
Machine and deep learning applications for improving
the measurement of key indicators for financial
institutions: stock market volatility and general

insurance reserving risk

PhD. Thesis

April 2022

Author: Eduardo Ramos-Pérez
Thesis Tutor I: Pablo J. Alonso-González

Thesis Tutor II: José Javier Núñez-Velázquez

“e quindi uscimmo a riveder le stelle”

Inferno, Dante Alighieri

To my girlfriend, parents and grandmother

Contents

1 Introduction 1

2 Economic and statistical framework 3
2.1 Aftermath of recent financial crises and thesis objectives 3
2.2 Machine and deep learning: Background and methods applied 7
2.3 Stock market volatility and machine learning 23
2.4 Reserving in general insurance and machine learning 27

3 Forecasting volatility with a stacked model based on a hybridized
Artificial Neural Network 31
3.1 Introduction . 32
3.2 Benchmark models, risk measurements and statistical tests 35
3.3 Stacked model . 37
3.4 Results . 41
3.5 Conclusions . 46

4 Stochastic reserving with a stacked model based on a hybridized
Artificial Neural Network 49
4.1 Introduction . 50
4.2 Benchmark models and validation . 54
4.3 Stochastic reserving model based on the stacking algorithm approach . 56
4.4 Results . 63
4.5 Conclusions . 70

5 Multi-Transformer: A new neural network-based architecture for
forecasting S&P volatility 72
5.1 Introduction . 73
5.2 Materials and Methods . 76
5.3 Results . 86
5.4 Discussion . 90
5.5 Conclusion . 91

6 Mack-Net model: Blending Mack’s model with Recurrent Neural
Networks 93
6.1 Introduction . 94
6.2 Benchmark model and validation metrics 97
6.3 Data and Mack-Net architecture . 99
6.4 Model fitting and results . 106
6.5 Conclusions . 113

7 Conclusions 115
7.1 Main Findings . 115
7.2 Further research . 120

8 Annexes 122
8.1 Annex I. Published Paper. Forecasting volatility with a stacked model

based on a hybridized Artificial Neural Network 123
8.2 Annex II. Published Paper. Stochastic reserving with a stacked model

based on a hybridized Artificial Neural Network 133
8.3 Annex III. Published Paper. Multi-Transformer: A new neural network-

based architecture for forecasting S&P volatility 146
8.4 Annex IV. Published Paper. Mack-Net model: Blending Mack’s model

with Recurrent Neural Networks . 165

References 175

Preface

It is sometimes hard for me to believe how much this thesis has changed over the
last years. I did not know anything regarding the peculiarities of the academic or
research field when I started this dissertation. The tutors of this thesis encouraged
me to produce papers for some of the most relevant scientific journals. They also
taught me how to prepare the information for the journals. At the time of writing,
three papers have been published in D1 journals and one additional article is in the
reviewing phase of a D1 journal. I would like to thank the tutors of this thesis for
believing that this research deserves to be published and teaching me how to make
it possible.

Producing this dissertation did not only increase my knowledge of the academic field,
deep learning techniques and financial risk models, but it also made me progress in
many other fields that are not directly related to this research. The scientific method
and the critical thinking have had a huge impact on how I see the world and they
have deeply changed my understanding process. I really think this dissertation made
me grow in so many fields over the last years.

The process was enriching and beautiful but also tough for me and, above all, my
beloved ones. Working in the private sector for long hours and producing this disser-
tation at the same time was not easy. During the last years, most of my free time on
holidays and weekends was spent on this research. Although this was not my inten-
tion when I started the doctoral program, the burden of working in the private sector
and researching at the same time was not only carried by me but also by my beloved
ones. I greatly apologize for that. I would like to thank my girlfriend and parents for
all the selfless support and love you gave me during this period. Without you this
would not be possible. Giving this selfless love has more merit than producing any
dissertation.

The present PhD thesis, ‘Machine and deep learning applications for improving the
measurement of key indicators for financial institutions: stock market volatility and
general insurance reserving risk’, has been conducted with the collaboration of the
Universidad de Alcalá de Henares and, particularly, with the support of the pro-
fessors related to the doctorate program in Economics and Business Management.
This thesis has been supervised by the professors Pablo J. Alonso-González and José
Javier Núñez-Velázquez.

1 Introduction

Over the last years, this thesis has evolved from a research focused on applying ex-
isting machine learning models for stock valuation purposes, to the creation of deep
learning architectures and risk models for predicting some of the key magnitudes for
financial institutions, such as the best estimate of liabilities, reserving risk, stock mar-
ket volatility or equity risk. After the Financial Crisis of 2007-2008, these variables
have become remarkably relevant. Since then, regulators have enhance the risk man-
agement framework of financial institutions with laws such as Basel III, Solvency II
or Swiss Solvency Test. In addition, companies have embedded a stronger risk man-
agement framework in their regular management process and they have integrated
risk assessment and monitoring activities in their internal control systems thanks to
lessons learned during this crisis. Nowadays, indicators such as Solvency Ratio or
Return on Risk Capital have a significant impact on dividends and market valuation
of financial institutions. Therefore, risk models are specially relevant in the current
environment due to their importance in the decision making process of these compa-
nies. As demonstrated during the Financial Crisis of 2007-2008, an appropriate risk
management strategy and accurate risk models can lead to significant competitive
advantages in the financial sector.

Section 2 presents the aftermath of recent financial crises and the thesis objectives.
The risk models introduced by this dissertation have the aim of improving the per-
formance of traditional methodologies thanks to the predictive power of machine and
deep learning techniques. Therefore, the background and theoretical framework of
the main machine and deep learning methods used are also explained. Finally, the
main existing reserving and stock volatility forecasting models are presented at the
end of this section.

This thesis has the aim of applying deep and machine learning to improve the as-
sessment of risks related to insurance and financial markets. The models introduced
by this research are focused on the estimation of S&P 500 volatility, equity risk and
general insurance reserving risk. Four different papers collect the risk models and
deep learning architectures introduced by this thesis. As articles are organized by
publication date and not by topic, Section 3 and 5 present the papers focused on
stock volatility forecasting and equity risk, while Section 4 and 6 show the research
related to general insurance reserving and reserving risk.

The stock volatility forecasting model of Section 3 is based on stacking. This method-
ology is applied to some of the most widely used machine learning algorithms to
analyse structured data. The first level of the model architecture is composed of
Random Forest (RF) (Breiman 2001), Gradient Boosting with regression trees (GB)
(Friedman 2000) and Support Vector Machine (Cortes and Vapnik 1995). A feed
forward ANN combines the previous algorithms to obtain the final volatility forecast.

Section 5 presents a novel neural network-based architecture called Multi-Transformer.
This layer is a variant of Transformer models (Vaswani et al. 2017), which have al-

1

ready been successfully applied in the field of natural language processing. Indeed,
the most popular and accurate models in this field such as BERT (Devlin et al.
2018) or GPT-3 (Brown et al. 2020) are based on this type of layers. In this paper,
Artificial Neural Networks (ANNs) composed of Multi-Transformer and Transformer
layers are combined with traditional auto-regressive models in order to forecast the
volatility and assess the equity risk.

As previously stated, Section 4 and 6 presents two different models for calculating
general insurance reserves and reserving risk. The reserving model proposed in Sec-
tion 4 uses a feed forward ANN to merge the claim cost predictions made by the
Chain Ladder methodology, Changing Settlement Rate model (CSR), GB, RF and
ANN. It is worth mentioning that CSR is a Bayesian Markov Chain Monte-Carlo
reserving model introduced by Meyers (2015). The approach proposed in this paper
is combined with a log-normal distribution to obtain the full reserve distribution.
On the other hand, the reserving model presented in Section 6 blends Mack (1993)
model with Long-Short Term Memory (LSTM) cells in order to increase the pre-
dictive power of traditional Mack’s methodology. In this case, no assumption with
regard to the underlying distribution of payments is taken by the proposed model.
Traditional Mack approach and the methodology presented in Section 6 use only the
first two moments to produce the full reserve distribution.

2

2 Economic and statistical framework

This section is divided in four different subsections. The aftermath of the recent
financial crises and the thesis objectives are presented in Section 2.1. The evolution
of machine learning and the methods used in the volatility and reserving models pro-
posed by this thesis are explained in Section 2.2. The last two subsections are focused
on summarizing the existing methodologies in the field of stock volatility forecasting
and general insurance reserving.

2.1 Aftermath of recent financial crises and thesis objectives

The Financial Crisis of 2007-2008 is probably one of the most relevant shocks for fi-
nancial institutions in the last years. In fact, the causes and consequences have been
deeply discussed in the literature (Williams 2010, Singh 2010, Temin 2010 and Duffie
2019, among others).This recession began with the bursting of the housing bubble
in the United States. The major causes of this bubble and the following financial
crisis were the excessive private debt levels, the shadow banking system, the U.S.
housing policies and the rise of some financial products such as credit default swaps,
mortgage backed securities and collateralized debt obligations.

Federal Reserve reduced interest rates and eased credit availability after the market
crash of the dot-com bubble in 2000. This policy had the aim of reducing the nega-
tive impacts of the economic slowdown provoked by this market crash. Private and
household debt increased sharply thanks to the low interest rate environment. As a
significant amount of this debt was used to buy houses, this policy had a positive
impact on housing prices. It is worth mentioning that a high level of private debt has
a negative impact on the default probabilities of every economic agent. The higher
the overall private debt in the economy, the more probable that one default leads to
other defaults. During the Financial Crisis of 2007-2008, homeowners stopped paying
their mortgages and, thus, the market value of mortgage backed securities and col-
lateralized debt obligations decreased sharply. This led to the bankrupt of Lehman
Brothers. Bear Stearns and Merill Lynch were sold at sale price and Goldman Sachs
and Morgan Stanley became commercial banks in order to have access to the credit
issued by the Federal Reserve.

