70 research outputs found

    Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network

    Get PDF
    An appropriate calibration and forecasting of volatility and market risk are some of the main challenges faced by companies that have to manage the uncertainty inherent to their investments or funding opera- tions such as banks, pension funds or insurance companies. This has become even more evident after the 2007-2008 Financial Crisis, when the forecasting models assessing the market risk and volatility failed. Since then, a significant number of theoretical developments and methodologies have appeared to im- prove the accuracy of the volatility forecasts and market risk assessments. Following this line of thinking, this paper introduces a model based on using a set of Machine Learning techniques, such as Gradient Descent Boosting, Random Forest, Support Vector Machine and Artificial Neural Network, where those al- gorithms are stacked to predict S&P500 volatility. The results suggest that our construction outperforms other habitual models on the ability to forecast the level of volatility, leading to a more accurate assess- ment of the market ris

    Machine and deep learning applications for improving the measurement of key indicators for financial institutions: stock market volatility and general insurance reserving risk

    Get PDF
    Esta tesis trata de lograr mejoras en los modelos de estimación de los riesgo financieros y actuariales a través del uso de técnicas punteras en el campo del aprendizaje automático y profundo (machine y deep learning), de manera que los modelos de riesgo generen resultados que den un mejor soporte al proceso de toma de decisiones de las instituciones financieras. Para ello, se fijan dos objetivos. En primer lugar, traer al campo financiero y actuarial los mecanismos más punteros del campo del aprendizaje automático y profundo. Los algoritmos más novedosos de este campo son de amplia aplicación en robótica, conducción autónoma o reconocimiento facial, entre otros. En segundo lugar, se busca aprovechar la gran capacidad predictiva de los algoritmos anteriormente adaptados para construir modelos de riesgo más precisos y que, por tanto, sean capaces de generar resultados que puedan dar un mejor soporte a la toma de decisiones de las instituciones financieras. Dentro del universo de modelos de riesgos financieros, esta tesis se centra en los modelos de riesgo de renta variable y reservas de siniestros. Esta tesis introduce dos modelos de riesgo de renta variable y otros dos de reservas. Por lo que se refiere a la renta variable, el primero de los modelos apila algoritmos tales como redes neuronales, bosques aleatorios o regresiones aditivas múltiples con árboles con el objetivo de mejorar la estimación de la volatilidad y, por tanto, generar modelos de riesgo más precisos. El segundo de los modelos de riesgo adapta al mundo financiero y actuarial los Transformer, un tipo de red neuronal que, debido a su alta precisión, ha apartado al resto de algoritmos en el campo del procesamiento del lenguaje natural. Adicionalmente, se propone una extensión de esta arquitectura, llamada Multi-Transformer y cuyo objetivo es mejorar el rendimiento del algoritmo inicial mediante el ensamblaje y aleatorización de los mecanismos de atención. En lo relativo a los dos modelos de reservas introducidos por esta tesis el primero de ellos trata de mejorar la estimación de reservas y generar modelos de riesgo más precisos apilando algoritmos de aprendizaje automático con modelos de reservas basados en estadística bayesiana y Chain Ladder. El segundo modelo de reservas trata de mejorar los resultados de un modelo de uso habitual, como es el modelo de Mack, a través de la aplicación de redes neuronales recurrentes y conexiones residuales

    Stock Market Volatility Forecasting Using Ensemble Models

    Get PDF
    Extensive research has been done within the field of finance to better predict future volatility and anticipate changes in financial market uncertainty. The advent of more advanced machine learning methods, such as artificial neural networks, has led to ground-breaking improvements to modeling capabilities across many fields and industries, including finance and volatility forecasting. These advances have led to rendering some of the previous state of the art models obsolete. Even though it has been established that artificial neural networks are capable of outperforming traditional finance forecasting models when it comes to volatility forecasting, it remains an open question whether a more advanced machine learning algorithm can benefit from incorporating the strengths of specialized volatility forecasting models. In this study, we seek to uncover whether traditional finance volatility forecasting models, such as GARCH type models, contain unique information that when combined with artificial neural networks can lead to more capable models and improved prediction accuracy. We will explore these effects by looking into S&P 500 one-day-ahead volatility using GARCH type models to generate volatility forecasts and include those into different artificial neural networks to measure improvements in forecasting capabilities. GARCH forecasts will be added into the different artificial neural networks in the form of two different types of ensemble models. One approach being a stacked ensemble, and the other an averaging ensemble. We find evidence to suggest that even though the GARCH type models consistently underperform compared to artificial neural networks, there is sufficient grounds to conclude that there is great potential in combining different volatility forecasting models to attain better volatility predictions.nhhma

    Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network

    Get PDF
    Currently, legal requirements demand that insurance companies increase their emphasis on monitoring the risks linked to the underwriting and asset management activities. Regarding underwriting risks, the main uncertainties that insurers must manage are related to the premium sufficiency to cover future claims and the adequacy of the current reserves to pay outstanding claims. Both risks are calibrated using stochastic models due to their nature. This paper introduces a reserving model based on a set of machine learning techniques such as Gradient Boosting, Random Forest and Artificial Neural Networks. These algorithms and other widely used reserving models are stacked to predict the shape of the runoff. To compute the deviation around a former prediction, a log-normal approach is combined with the suggested model. The empirical results demonstrate that the proposed methodology can be used to improve the performance of the traditional reserving techniques based on Bayesian statistics and a Chain Ladder, leading to a more accurate assessment of the reserving risk

    Volatility forecasting using deep neural network with time-series feature embedding

    Get PDF
    Volatility is usually a proxy indicator for market variation or tendency, containing essential information for investors and policymakers. This paper proposes a novel hybrid deep neural network model (HDNN) with temporal embedding for volatility forecasting. The main idea of our HDNN is that it encodes one-dimensional time-series data as two-dimensional GAF images, which enables the follow-up convolution neural network (CNN) to learn volatility- related feature mappings automatically. Specifically, HDNN adopts an elegant end-to-end learning paradigm for volatility forecasting, which consists of feature embedding and regression components. The feature embedding component explores the volatility-related temporal information from GAF images via the elaborate CNN in an underlying temporal embedding space. Then, the regression component takes these embedding vectors as input for volatility forecasting tasks. Finally, we examine the feasibility of HDNN on four synthetic GBM datasets and five realworld Stock Index datasets in terms of five regression metrics. The results demonstrate that HDNN has better performance in most cases than the baseline forecasting models of GARCH, EGACH, SVR, and NN. It confirms that the volatility-related temporal features extracted by HDNN indeed improve the forecasting ability. Furthermore, the Friedman test verifies that HDNN is statistically superior to the compared forecasting models

    On the predictability of U.S. stock market using machine learning and deep learning techniques

    Get PDF
    Conventional market theories are considered to be inconsistent approach in modern financial analysis. This thesis focuses mainly on the application of sophisticated machine learning and deep learning techniques in stock market statistical predictability and economic significance over the benchmark conventional efficient market hypothesis and econometric models. Five chapters and three publishable papers were proposed altogether, and each chapter is developed to solve specific identifiable problem(s). Chapter one gives the general introduction of the thesis. It presents the statement of the research problems identified in the relevant literature, the objective of the study and the significance of the study. Chapter two applies a plethora of machine learning techniques to forecast the direction of the U.S. stock market. The notable sophisticated techniques such as regularization, discriminant analysis, classification trees, Bayesian and neural networks were employed. The empirical findings revealed that the discriminant analysis classifiers, classification trees, Bayesian classifiers and penalized binary probit models demonstrate significant outperformance over the binary probit models both statistically and economically, proving significant alternatives to portfolio managers. Chapter three focuses mainly on the application of regression training (RT) techniques to forecast the U.S. equity premium. The RT models demonstrate significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. Chapter four investigates the statistical predictive power and economic significance of financial stock market data by deep learning techniques. Chapter five give the summary, conclusion and present area(s) of further research. The techniques are proven to be robust both statistically and economically when forecasting the equity premium out-of-sample using recursive window method. Overall, the deep learning techniques produced the best result in this thesis. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk

    Mack-net model: Blending Mack's model with Recurrent Neural Networks

    Get PDF
    In general insurance companies, a correct estimation of liabilities plays a key role due to its impact on management and investing decisions. Since the Financial Crisis of 2007?2008 and the strengthening of regulation, the focus is not only on the total reserve but also on its variability, which is an indicator of the risk assumed by the company. Thus, measures that relate profitability with risk are crucial in order to understand the financial position of insurance firms. Taking advantage of the increasing computational power, this paper introduces a stochastic reserving model whose aim is to improve the performance of the traditional Mack?s reserving model by applying an ensemble of Recurrent Neural Networks. The results demonstrate that blending traditional reserving models with deep and machine learning techniques leads to a more accurate assessment of general insurance liabilities
    corecore