegram, to recover artefacts from and then to compare them to reveal the differences between the applications. The artefacts were created on Android platforms by using the secure features of the applications, such as ephemeral messaging, the channel function and encrypted conversations. The results of the experiments documented in this paper give insight into the organisation of the data structures by both Wickr and Telegram, as well as the exploration of mobile digital forensics techniques to recover artefacts removed by the ephemeral functions

    The sources and characteristics of electronic evidence and artificial intelligence

    Get PDF
    In this updated edition of the well-established practitioner text, Stephen Mason and Daniel Seng have brought together a team of experts in the field to provide an exhaustive treatment of electronic evidence and electronic signatures. This fifth edition continues to follow the tradition in English evidence text books by basing the text on the law of England and Wales, with appropriate citations of relevant case law and legislation from other jurisdictions

    CloudMe forensics : a case of big-data investigation

    Get PDF
    The significant increase in the volume, variety and velocity of data complicates cloud forensic efforts, as such big data will, at some point, become computationally expensive to be fully extracted and analyzed in a timely manner. Thus, it is important for a digital forensic practitioner to have a well-rounded knowledge about the most relevant data artefacts that could be forensically recovered from the cloud product under investigation. In this paper, CloudMe, a popular cloud storage service, is studied. The types and locations of the artefacts relating to the installation and uninstallation of the client application, logging in and out, and file synchronization events from the computer desktop and mobile clients are described. Findings from this research will pave the way towards the development of tools and techniques (e.g. data mining techniques) for cloud-enabled big data endpoint forensics investigation

    Digital Forensic Analysis of WhatsApp Business Applications on Android-Based Smartphones Using NIST

    Get PDF
    WhatsApp Business is an Android application that can be downloaded on Playstore to serve small business owners. This provides an opportunity for criminals to take advantage of the app’s features. These crimes can take the form of fraud, misdirection, and misuse of applications, so digital forensics is necessary because there has never been any research that has done this. This study aims to obtain digital evidence and is carried out on Android smartphones with the WhatsApp Business application installed with four scenarios tested. This study uses the NIST SP 800-101 Rev 1 guidelines with four stages: preservation, acquisition, inspection & analysis, and reporting. The forensic method used is static forensics using the MOBILedit forensic express forensic tools and SysTools SQLite Viewer. The results of this study in scenario 1, by not deleting, get a 100% percentage. Then, scenario 2, namely direct write-off, gets a percentage of 71%. Furthermore, scenario 3, namely uninstalling the application, does not get digital evidence, and scenario 4, namely deleting data through the application manager, also does not get any evidence. The contribution of this research is expected to be a reference in uncovering cases in the WhatsApp Business application with digital forensics

    CamFlow: Managed Data-sharing for Cloud Services

    Full text link
    A model of cloud services is emerging whereby a few trusted providers manage the underlying hardware and communications whereas many companies build on this infrastructure to offer higher level, cloud-hosted PaaS services and/or SaaS applications. From the start, strong isolation between cloud tenants was seen to be of paramount importance, provided first by virtual machines (VM) and later by containers, which share the operating system (OS) kernel. Increasingly it is the case that applications also require facilities to effect isolation and protection of data managed by those applications. They also require flexible data sharing with other applications, often across the traditional cloud-isolation boundaries; for example, when government provides many related services for its citizens on a common platform. Similar considerations apply to the end-users of applications. But in particular, the incorporation of cloud services within `Internet of Things' architectures is driving the requirements for both protection and cross-application data sharing. These concerns relate to the management of data. Traditional access control is application and principal/role specific, applied at policy enforcement points, after which there is no subsequent control over where data flows; a crucial issue once data has left its owner's control by cloud-hosted applications and within cloud-services. Information Flow Control (IFC), in addition, offers system-wide, end-to-end, flow control based on the properties of the data. We discuss the potential of cloud-deployed IFC for enforcing owners' dataflow policy with regard to protection and sharing, as well as safeguarding against malicious or buggy software. In addition, the audit log associated with IFC provides transparency, giving configurable system-wide visibility over data flows. [...]Comment: 14 pages, 8 figure

    Forensic analysis of social networking applications on mobile devices

    Get PDF
    The increased use of social networking applications on smartphones makes these devices a goldmine for forensic investigators. Potential evidence can be held on these devices and recovered with the right tools and examination methods. This paper focuses on conducting forensic analyses on three widely used social networking applications on smartphones: Facebook, Twitter, and MySpace. The tests were conducted on three popular smartphones: BlackBerrys, iPhones, and Android phones. The tests consisted of installing the social networking applications on each device, conducting common user activities through each application, acquiring a forensically sound logical image of each device, and performing manual forensic analysis on each acquired logical image. The forensic analyses were aimed at determining whether activities conducted through these applications were stored on the device\u27s internal memory. If so, the extent, significance, and location of the data that could be found and retrieved from the logical image of each device were determined. The results show that no traces could be recovered from BlackBerry devices. However, iPhones and Android phones store a significant amount of valuable data that could be recovered and used by forensic investigators
    • …
    corecore