The U.S. shadow banking system also played a key role in the Financial Crisis of
2007-2008. The term shadow banking refers to non-financial intermediaries that are
outside the banking regulations, but nevertheless they provide services similar to
commercial banks. During the years previous to the bursting of the housing bubble,
these entities conducted a significant amount of operations with financial derivatives
such as mortgage backed securities, credit default swaps or collateralized debt obli-
gations. The market size of these products and the weight of the shadow banking
system increased significantly between the dot-com bubble and the Financial Crisis
of 2007-2008. The high level of leverage in financial markets and the rise of the
dependencies between the traditional financial institutions and the shadow banking

3

system aggravated the consequences of mortgages defaults.

Another relevant cause of this crisis was the government policies related to the hous-
ing market. The United Stated Department of Housing and Urban Development
eased the conditions of mortgages. Freddie Mac (Federal Home Loan Mortgage Cor-
poration) and Fannie Mae (Federal National Mortgage Association) received funds
to purchase risky mortgages and loans. This government policy provoked an increase
of the housing price and homeowners debt. As the balance sheets of Fannie Mae and
Freddie Mac had a significant amount of subprime mortgages or financial products
related to this type of debt, the Federal Housing Finance Agency announced on 2008
that these two institutions were placed into the conservatorship of this Agency.

The Financial Crisis of 2007-2008 had a significant impact on the U.S. economy.
Although the recession lasted from the end of 2007 until June 2009, the pre-crisis
levels of many key economic indicators were not reached until 2016. For example,
the real GDP, the household net worth and the unemployment rate did not regained
the pre-recession levels until 2011, 2012 and 2016 respectively. As individuals and
businesses needed more time to pay-back the high levels of debt, the recovery was
slower than in other crisis where the debt level was lower.

The U.S. government took several actions to reduce the impact of this recession. The
Emergency Economic Stabilization Act was passed in 2008. This law included the
Troubled Asset Relief Program (TARP), whose aim was to purchase illiquid and toxic
assets from banks and other financial institutions. TARP increased the liquidity of
the derivatives products related to the housing market such as mortgaged backed se-
curities or collateralized debt obligations. On February 2009, the American Recovery
and Reinvestment Act was approved. The stimulus package of this law included both,
spending and tax cuts. It is also worth mentioning that the Federal Reserve reduced
interest rates and expanded the money supply to minimize, as much as possible, the
impact of the recession.

European governments also took several measures to overcome this crisis. The regu-
latory framework of the financial institutions was strengthened with Directives such
as Solvency for insurance entities or Basel for the banking sector. These regulations
have the aim of enhancing the risk management function of financial institutions and
assessing their risk profile. In addition, banking bailouts and stimulus measures were
applied by these governments in order to mitigate the liquidity and solvency problems
of financial institutions, the decrease on the gross domestic product and the increase
of the unemployment rate. As these last measures provoked an increase of the public
debt, the crisis in Europe progressed from the Financial Crisis of 2007-2008 to the
European sovereign debt crisis.

In addition to the burst of the housing bubble and the increase of the government
expenditure, countries dependent on the foreign lending stopped receiving capital
due to the Financial Crisis of 2007-2008. Most of these countries had government

4

structural deficits due to all the measures linked to this crisis. The high Greek pub-
lic debt in 2009 caused an increasing fear in the investors about the possibility of
sovereign defaults, not only in Greece but also in other European countries such as
Ireland, Spain, Portugal or Italy. Consequently, the credit quality of some European
countries was rapidly downgraded and their interest rates soared.

The European Financial Stability Facility (EFSF) and European Financial Stabilisa-
tion Mechanism (EFSM) were created with the aim of providing financial assistance
to European Union states and overcoming the European sovereign debt crisis. The
first legal instrument, EFSF, raised funds in order to buy sovereign bonds or giving
loans to countries with difficulties in accessing to international finance. In order to do
so, the debt instruments issued by EFSF were backed by the European Union states
in proportion to their weight in the European Central Bank. On the other hand, the
EFSM raised funds from the financial markets using the European Union budget as
collateral. As with EFSF, the financial stability of the countries in difficulties was
the main objective of EFSM.

These temporal legal instruments were replace by the European Stability Mechanism
(ESM), which was created in 2012. The ESM members can ask for a bailout but two
main conditions need to be met. First, the Memorandum of Understanding has to
be accepted by the rest of the ESM countries. This document does not only contain
the bailout proposal, but it also outlines the reforms to be applied in order to bring
back the fiscal balance. Second, the European Fiscal Compact has to be fully ratified
by the country asking for the bailout.

In addition to the previous legal instruments, the European Central Bank (ECB) put
in place other measures to mitigate the impact of the sovereign debt crisis. In 2010,
the ECB launched the Securities Market Programme. This measure had the aim of
purchasing sovereign bonds in the secondary markets in order to mitigate the severe
tensions in the bond market of countries such as Spain or Italy. ECB also took actions
to address the difficulties suffered by banks. In 2011, the Long-Term Refinancing Op-
erations (LTRO) programme launched a 1% interest loans for financial institutions.
Although this measure did not have any direct impact on the governments, part of
the liquidity obtained by banks thanks to LTROs was used to purchase sovereign
debt at a higher interest rate.

The low interest rate environment and the quantitative easing policy are still in force
since the Financial Crisis of 2007-2008 and the European sovereign debt crisis. The
ECB decreased interest rate from 4% in 2008 to 0% in 2016. It remains at the same
level since then. On the other hand, the quantitative easing policy has been enhanced
by launching programmes such as the Covered Bonds Purchasing Programme and the
Asset-Backed Securities Programme. The ECB also extended the quantitative easing
policy to corporate debt with the Corporate Sector Purchase Programme.

Restrictions due to Covid-19 pandemic are also having a significant impact on the
global economy. In this context, ECB launched the Pandemic Emergency Purchase

5

Programme in order to lower borrowing costs. LTROs were also re-launched by EBC
to enhance the liquidity position of financial institutions. Quantitative easing mea-
sures were also applied in most of the countries. For example, the Federal Reserve
launched several stimulus packages in the United States to provide financial assis-
tance to families, companies and financial institutions.

Because of the large exposure to financial markets and their correlation with the
economical activity, crises are specially relevant for financial institutions. Indeed,
events such as the Financial Crisis of 2007-2008 and the European sovereign debt
crisis changed substantially the insurance and banking sector. Although crises are
unpredictable, financial entities with an appropriate risk management strategy deal
with market shocks more successfully. Thus, banks and insurance entities can gener-
ate a strong competitive advantage thanks to their risk management function.

According to the economic background explained in the previous paragraphs, the
most relevant disruptions have conditioned the subsequent actions taken by the dif-
ferent economic agents. These shocks can be provoked by mismanagement or unex-
pected events. The Financial Crisis of 2007-2008 and the European sovereign debt
can be included in the first group, whereas COVID-19 crisis was provoked by an un-
expected event. Regardless the origin of the recession, they have a significant impact
on the risks associated with the economic activity. The assessment of these shocks is
quite relevant for businesses. This thesis has the aim of making progress in this field
and it has the following objectives (Figure 1):

Figure 1: Thesis objectives

Source: Own ellaboration

6

� Creating more accurate risk models. As previously stated, investors and reg-
ulators are specially interested on the risk profile of the financial institutions
since the Financial Crisis of 2007-2008 and the European sovereign debt crisis.
In addition, banks and insurance companies have enhanced their risk manage-
ment strategy in order to create competitive advantages. Thus, metrics that
take into consideration profits and risk such as ‘Return on Risk Capital’ (Braun
et al. 2018) have become very relevant for top management and investors and,
consequently, for the decision making process and market value of financial
institutions. Taking advantage of the accuracy demonstrated by deep and ma-
chine techniques in many other fields, the different stock volatility and general
insurance reserving models developed in this thesis have the aim of generating
a more appropriate risk assessment.

� Bringing the latest deep and machine learning techniques to finance and insur-
ance risk models. Computer vision, natural language processing or autonomous
driving are the fields where most of the machine and deep learning developments
are taking place. The aggressive competitiveness in the technological sector
leads to the necessity of developing new algorithms and applications in order
to keep the market share. In fact, financial technology (fintech) companies and
decentralized finance based on cryptocurrencies are increasing more and more
the competitiveness of the financial sector in the last years. Companies are tak-
ing advantage of new application programming interfaces (APIs), deep learning
and cryptography in order to provide an end-to-end service via the internet.
It is also worth mentioning the increasing importance of robo-advisers. Even
though most of them are based on a reduced number of portfolio management
theories, the number of robo-advisers based on machine learning algorithms
is increasing sharply in the last years. Thus, traditional banking and insur-
ance companies will need to invest in developing deep and machine learning
techniques in areas such as risk management or marketing in order to create
competitive advantages and compete with by fintechs and decentralized finance.

� Adapting and using neural network architectures to generate more appropriate
risk measures. The problems related to computer vision, natural language pro-
cessing or autonomous driving have different characteristics than the ones faced
by financial institutions. Thus, this thesis has the aim of adapting machine and
deep learning algorithms in order to address the risk management problems of
banks and insurance companies. In addition, the risk models proposed by this
thesis demonstrate that merging neural network architectures with other algo-
rithms or risk models lead to more accurate assessment of the uncertainty faced
by financial institutions.

2.2 Machine and deep learning: Background and methods applied

As the risk models presented in this thesis are based on deep and machine learning
techniques, this subsection gives an introduction to this field. First, the different
types of learning problems are explained. Second, the history and evolution of ma-

7

chine learning and neural network architectures are discussed. Nowadays, this al-
gorithm is the state of the art in fields such as computer vision, natural language
processing or autonomous driving. Indeed, insurance companies are starting to ap-
ply neural network architectures for fraud detection and general insurance pricing
(Caldeira et al. 2015, Johnson and Khoshgoftaar 2019 and Blier Wong et al. 2021,
among others). Finally, the theoretical background of the machine and deep learning
methods used in this thesis is presented.

Types of learning problems in machine and deep learning

The learning process is usually divided in three different classes: supervised, unsu-
pervised and reinforcement learning. The characteristics of the problem and the data
available for fitting the algorithms are the key factors taken into consideration for
dividing the machine and deep learning problems in these classes.

Supervised learning is the most common approach. It consists of learning a map-
ping between the input vectors and their corresponding target variables (Bishop
2006). Thus, algorithms are fitted on training data in order to create a model able
to predict accurately new observations (Russell and Norvig 2009). Depending on the
characteristics of the target variable, the supervised problem is defined as:

� Regression, when the target variable is numerical.

� Classification, in case the target variable is categorical.

Figure 2 shows a supervised regression and the boundaries of a two classes classifi-
cation. Regardless of the type of supervised problem, explanatory variables can be
numerical or categorical. Supervised learning has applications in several fields such
as finance (Dixon et al. 2020), insurance (Hastie et al. 2009), autonomous driving
(Howard et al. 2019), natural language processing (Devlin et al. 2018 and Brown
et al. 2020) or medical diagnosis (Wu et al. 2018), among others.

When algorithms are fitted in order to describe the different relationships present
in the data, the problem is defined as unsupervised learning. In contrast to the
previous approach, unsupervised learning does not have a target variable. Thus, the
algorithms used within this approach are able to work without a response variable.
The main types of unsupervised learning problems are:

� Clustering. Observations are grouped in different clusters depending on the
input variables given to the algorithm. This is the most common problem in
the field of unsupervised learning.

� Density estimation. The distribution function of one variable is estimated tak-
ing into consideration the observations given to the algorithm.

Finally, reinforcement learning is used when the algorithm needs to take actions or
decisions in an environment. In this approach, the learner takes an action and it

8

Figure 2: Examples of supervised learning

Source: Own ellaboration

receives a reward depending on the appropriateness of the action taken. In contrast
to the previous approaches, there is not a fixed database in reinforcement learning.
As stated by Sutton and Barto (2018), algorithms are fitted thanks to the definition
of a set of goals (called policy). Thus, in a first step the model makes a decision or
action and, then, it obtains a reward depending on the defined policy. Algorithms
trained with this approach have overcome human performance in specific tasks such
as playing chess (Silver et al. 2017) or ‘go’ (Silver et al. 2016).

The rise of neural networks and machine learning

Although neural networks and tree-based models such as random forests and gradient
boosting were developed years before the rise of the machine learning, they played
a key role in it. These algorithms were not widely used until the late 2000s due to
the computational power required to fit them. Thus, less computational expensive
algorithms like auto-regressive (Engle 1982) and generalised lineal models (Nelder
and Wedderburn 1972) were widely used during the 1990s. The revolution in this
field starts in 2008 with the possibility to fit algorithms in the Graphic Processing
Unit (GPU). Since then, artificial neural networks and tree-based models have shown
that they are able to solve new problems and overcome the performance of traditional
algorithms.

First neural network architectures were described by Mcculloch and Pitts (1943). As
previously stated, this algorithm was hard to train due to the lack of computational
power. Thus, during the following years Rosenblatt (1958) and Widrow and Hoff
(1962) developed and trained simple artificial neural networks. Figure 3 illustrates
the main milestones of this algorithms since its creation.

9

Since 1960s, several researches focused their efforts on making more efficient the op-
timization of neural networks. Gradient descent methods based on Euler-LaGrange
equations were introduced by Kelley (1960), Bryson (1961), Bryson and Denham
(1961) and Amari (1967), among others. Even though it was not focused on training
neural networks, the first efficient back-propagation and general automatic differenti-
ation algorithm was developed by Linnainmaa (1970). Dreyfus (1973) used the previ-
ous approach to minimize cost functions and Werbos (1974) suggested the possibility
of applying this method for optimizing neural networks. Rumelhart et al. (1986a)
and Rumelhart and Zipser (1986) popularized and improved the implementation of
back-propagation in the field of neural networks. Since then, so many variations such
as R-prop (Riedmiller and Braun 1993), iRprop (Igel and Hüsken 2003), RMSprop
(Zeiler 2012) or ADAM (Kingma and Ba 2014) were developed. In addition, convo-
lutional neural networks (Fukushima 1979 and LeCun et al. 1990), long-short term
memory cells (Hochreiter and Schmidhuber 1997a) and gated recurrent units (Cho
et al. 2014) were introduced in order to deal with problems such as image recognition
or time series forecasting.

Although the previous contributions, algorithms such as support vector machines
(Cortes and Vapnik 1995) dominated pattern recognition problems during 2000s. As
previously stated, the implementation of GPU-based neural networks played a key
role in the rise of this algorithm. Oh and Jung (2004) and Chellapilla et al. (2006)
were some of the first researchers using GPUs to reduce the training time of neural
networks. Thanks to the increase of computational power, neural networks started to
outperform the rest of machine learning algorithms in so many fields such as speech
recognition (Graves et al. 2013, Gonzalez-Dominguez et al. 2014, Geiger et al. 2014,
Fernandez et al. 2014 and Sak et al. 2014), audio detection (Marchi et al. 2014, Fan
et al. 2014 and Brueckner and Schulter 2014), language translation (Sutskever et al.
2014), computer vision (Szegedy et al. 2014, Sermanet et al. 2013, Goodfellow et al.
2014), object detection (Szegedy et al. 2013), medical diagnosis (Li et al. 2014) or
video classification (Karpathy et al. 2014).

The recent inclusion of transformer layers in artificial neural networks (Vaswani et al.
2017) improved the performance of the already existing natural language processing
(NLP) applications (Devlin et al. 2018 and Brown et al. 2020). In addition, it is
worth mentioning that this algorithm have also overcome the human performance in
some tasks such as playing chess (Silver et al. 2017) or ‘go’ (Silver et al. 2016).

Although neural networks are considered the state of art in so many fields, tree-based
algorithms have demonstrated that they can be more accurate in some structured
data problems. Thanks to the increase of the computational power, tree-based al-
gorithms have evolved from individual decision or regression trees to more complex
structures such as random forest (Breiman 2001), gradient boosting with trees (Fried-
man 2000) or XGBoost (Chen and Guestrin 2016).

Classification and decision trees are easy to interpret. Nevertheless, they have not
been widely used because of the two following major disadvantages. First, small

10

Figure 3: Timeline of artificial neural networks

Source: Own ellaboration

changes in the dataset can lead to significant modifications in the optimum configu-
ration of the tree. Second, overfitting is usually a problem due to the characteristics
and architecture of trees. Random forest addresses the previous problems by averag-
ing n trees and randomizing the input data. The explanatory variables considered for
splitting each single tree within the model architecture are also selected randomly.
In contrast to random forest, gradient boosting and XGBoost apply a sequential
approach to solve the disadvantages of individual trees. Therefore, the predictions
made by the ith tree are calculated taking into consideration the estimates made by
the trees already added to the model.

Main machine and deep learning methods applied

This subsection presents the main deep and machine learning methods applied for
developing the stock volatility and reserving risk models presented in sections 3, 4, 5
and 6. Thus, several variants of neural networks, random forest and gradient boost-
ing with trees will be explained in the following paragraphs. It is worth mentioning
that some of these algorithms have been modified or merged to develop the models
introduced by this thesis. As the procedures of merging or modifying the algorithms
are explained in sections 3, 4, 5 and 6, this subsection is focused on presenting the
algorithms without the modifications applied for developing the stock volatility and
reserving risk models.

Artificial neural network is an algorithm inspired by the biology of human brains.
The main components of this algorithm are the following:

11

Figure 4: Architecture of a feed forward neural network

Source: Own ellaboration

� Neurons. As represented by the blue circles of Figure 4, artificial neural net-
works are composed of individual neurons. The neurons with no predecessor
are named input neurons, while those ones without successor are called output
neurons.

� Weights and connections. Connections are represented by the lines connecting
each neuron in Figure 4. They transfer the output of one neuron to the next
one. In the feed forward neural networks, the inputs received by each neuron
are linearly transformed as follows:

I∑

i=1

wixi + w0 (1)

where wi is the weight and xi the output value of the predecessor neuron i.
The bias term is w0. For the sake of simplicity, the bias term and connection
are not represented by Figure 4.

� Activation function. The outputs of the neurons are modified with the so-
called activation function. The are numerous functions such as sigmoid, tanh,
softmax, ReLU, Leaky ReLU or linear. As they have different ranges, the char-
acteristics of the problem faced determine the activation function to be used
in the neural network. Tanh, sigmoid and ReLU (Figure 5) are the main acti-
vation functions used within the different stock volatility and reserving models
proposed by this thesis. The sigmoid activation function is:

12

Figure 5: Example of activation functions

Source: Own ellaboration

h(x) =
1

1 + exp(−x)
(2)

ReLU is defined as follows:

h(x) = max(0, x) (3)

Finally, tanh is calculated as shown below:

h(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(4)

Considering all the elements of neural networks and following the previous notation,
the output of a neuron can be defined as follows: h

(∑I
i=1wixi+w0

)
. As neural net-

works are normally composed of several layers and neurons, a more complex notation
is required to represent their architecture. Taking as a reference the notation given
by Bishop (2006), the expression of a feed forward neural network with two hidden
layers and one output neuron can be defined as follows:

f̂(X) = h(3)




T∑

k=1

w
(3)
p,kh

(2)




M∑

j=1

w
(2)
k,jh

(1)

(
D∑

i=1

w
(1)
j,i xi + w

(1)
j,0

)
+ w

(2)
k,0


+ w

(3)
p,0


 (5)

where h(n) is the activation function of layer n, w
(n)
z,v is the v-th weight of neuron z

inside the layer n and xi refers to the i input variable. As the previous formula has

13

Figure 6: Forward and backward phases in a one layer network

Source: Own ellaboration

the aim of representing a feed forward neural network with one output neuron, p = 1.

Back-propagation algorithm is used iteratively for training the weights of neural
networks. This method back-propagates the gradient of the error function to every
weight of the algorithm. The steps of back-propagation are illustrated by Figure 6
and explained below:

1. The forward phase is calculated taking into consideration the explanatory vari-
ables and the initial weights. This calculation or phase gives the prediction of
the network, f̂(X).

2. The error is computed taking into consideration the loss function (L), the target
output (y) and the prediction made in the previous step: Ed = L(f̂(X)d, yd),
where d represents the observation number within the database. Binary cross
entropy and root mean squared error are the most popular loss functions for
classification and regression respectively.

3. Calculation of the backward phase. In this step, the gradient of each observa-
tion with respect to the weights is calculated. The calculation of the partial
derivatives and the chain rule are especially relevant in this phase. For exam-
ple, the three following partial derivatives are needed to compute the backward
pass of the weights of Figure 6:

� ∂Ed/∂f̂(X)d. The expression of this derivative depends on the loss func-
tion selected.

� ∂f̂(X)d/∂
∑I

i=1wixi,d. As f̂(X) = h(
∑I

i=1wixi), this partial derivative is
determined by the activation function selected, h.

14

� ∂
∑I

i=1wixi,d/∂wi. This is the derivative of the linear combination of
weights and inputs.

The chain rule is applied to obtain the gradient with respect to the weight:

∂Ed

∂wi
=

∂Ed

∂f̂(X)d

∂f̂(X)d

∂
∑I

i=1wixi,d

∂
∑I

i=1wixi,d
∂wi

(6)

4. The individual gradients are combined as follows gi =
(∑D

d=1 ∂Ed/∂wi

)
/D.

Where D is the total number of observations taken into consideration within
the back-propagation algorithm.

5. Finally, the rule to update the weights of the neural network is applied. As
the gradient of neural networks tends to be plenty of local minimums, several
rules to update the weights (such as iRprop, RMSprop or ADAM) have been
developed. The rule used to update the weights of the neural networks trained
in this thesis is Adaptive Moment Estimation (ADAM). The following equations
define this updating rule developed by Kingma and Ba (2014):

ωi,t = ωi,t−1 − δ
m̂i,t√
v̂i,t + ϵ

(7)

m̂i,t =
β1mi,t−1 + (1− β1)gi,t

1− βt
1

(8)

v̂i,t =
β2vi,t−1 + (1− β2)g

2
i,t

1− βt
2

(9)

where gi,t is the gradient assigned to the weight i in the iteration t and δ
the initial learning rate. The default calibration proposed by the authors for
β1 = 0.9, β2 = 0.999 and ϵ = 10−8 is applied in this thesis. Weighted decay can
be added to ADAM to penalise large weights and, thus, reduce the overfitting.
The update of the weights has to be modified as follows to implement this
regularization method:

ωi,t = ωi,t−1 − δ

(
m̂i,t√
v̂i,t + ϵ

+ λωi,t−1

)
(10)

where λ is the parameter responsible of penalizing large weights.

The previous steps of the back-propagation algorithm are repeated until the weights
are optimized. Epochs and batch size are the neural network hyper-parameters deter-
mining the total number of iterations of the back-propagation algorithm during the
training phase. On one hand, the number of complete evaluations of the training set
is determined by the epochs. On the other hand, the batch size refers to the number
of observations taken into consideration in each step of the back-propagation algo-
rithm. For instance, the total number of back-propagation iterations will be equal to
4 if the train set has 64 observations and epochs and batch size are equal to 2 and
32 respectively. As this example assumes a database of 64 observations and a batch

15

size of 32, two back-propagation iterations are required to complete on single epoch.

With regard to the regularization approaches available in neural networks, it is also
worth mentioning the dropout method. In contrast to the inclusion of a weighted
decay within ADAM, this approach does not modify the formula determining how
weights are updated. In this method, some weights are randomly ignored during the
optimization process. Thus, the non-omitted weights are required to correct mis-
takes from the omitted weights, making the model more robust and less prone to
suffer overfitting.

One of the main advantages of artificial neural networks is their flexibility. The archi-
tecture of this algorithm can be adapted to the nature of the problem faced. Thanks
to this, more specific approaches can be developed to solve certain problems such as
image recognition or time series forecasting. The main families or architectures of
artificial neural networks are the following:

� Feed forward neural networks. This family is the most commonly used. In
contrast to other types of neural networks, this architecture can be used in a
wide variety of problems thanks to its flexibility. In fact, feed forward layers
are usually applied in combination with the other families of networks. They
are specially appropriate for structured data regression and classification.

Figure 7: Example of convolutional neural network architecture

Source: Own ellaboration

� Convolutional neural networks are commonly used in the field of computer vi-
sion. Images can be decomposed in a set of three dimensional matrices by using
the RGB (Red-Green-Blue) code of each pixel. Convolutional filters (which are
used in this class of networks) are able to deal with 3D data and recognise
the correlation between pixels. Thus, they are specially appropriate for im-
age recognition and computer vision problems. As previously stated, they can

16

be combined with feed forward layers for applications such as image classifi-
cation. Figure 7 illustrates the architecture of a specific type of convolutional
neural network called encoder-decoder. This structure is widely used for image
translation or modification purposes, where the output is also another image.
Although this family is not applied in this thesis, it is worth including it in
this list because it has a remarkable importance on some of the main problems
addressed by machine and deep learning such as autonomous driving or image
recognition.

� Recurrent neural networks. This class of networks is especially tuned to recog-
nise the temporal correlation of the input data. Thus, they are mainly used
in problems such as speech recognition, audio detection or language transla-
tion. They are composed of memory cells such as gated recurrent units (Cho
et al. 2014) or long-short term memory architectures (Hochreiter and Schmid-
huber 1997a). The recurrent neural networks used in this thesis are based on
long-short term memory (LSTM) units, which are more complex than gated
recurrent units (GRU). Although the training time of LSTMs is longer than
GRUs, the higher level of complexity gives the possibility of recognizing more
complex temporal patterns. Figure 8 and the following equations define the
LSTMs architecture:

Figure 8: LSTM structure

Source: Own ellaboration

17

ft = σ (Wf [ht−1, xt] + bf) (11)

it = σ (Wi[ht−1, xt] + bi) (12)

C̃t = tanh (Wc[ht−1, xt] + bc) (13)

Ct = ftCt−1 + itC̃t (14)

ot = σ (Wo[ht−1, xt] + bo) (15)

ht = ot tanh(Ct) (16)

Where Wf , Wi, Wc, Wo, bf , bi, bc and bo represent the weights of the RNN and
σ(x) the sigmoid function. The previous expressions are combined with a loop
in order to consider any number of previous steps as input data for the LSTM
cell. Figure 9 shows the architecture of a LSTM with several input steps and
just one output. As with the convolutional neural networks, this class tends to
be combined with feed forward layers. First, time series are managed by several
LSTM or GRU units and, then, the outputs of these units are transformed by
feed forward layers to obtain the final prediction.

Time series and structured data are the main types of information in financial prob-
lems. Thus, feed forward layers and recurrent neural networks are the main types of
structures applied by this thesis. In addition to these architectures, Transformer lay-
ers (Vaswani et al. 2017) are used in one of the stock volatility models presented by
this thesis. This novel architecture based on attention mechanisms and feed forward
layers is specially prepared for dealing with time series. Indeed, Transformer layers
have overcome the performance of LSTMs and GRUs in the field of natural language
processing (Devlin et al. 2018 and Brown et al. 2020).

Figure 9: Many-to-one LSTM (One unit)

Source: Own ellaboration

In contrast to LSTM or GRU cells, Transformer layers have no recurrence. They rely
on a combination of positional encoders, feed forward layers and attention mecha-
nisms to deal with time series. As no recurrence is present in Transformer layers, the
different time lapses of the input data can be managed in parallel by the computer,
reducing the time required to fit the algorithm.

18

The original architecture of Transformer layers (Vaswani et al. 2017) is shown in
Figure 10. A description of the main components is given below:

Figure 10: Multi-Head attention and Transformer architecture

Source: Own ellaboration

� Positional encoder. As previously stated, Transformer layers are not a recurrent
algorithm such as LSTM or GRU cells. Thus, these layers need a positional
encoder to recognize the different time lapses present in the input data. The
positional encoder modifies the input data depending on its relative position.
Vaswani et al. (2017) proposed the following wave functions as positional en-
coders for NLP purposes:

PE(pos,2i) = sin(pos/10002i/dim) (17)

PE(pos,2i+1) = cos(pos/10002i/dim) (18)

where dim is the total number of time series (or word embedding dimension in
NLP) given as input to the model, pos is the position of the observation within
the time series and i = (1, 2, . . . , dim− 1).

� Multi-Head attention. It can be considered the key component of the trans-
former architecture. As shown in Figure 10, Multi-Head attention mechanism
consists of several scaled dot-product attention units running in parallel. The
scaled dot-product attention proposed by Vaswani et al. (2017) is calculated
as follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (19)

where Q, K and V are the input matrices and dk the number of input variables
taken into consideration within the dot-product attention mechanism.

19

Multi-head attention mechanism splits the explicative variables in different
groups or ‘heads’ and, then, h attention mechanisms are computed in parallel.
To do so, the input matrices and their weights are split in different heads before
the computation of the scaled dot-product attention: Qi, Ki and Vi are the in-
put data of the head i and WQ

i , WK
i and W V

i their respective weights. Then,
the outputs of the different heads or attention mechanisms are concatenated.
Thus, the expression of the Multi-Head attention mechanism is

MultiHead(Q,K, V) = Concat (head1, . . . , headh)W
O (20)

headi = Attention(QWQ
i ,KWK

i , V W V
i) (21)

where h is the total number of heads. It is worth mentioning that all the
matrices of weights (WQ

i , WK
i , W V

i and WO) are trained using feed forward
layers with linear activations.

� Normalization. The outputs from the Multi-Head attention mechanism are
normalized in order to facilitate the training of the Transformer layer.

� Feed forward layer. The normalized output from the attention mechanism is
modified by a feed forward layer with ReLU activation function.

Transformer layers also include two residual connections (He et al. 2016). Thanks
to these connections the model will have the possibility of skipping the training of
some parts of the architecture. In addition, these connections have a positive im-
pact when the vanishing gradients problem is present because the model can use
the activation of previous layers until the skipped part of the model starts to learn.
The Python implementation of transformer layers and the volatility models proposed
by this thesis is available in https://github.com/EduardoRamosP/MultiTransformer.

Apart from neural networks, tree-based algorithms such as random forest or gradi-
ent boosting with trees are also applied in the risk models developed in this thesis.
Decision or classification trees define a set of rules to split the database in different
nodes. The final prediction of this algorithm is obtained by calculating the average
value of the response variable (regression) in every terminal node. The architecture
of decision and classification trees leads to two major disadvantages. First, overfit-
ting tends to be an issue with this algorithm. Second, small changes in the data can
provoke remarkable changes on the optimum tree configuration.

Random forests address the disadvantages of trees by randomizing the explanatory
variables taken into consideration in the splitting process and averaging n different
trees. The input data given to each tree of the random forest architecture is also
selected randomly. The steps of the algorithm are the following:

1. ntree bootstrap samples are drawn from the original dataset.

2. For each sample drawn in the previous step, an unpruned classification or re-
gression tree is grown. Instead of taking into consideration all the explicative

20

https://github.com/EduardoRamosP/MultiTransformer

variables to split the trees, only mtry variables randomly selected are consid-
ered. Thus, bagging can be considered a particular of random forests case where
mtry is equal to the number of explicative variables.

3. New data is predicted by selecting the majority class (classification) or averag-
ing (regression) the predictions of the ntree trees.

In contrast to random forest, gradient boosting applies a sequential approach to
solve the disadvantages of individual decision or regression trees. The steps of this
algorithm are the following:

1. Initialize f̂0(x) with a constant value that meets the following:

f̂0(x) = argmax
ρ

n∑

i=1

L(yi, ρ) (22)

where L(yi, ρ) is the loss function selected and n the number of observations.

2. For t = 1 to T :

2.1. Compute the negative gradient or pseudo-residual:

zit = −∂L(yi, f̂t−1(xi))

∂f̂t−1(xi)
(23)

where i = 1, . . . , n

2.2. Z observations are selected randomly from the database.

2.3. Fit a tree, ĥt(x), to the negative gradient calculated in step 2.1. The
learner is trained with the subset of data selected in step 2.2.

2.4. Update the model as follows:

f̂t(x) = f̂t−1(x) + δĥt(x) (24)

where δ is the learning rate.

3. Output the final model f̂T (x).

As it might be understood from the previous steps, this algorithm includes the re-
currence of the boosting methodology and the randomness of bagging. Boosting pro-
duces strong learners by combining sequentially weak learners, while bagging helps
to reduce the variance and overfitting of the learner.

There are several implementations and extensions of this algorithm. Nevertheless,
extreme gradient boosting (Chen and Guestrin 2016), commonly known as XGBoost,
might be the most relevant one. Apart from being less computationally intensive
than traditional gradient boosting, XGBoost brings in the possibility of penalizing
the model through both L1 and L2 regularization. L1 regularization adds a penalty
equal to the absolute magnitude of the coefficients, while L2 brings in a penalty based

21

on the square of their magnitude. Thus, the objective function of XGBoost includes
two parts: the loss function and the regularization term.

Obj(t) =
n∑

i=1

L(yi, ŷit) +
t∑

i=1

Ωi (25)

where Ω is the regularization term and ŷ
(t)
i the predictions of the algorithm in the

iteration t. As stated before, T refers to the total number of trees and n is the
number of observations. Notice that, in some implementations of this algorithm,
only the observations not selected in step 2.2. are used for calculating the loss. This
approach produces a fairer error measure because the observations used for fitting
the last tree are not considered in the error calculation. Chen and Guestrin (2016)
defines classification or regression trees as follows:

ht(x) = wq(x), w ∈ RJ , q : Rd → {1, 2, . . . , J} (26)

where w is the vector of scores on leaves, q is a function assigning each data point
to the corresponding leaf, and J is the number of leaves. Then, Chen and Guestrin
(2016) suggest the following definition for the regularization term:

Ωt = γJ +
1

2
λ

J∑

j=1

w2
j (27)

where γ and λ are the parameters fixing the level of L1 and L2 regularization re-
spectively. As XGBoost is a sequential algorithm, the objective function can be
decomposed as follows:

Obj(t) =
n∑

i=1

L(yi, ŷi,t−1 + ĥt(xi)) + Ωt + constant (28)

Chen and Guestrin (2016) take the Taylor expansion of the objective function up to
the second order:

Obj(t) ≃
n∑

i=1

[L(yi, ŷi,t−1) + giĥt(xi) +
1

2
eiĥ

2
t (xi)] + Ωt + constant (29)

where gi = ∂ŷi,t−1
L(yi, ŷi,t−1) and ei = ∂2

ŷi,t−1
L(yi, ŷi,t−1) are the first and second

gradient of the loss function respectively. Removing the constant terms, the objective
function at step t can be defined as follows:

Obj(t) ≃
n∑

i=1

[giĥt(xi) +
1

2
eiĥ

2
t (xi)] + Ωt (30)

Defining Id = {i | q(xi) = d} as the set of data points assigned to the leaf d and
expanding Ωt, the objective function of XGBoost at step t can be rewritten as follows:

Obj(t) ≃
n∑

i=1

[giĥt(xi) +
1

2
eiĥ

2
t (xi)] + γJ +

1

2
λ

J∑

j=1

w2
j (31)

=
J∑

j=1

[(
∑

i∈Id

gi)wj +
1

2
(
∑

i∈Id

ei + λ)w2
j] + γJ (32)

22

Notice that the summation index of the second line can be modified because all the
observations on the same leaf of the tree get the same score. Thus, the optimal w of
leaf j for a fixed structure q(x) is:

w∗
j = −

∑
i∈Id gi∑

i∈Id ei + λ
(33)

Therefore, the best objective reduction is determined by the following expression:

Obj(t)(q) = −1

2

J∑

j=1

(
∑

i∈Id gi)
2

∑
i∈Id ei + λ

+ γJ (34)

Hence, this function can be used to assess the appropriateness of a specific tree struc-
ture q. Calculating the quality of all the possible final tree structures is computational
expensive due to all the potential combinations given by the data. With the aim of
solving this problem, an algorithm is iteratively applied in order to calculate the best
branches. Thus, the optimal tree structure is calculated step by step, calculating
sequentially the optimal splits. Because of this, Chen and Guestrin (2016) suggest
the following objective function to evaluate the tree splits in XGBoost:

ObjSplit(t) =
1

2

[
(
∑

i∈IL gi)
2

∑
i∈IL ei + λ

+
(
∑

i∈IR gi)
2

∑
i∈IR ei + λ

+
(
∑

i∈I gi)
2

∑
i∈I ei + λ

]
− γ (35)

Where IL and IR are the set of data points assigned to the left and right nodes
after the split and I = IL ∪ IR. XGboost applies ObjSplit(t) iteratively to calculate the
optimal splits of every single tree included in the algorithm. Notice that a branch
would not be added to the tree, if the left part of the expression is lower than γ.

2.3 Stock market volatility and machine learning

This subsection is focused on presenting the main existing methodologies in the field
of stock volatility forecasting. Sections 3 and 5 explain the stock volatility forecasting
models based on the machine and deep learning methods presented in the previous
subsection.

Since the Financial Crisis of 2007-2008, investors and regulators are interested not
only on the profit of financial institutions but also on the risk assumed by the enti-
ties. Regulations such as Solvency II, Basel III or Swiss Solvency Test have enhanced
the risk management framework of financial institutions. In addition, measures that
relate risk, profitability and own funds such as return on risk capital or the solvency
ratio play a key role in acquisitions, portfolio management and dividend payments,
among others. Thus, methods and models for the valuation of assets, liabilities and
their variability play an essential role in the market value of financial institutions.
Figure 11 shows the 10 days volatility of the S&P500 and DAX daily returns, which
are the main stock indices of the United States and Germany receptively. As stock
markets volatility changes sharply, financial institutions need accurate volatility fore-
casting models to set appropriate risk management strategies.

23

Figure 11: Historical volatility of S&P and DAX

Source: Own ellaboration

GARCH-based algorithms are considered the main family of stock volatility models
because they have the ability of fitting the volatility clustering observed in financial
time series (Mandelbrot 1963). The generalization of autoregressive conditional het-
eroskedasticity models (GARCH) developed by Engle (1982) and Bollerslev (1986)
are widely used in the stock volatility forecasting literature (Mapa 2003, Frimpong
and Oteng-Abayie 2006, Floros 2008, Ugurlu et al. 2014, Maqsood et al. 2017, Ras-
togi et al. 2018 and Gulay and Emeç 2019, among others) and it has the following
expression:

σ̂2
t = ω +

q∑

i=1

αir
2
t−i +

p∑

i=1

βiσ
2
t−i / r̂t = σ̂tϵt (36)

where ω, αi and βi are the parameters to be estimated, rt the return and σ2
t the

volatility. The shape of the returns sampled by this algorithm is determined by
the distribution selected for the model innovations (ϵt). Normal and Student’s t-
distribution are the most common options used for generating these innovations.

Volatility behaves differently depending on the market tendency, thus EGARCH and
GJR-GARCH were developed by Nelson (1991) and Glosten et al. (1993) respectively

24

in order to fit this behaviour. EGARCH model is defined as follows:

log σ̂2
t = ω +

p∑

i=1

αi log σ̂
2
t−i +

q∑

i=1

(βiet−i + γi(| et−i | −E | et−i |)) (37)

where ω, αi, βi and γi are the parameters to be estimated and et = rt/σt. On the
other hand, GJR-GARCH has the following expression:

σ̂2
t = ω +

q∑

i=1

αir
2
t−i +

o∑

i=1

γir
2
t−iI[rt−1<0] +

p∑

i=1

βiσ
2
t−i (38)

As with EGARCH model, ω, αi, βi and γi are the parameters to be estimated. I is
an indicator function that takes the value of 1 when the condition is met. Threshold
GARCH (TrGARCH) model also generates a different volatility depending on the
market momentum:

σ̂t = ω +

q∑

i=1

αi | rt−i |+
o∑

i=1

γi | rt−i | I[rt−i<0] +

p∑

i=1

βiσt−i (39)

where ωi, αi, βi and γi are the model parameters.

In addition to the previous algorithms, there are many other variants of autoregressive
conditional heteroskedasticity models. Bollerslev et al. (1988) applied multivariate
GARCH algorithms to financial time series. Engle (2002) developed the dynamic
conditional correlation GARCH, whereas Engle and Kroner (1995) and Engle et al.
(1990) introduced the BEKK-GARCH and Factor-GARCH models respectively. As
conditional variance is close to zero over a long time spam (Bauwens et al. 2012),
several extensions of the traditional GARCH model were proposed by Engle and Lee
(1999), Haas et al. (2004a), Haas et al. (2004b) and Haas and Paolella (2012) in order
to overcome this problem. It is also worth mentioning that Zhang et al. (2018) pro-
posed a zero-drift model. This last variant of the algorithm studies heteroskedasticity
and conditional heteroskedasticity together because it is non-stationary regardless of
the sign of Lyapunov exponent.

Stock volatility can be also modelled with stochastic volatility models. This family
assumes that volatility follows its own stochastic process. Heston Model is the most
popular approach within this family. This model assumes that stock prices follow the
following Brownian process:

dXt = µXtdt+
√
σ2
tXtdBt (40)

Where Bt ∼ N (0, σ2
t t), Xt is the stock price and σ2

t the volatility. Heston (1993)
also assumes that volatility is driven by an Ornstein-Uhlenbeck process and, thus,
changes in volatility are determined by the following expression:

dσ2
t = θ(υ − σ2

t)dt+ δσtdB
∗
t (41)

As it can be derived from the previous formula, this model assumes that volatility
has a long term mean (υ). The rate at which the variance reverts to this mean is

25

determined by θ, δ is the volatility of σ2
t and, finally, B∗

t is a Wiener process. Notice
that B∗

t can be correlated with Bt, being ρ the level of correlation between them.

Other relevant stochastic volatility processes are the constant elasticity (Linetsky and
Mendoza 2009) and SABR models (Hagan et al. 2002). The first process has the
aim of modelling the leverage effect (volatility increases when the price falls). The
second tries to capture the volatility smile in derivative markets.

It is also worth mentioning that stock volatility forecasting models based on machine
and deep learning have increased significantly their relevance in the last years. Notice
that GARCH models are not included in this last family even though they are part
of the machine learning tool-kit. GARCH models have been presented as a complete
different family due to its relevance in the field of stock volatility. Therefore, this
family includes the stock volatility models based on algorithms such as neural net-
works, random forests, gradient boosting with trees or support vector machines. It
also includes the so-called hybrid models (a merge of GARCH with other algorithms
such as neural networks).

As previously stated, the literature related to this family of models have increased
remarkably in the last years. Dias et al. (2019) applied support vector machines
and hidden Markov models to forecast financial time series. Hamid and Iqbid (2002)
demonstrated that neural networks can forecast implied volatility more accurately
than Barone-Adesi and Whaley models. Roh (2006), Hajizadeh et al. (2012), Lu
et al. (2016) Monfared and Enke (2014) and Kristjanpoller et al. (2014) merged
the output of GARCH models with feed forward artificial neural networks to obtain
more accurate volatility forecasts. Hybrid models have been also applied to fore-
cast the volatility of oil (Kristjanpoller and Minutolo 2016) or metals (Kristjanpoller
and Minutolo 2015, Kristjanpoller and Hernández 2017 and Vidal and Kristjanpoller
2020). The stock volatility forecasting models proposed by this thesis are based on
hybrid algorithms. Therefore, they belong to this last family. The differences be-
tween the approaches introduced by this thesis and the existing models of this family
are presented in Sections 3 and 5.

From an economical and management perspective, stock volatility forecasting and
equity risk models have become more and more relevant in the last years. The main
reasons are the following:

� Investors are not only interested in profits but also on the risk assumed by
financial institutions. Since the Financial Crisis of 2007-2008, the risk-profit
KPIs have become more and more relevant for investors and, thus, the market
cap of these entities.

� Stimulus packages and banking bailouts were required in the latest financial
crises, provoking an increase of the public debt. Therefore, the interest of
governments on the risk management strategy of financial institutions have
increased sharply, leading to a more robust regulation.

26

� During financial crises, some financial institutions were sold at sale price. Thus,
banks and/or insurance entities can exploit the competitive advantage of having
an appropriate risk management strategy. For example, during the Financial
Crisis of 2007-2008 some of the most relevant US investment banks were sold
at sale price to other financial institutions.

These models have become quite relevant for the decision-making process of financial
institutions. Thus, more accurate equity risk models can lead also to more accurate
management actions. This thesis has the aim of improving the current stock volatility
forecasting and equity models by adapting and applying the latest machine and deep
learning techniques.

2.4 Reserving in general insurance and machine learning

This section is focused on presenting the main existing models in the field of general
insurance reserving. Sections 4 and 6 present the stochastic reserving models based
on the methods and algorithms described in Section 2.2.

In contrast to most of the economical sectors, the cost of the product sold by in-
surance companies is unknown. These entities does not only have to estimate the
cost of new clients but they also need to forecast the ultimate cost of the outstand-
ing claims. This last estimation is key for understanding the profitability of general
insurance long tail portfolios such as motor third party liability, engineering, credit
and industrial property, among others. Indeed, the main source of volatility in the
technical result of general insurance entities is the deviation between the actual and
the expected cost. Given the importance of estimating an accurate outstanding claim
and new client cost, pricing models were introduced to forecast an accurate premium
while reserving models were developed to forecast the expected ultimate cost of out-
standing claims and its variability.

Reserving models have evolved from deterministic methodologies toward stochastic
models able to assess the variability of general insurance reserves. Chain Ladder is
considered the main deterministic model. This technique takes into consideration the
aggregated historical claim payments by development and accident or underwriting
year to estimate the expected ultimate cost. The previous aggregation of data is
usually called loss triangle. Table 1 shows an example of a cumulative loss triangle.

27

Table 1: Example of cumulative loss triangle in millions

Development Year
1 2 3 4 5 6 7 8

A
cc
id
en
t
Y
ea
r

2013 1.90 2.15 2.28 2.35 2.42 2.45 2.45 2.45
2014 1.15 1.95 2.08 2.12 2.15 2.16 2.16
2015 1.26 2.05 2.20 2.23 2.25 2.25
2016 1.38 2.26 2.35 2.40 2.42
2017 1.34 2.13 2.22 2.29
2018 1.52 2.20 2.22
2019 1.40 2.21
2020 1.45

Source: own elaboration

Chain Ladder methodology assumes that future cumulative payments, Dij , or in-
curred cost have the following expected value:

E[Dij] = f̂jDi,j−1 (42)

where i = (1, 2, . . . , I) indicates the accident or underwriting year and j = (1, 2, . . . , I)
the development year. The development factor f̂j is calculated as follows:

f̂j =

∑I−j+1
i=1 Dij∑I−j+1

i=1 Di,j−1

(43)

where {f̂j : j = (2, 3, . . . , I)}.

Stochastic reserving models have been fostered by regulations such as Solvency II or
Swiss Solvency Test and the increasing importance of the risk management in finan-
cial institutions. Indeed, dividends of insurance entities are normally conditioned by
the solvency ratio. The risk strategy of most of these companies requires a certain
level of solvency ratio to distribute dividends.

The most popular stochastic reserving models are also based on the Chain Ladder
technique and loss triangles. Mack (1993) developed a free-distribution model by
limiting the reserve distribution analysis to the first two moments. This stochas-
tic model based on Chain Ladder is specially interesting for the insurance industry
because the analyst does not need to take any assumption regarding the theoretical
distribution of the claim cost. Mack’s model assumes that cumulative payments, Dij ,
have the following expected value and variance:

E[Dij] = f̂jDi,j−1 V ar[Dij] = σ̂2
jDi,j−1 (44)

Chain Ladder and Mack’s model expect the same cumulative payments. Therefore,
the expected reserve of the stochastic distribution produced by the Mack’s model
converges to the value obtained by the deterministic Chain Ladder technique. The

28

variance of the stochastic model depends on σ̂2
j . As explained by Mack (1993), this

parameter has the following expression:

σ̂2
j =

1

I − j − 1

I−j+1∑

i=1

Di,j−1

(
Dij

Di,j−1
− f̂j

)2

(45)

where {σ̂2
j : j = (2, 3, . . . , I)}. Bootstrapping (England and Verrall 2006) can be ap-

plied to sample the reserve distribution. The following residuals need to be calculated
to apply this method:

r̂ij =

√
Di,j−1 ∗

(
Dij

Di,j−1
− f̂j

)

σ̂j
(46)

As suggested by England and Verrall (2006), a bias adjustment is added to the
previous residuals:

r̂ij =

√
N

N − p
∗
√
Di,j−1 ∗

(
Dij

Di,j−1
− f̂j

)

σ̂j
(47)

where N is the total number of residuals and p the number of parameters. Thus, the
resampled link ratios are computed as follows:

fB
ij = f̂j + rBij

σ̂j√
Di,j−1

(48)

where B refers to the number of upper triangles to be simulated and rBij to the resid-

ual resampled in the position (i, j) of the Bth triangle. The resampled development
factors (f̃B

j) are calculated applying the Chain Ladder technique to Di,j and fB
ij .

The lower triangle (Di,j where i + j > I + 1) without process variance is predicted
by combining f̃B

j and the upper triangle (Di,j where i + j ≤ I + 1). Then, the
process variance is incorporated by adding the following to the lower loss triangle:
σ̂jr

B
ij

√
Di,j−1.

It is also worth mentioning that there are other stochastic models based on Chain
Ladder and theoretical distributions such as overdispersed Poisson (Renshaw and
Verrall 1998), log-normal (Kremer 1982), gamma (Mack 1991) and negative binomial
(Verrall 2000). As in Mack’s model, bootstrapping can be applied to obtain the re-
serve distribution from these models. If the bootstrapping procedure is to be avoided,
England and Verrall (2006) introduced a stochastic Bayesian implementation of the
overdispersed Poisson, negative binomial and Mack’s model.

More recently, Meyers (2015) developed the Changing Settlement Rate (CSR) model,
which is based on Markov Chain Monte-Carlo. In contrast to other stochastic models
such as Mack or ODP, this approach gives the possibility of recognising a change in the
claim settlement rate over the years. The default calibration and prior distributions
suggested by the author are the following:

29

� αi ∼ N(lnPi+logelr,
√
10), where logelr ∼ U(−1, 0.5) and Pi are the premiums

by accident year.

� βj ∼ U(−5, 5) for j = 1, ..., J − 1. In the last development year, βJ = 0.

� µi,j = αi + βj(1− γ)i−1, where γ ∼ N(0, 0.025).

� Each σj =
∑J

i=j ai, where ai ∼ U(0, 1).

The cumulative payments simulated by this model follow a log-normal distribution,
Di,j ∼ LN(µi,j , σj), subject to the constraint σ1 > σ2 > ... > σJ .

In addition to the models based on Chain Ladder and Markov Chain Monte-Carlo,
there are general insurance reserving models based on machine and deep learning.
Algorithms such as artificial neural networks (Gabrielli et al. 2018, Gabrielli and
Wüthrich 2018 and Wüthrich 2018b), regression trees (Wüthrich 2018a), recurrent
neural networks (Kuo 2018) or tree-based algorithms (Baudry and Robert 2019 and
Lopez et al. 2019) have been used to predict claim reserves.

The differences between the reserving models introduced by this thesis and the
methodologies explained above are presented in Sections 4 and 6.

From an economic and management point of view, reserving models are specially
relevant for insurance entities due to the following main reasons:

� Differences between the reserve estimated by the models and the actual cost of
outstanding claims can provoke significant fluctuations on the P&L. Obviously,
this can also have an impact on dividends and, thus, on the market cap of
financial institutions.

� Insurance companies need to forecast the ultimate cost of outstanding claims to
estimate the profitability of the current portfolio/clients. As management deci-
sions on the current portfolio are also based on the estimations from reserving
models, they are key on the decision-making process of insurance entities.

This thesis has the aim of improving the current reserving models by adapting and
applying the latest machine and deep learning techniques.

30

3 Forecasting volatility with a stacked model based on
a hybridized Artificial Neural Network

Authors: Eduardo Ramos-Pérez, Pablo J. Alonso-González and José Javier Núñez-
Velázquez.

Journal: Expert Systems With Applications, vol: 129 1-9. ISSN 0957-4174.

DOI: 10.1016/j.eswa.2019.03.046

Journal Impact Factor in 2019: 5.452
Rank by Journal Impact Factor in 2019: 2/83 in Operations Research and
Management Business (Q1-D1).

Journal Citation Indicator in 2019: 1.58
Rank by Journal Citation Indicator in 2019: 7/99 in Operations Research and
Management Business (Q1-D1).

Published: September 2019

Citations: 19 (Web of Science), 26 (Google Scholar).

Arxiv Repository: https://arxiv.org/abs/2006.16383
This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

31

https://arxiv.org/abs/2006.16383
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

An appropriate calibration and forecasting of volatility and market risk are some
of the main challenges faced by companies that have to manage the uncertainty
inherent to their investments or funding operations such as banks, pension funds
or insurance companies. This has become even more evident after the 2007-
2008 Financial Crisis, when the forecasting models assessing the market risk and
volatility failed. Since then, a significant number of theoretical developments
and methodologies have appeared to improve the accuracy of the volatility fore-
casts and market risk assessments. Following this line of thinking, this paper
introduces a model based on using a set of Machine Learning techniques, such as
Gradient Descent Boosting, Random Forest, Support Vector Machine and Ar-
tificial Neural Network, where those algorithms are stacked to predict S&P500
volatility. The results suggest that our construction outperforms other habitual
models on the ability to forecast the level of volatility, leading to a more accurate
assessment of the market risk.

Keywords: Machine learning, Stacking algorithms, Risk assessment, Volatility forecasting,
Hybrid models

AMS Subject Classification: 62-07, 62P05, 65C60, 90-08.

3.1 Introduction

During the Financial Crisis of 2007-2008, unexpected falls in stock prices resulted
in significant losses for individual investors and financial institutions. Since then,
new regulations have entered in force in order to ensure the correctness of the mar-
ket risk assessment provided by financial institutions and to allow individual market
participants to be aware of the risk linked to financial products. As volatility is an
indicator of the uncertainty associated with the asset profitability (Hull 2015 and
Rajashree and Ranjeeeta 2015), this variable tends to play a key role within the risk
models. In fact, events like the bankruptcy of LTCM in 1998 (Lowenstein 2000), the
dotcom crash in 2001 (Aharon et al. 2010) or, more recently, the aforementioned
Financial Crisis of 2007-2008 were not foreseen by most of the risk models due to
inaccurate estimates produced by the volatility forecasting models. It is worth men-
tioning that, as volatility is not directly observed, before estimating any statistical
model it is necessary to select a volatility proxy (Poon and Granger 2003). In the
following paragraphs, the proposed methodology and main families of volatility fore-
casting models (GARCH, Stochastic and Machine Learning) are presented.

First of all, GARCH models are introduced as this family of models is probably the
most widely used in the literature due to its ability to fit the volatility clustering
(Mandelbrot 1963) empirically observed in financial time series. This auto-regressive
approach and its generalization were developed by Engle (1982) and Bollerslev (1986)
respectively. Classical GARCH models were discovered to be too rigid for fitting re-
turns series, especially over a long time span, because the estimated persistence of
conditional variances is close to one (Bauwens et al. 2012). Therefore, more flexi-
ble GARCH models were developed in order to overcome this problem. Engle and
Lee (1999) suggested a two equation model where each of them represents long-run

32

and short-run components of volatility, respectively. Mixed-normal GARCH (Haas
et al. 2004a) is a second way to deal with this problem. This kind of model allows
to choose amongst several regimes in each instant of time t. The drawback of this
methodology is that it assumes that the variables used to decide amongst regimes are
all independent over time. To overcome this problem, Haas et al. (2004b) proposed
a Markov-switching model where the parameters of a GARCH model change accord-
ing to a Markov process. An extension of this kind of model can be found in Haas
and Paolella (2012). Before concluding with the GARCH models, it is important to
mention that volatility can behave differently depending on the trend of the market:
bullish or bearish. To fit this behaviour, Nelson (1991) developed the EGARCH
model that allows the sign and the volume of previous values to have separate im-
pacts on the volatility forecasts. In addition to the EGARCH model, Glosten et al.
(1993) proposed the GJR-GARCH to replicate the aforementioned behaviour. Other
developments within this family can be found in Engle and Kroner (1995) with their
BEKK model, the factor model (Engle et al. 1990), the Constant Conditional Cor-
relation model (Bollerslev 1990), the time-varying correlation model (Tse and Tsui
2002), the dynamic correlation model (Engle 2002) or the multivariate GARCH ap-
proach proposed by Kraft and Engle (1982) and Engle et al. (1984) and its financial
implementation by Bollerslev et al. (1988). More recently, Zhang et al. (2018) have
proposed a first order zero drift GARCH (ZD-GARCH) to study heteroscedasticity
and conditional heteroscedasticity together.

The second family is composed of those models which assume that the volatility is
driven by its own stochastic process. This approach was introduced by Taylor (1982)
as an Euler approximation of the underlying diffusion model. Assuming that stock
prices follow a Brownian motion, Heston (1993) derived a model where the volatil-
ity follows an Ornstein-Uhlenbeck process. To derive the parameters of the Heston
Model, two different strategies have been adopted in the literature: moment or sim-
ulation. For the first one, the Generalized Method of Moments was proposed by
Melino and Turnbull (1990) and Andersen and Sorensen (1999), while the simulation
approach has been used by Danielsson (2004), Durbin and Koopman (1997), Broto
and Ruiz (2004) or Andersen (2009), amongst others.

The last family presented is Machine Learning, which comprises a set of techniques
used to analyse the future evolution of stock prices and volatility. These algorithms
try to learn automatically and recognize patterns in a large amount of data (Krollner
et al. 2010). It is worth mentioning that the fitting of these algorithms is quite sen-
sitive to the forecasting time-frame and the selected input variables. Armano et al.
(2005) and de Faria et al. (2009) suggest using one day as a time-frame and lagged
or technical indicators as input variables for the Machine Learning algorithms. Stock
prices, volatilities and portfolio selection have been analysed using different method-
ologies based on Machine Learning, such as Support Vector Machine (Gestel et al.
2001), hidden Markov models (Gupta and Dhinga 2012 and Dias et al. 2019) or Ar-
tificial Neural Networks (ANN) (Hamid and Iqbid 2002). These last authors showed
that volatility forecasts made by an ANN outperform the implied volatility derived
from Barone-Adesi and Whaley options models. Additionally, ANNs have been ap-

33

plied successfully to other financial series different from volatility and stock prices:
bond rates (Surkan and Xingren 2001) and bank failures (Hutchinson et al. 1994).
Deep learning (LeCun et al. 2015a) is a framework closely related with ANN which
has been employed for predicting the evolution of Korean stock market index (Chang
et al. 2017).

Despite the high performance of ANN, predictions derived from the use of this al-
gorithm could be inaccurate when stock prices move sharply (Patel and Yalamalle
2014). To overcome this problem, ANN were combined with other statistical models
(Kristjanpoller et al. 2014) creating the so called hybrid models. Hybridization can
be defined as an approach in which several models are merged to form a new enhanced
model in order to produce better forecasting results. Therefore, a hybrid model is
a combination of the artificial intelligence techniques with some components of the
traditional forecasting models (like the ones presented within the GARCH family).
Examples of this approach are discussed in Roh (2006), Hajizadeh et al. (2012),
Lu et al. (2016) Monfared and Enke (2014) or Kristjanpoller et al. (2014), where
different outputs from a GARCH-based model are used as inputs in an ANN. A more
general picture of this type of hybrid models is provided by Bildirici and Ersin (2009),
since they compared and combined an ANN with different types of GARCH models
(GARCH, EGARCH, GJR-GARCH, TGARCH, NGARCH, SAGARCH, PGARCH,
APGARCH and NPGARCH). In addition to the above-mentioned researches, this
type of hybrid models has been broadly used in other papers. Bildirici and Ersin
(2014) proposed a MS-GARCH with an ANN to improve the forecasting accuracy,
Bektipratiwi and Irawan (2011) combined a radial basis function with an EGARCH
to model stocks returns of an Indonesian bank and Arneric and Poklepovic (2016)
developed an ANN model as an extension of a GJR-GARCH to forecast the market
returns of six European emerging markets. GARCH-based models have been also
combined with ANNs to predict the volatility in commodity markets, such as gold
(Kristjanpoller and Minutolo 2015) or oil (Kristjanpoller and Minutolo 2016). In this
last case, the hybrid model included financial variables to improve the forecasts. This
strategy can also be found in Kristjanpoller and Hernández (2017). Kim and Won
(2018) propose a hybrid model that combines a LSTM with various GARCH-type
models to forecast the volatility of KOSPI index. A refinement of this model can be
found in Back and Kim (2018). It should be mentioned that these models can be
generated in both directions: some outputs of a GARCH model can be used as input
of an ANN and vice versa (Lu et al. 2016). Finally, it should be noted that hybridi-
sation can not only be made with ANN. Peng et al. (2018) proposed a structure
combining traditional GARCH-models with Support Vector Machine (SVM) (Cortes
and Vapnik 1995).

The research carried out along this paper develops a volatility forecasting model that
consists of two different levels which is based on stacking algorithms methodology
(Hastie et al. 2009) and statistical models of the Machine Learning family. Random
Forest (RF) (Breiman 2001), Gradient Boosting (GB) with regression trees (Fried-
man 2000) and Support Vector Machine (SVM) (Cortes and Vapnik 1995) are used
in the first level, while an ANN (Mcculloch and Pitts 1943) is incorporated within the

34

second level of the stacked model (Stacked-ANN) in order to generate the volatility
forecasts. A different two-level approach can be found in Kristjanpoller and Minutolo
(2018). They use an ANN-GARCH model with a pre-processing based on principal
components analysis to reduce the number of inputs employed in their network. In
contrast to the hybrid models defined previously, the proposed model is merging the
results arising from other machine learning algorithms which are free of some theo-
retical assumptions like the use of a predefined distribution for the underlying asset
returns or the constant level of unconditional variance. Because of this and with the
aim to build a more flexible model, the GARCH-based models are not present in the
Stacked-ANN architecture. The proposed model relies completely on the predictions
made by machine learning algorithms and market data. Additionally, in the case of
the Stacked-ANN the final forecasts made by the first level algorithms are directly
used as inputs within the ANN while, in most of the hybrid models discussed in the
previous paragraphs, sections of the GARCH-based models are inserted separately
in the ANN.

The rest of the paper proceeds as follows: Section 3.2 presents the set of volatility
forecasting models used for comparison purposes. Furthermore, the risk measures
and tests used to validate the results are discussed. In Section 3.3 the theoretical
background and architecture of the volatility forecasting model based on stacking
algorithms (Stacked-ANN) are explained. The empirical results of the different fore-
casting models are shown in Section 3.4, where the accuracy and the risk measures
arising from the proposed model are compared with results obtained by the method-
ologies explained in Section 3.2. Finally, Section 3.5 presents the main conclusions
of the results and comparisons carried out along Section 3.4.

3.2 Benchmark models, risk measurements and statistical tests

As stated above, this section is focused on explaining the benchmark models and the
tests used to back-test the risk measurements. Thus, the first paragraphs are dedi-
cated to ANN, ANN-GARCH, ANN-EGARCH and Heston Model, while the end of
this section is focused on the risk measurements and tests performed to validate and
compare the results of the benchmark models with the one proposed in Section 3.3.

The first benchmark model is a feed-forward ANN. Following the notation provided
by Bishop (2006) and assuming that the algorithm has two hidden layers, the model
would be defined by the following expression:

σ̂t+1 = h(3)




T∑

k=1

w
(3)
p,kh

(2)




M∑

j=1

w
(2)
k,jh

(1)

(
D∑

i=1

w
(1)
j,i xi + w

(1)
j,0

)
+ w

(2)
k,0


+ w

(3)
p,0


 (49)

Where h(n) is the activation function associated with the layer n, w
(n)
z,v is the v-th

weight associated with the neuron z inside the layer n and xi refers to the i input
variable of database comprised by the explicative variables selected by the analyst.

35

The second benchmark model is an ANN-GARCH(p,q). As briefly introduced in
Section 3.1, the aim of this hybrid model is to combine the GARCH(p,q) estimates
with other input variables by using an ANN, which is a more flexible model than
GARCH(p,q). Therefore, before starting with the fitting of the ANN, the parameters
of the GARCH(p,q) model need to be estimated:

σ̂2
t = ω +

q∑

i=1

αir
2
t−i +

p∑

i=1

βiσ
2
t−i / r̂t = σ̂tϵt (50)

In this formulation ω, αi and βi are the parameters to be estimated, while rt and σ2
t

refer to the return and volatility respectively. The returns distribution is determined
by the distribution selected for ϵt. If a standardize normal or standardize Student’s
t-distribution is selected, then the returns generated by the model follow a con-
ditional normal (CND) or conditional t-distribution (CTD) respectively (Bauwens
et al. 2012). Once the GARCH(p,q) parameters are estimated,

∑q
i=1 αir

2
t−1 and∑p

i=1 βiσ
2
t−1 can be computed and used as input (together with the rest of explica-

tive variables) within the ANN.

The third benchmark model is an ANN-EGARCH. The architecture of this model
and the previous one can be considered the same with the unique difference that the
first step consists of fitting an EGARCH(p,q) instead of a GARCH(p,q) model. The
EGARCH(p,q) can be defined as follows (Nelson 1991):

log σ̂2
t = ω +

p∑

i=1

αi log σ̂
2
t−i +

q∑

i=1

(βiet−i + γi(| et−i | −E | et−i |)) (51)

Once the EGARCH is fitted, the following terms can be calculated and used as input
within the ANN together with the rest of the explicative variables selected by the
analyst:

p∑

i=1

αi log σ̂
2
t−i

q∑

i=1

βiet−i

q∑

i=1

γi(| et−i | −E | et−i |) (52)

The last benchmark is the Heston (1993) Model. Even though this approach belongs
to the stochastic family and the proposed one to the Machine Learning one, this
model is going to be used as benchmark during this paper as this process is the most
widely used within the family of the stochastic volatility models. It assumes that
changes in stock prices through the time (dXt) follow a Brownian diffusion process:

dXt = µXtdt+
√
σ2
tXtdBt (53)

Where Bt ∼ N (0, σ2
t t). Therefore, if volatility follows an Ornstein-Uhlenbeck process,

the changes in this variable are defined by the following expression:

dσ2
t = θ(υ − σ2

t)dt+ δσtdB
∗
t (54)

where υ is the long term volatility, θ is the rate of return to υ, δ is the volatility of
σ2
t and B∗

t is a Wiener process that has a correlation of ρ with Bt.

36

Once the four benchmark models have been explained, the section focuses on the risk
measurements. As stated before, volatility plays a key role in market risk assessment.
Therefore, the models will not be only compared in terms of accuracy, but the risk
measurements arising from every volatility model are going to be tested. For this
purpose, VaR and CVaR have been selected as risk measures. Even though VaR is
probably the most used metric due to its simplicity and easy interpretation, CVaR
has been also included as it is considered to be a coherent risk measure (Artzner et al.
1999). Consequently, for every volatility model the aforementioned risk measures are
going to be computed and validated by means of the following tests:

� Kupiec (1995) introduced a test in order to check if the number of VaR excesses
are align with the level of confidence selected.

� An extension of the previous test was developed by Christoffersen et al. (1997).
The aim of this test is to validate that VaR excesses are independent, identically
distributed and in line with the selected level of confidence.

� Acerbi and Szekely (2014) developed a test (AS1) to assess the appropriateness
of the CVaR based on the assumption that VaR has been already tested and
considered to be correct from a statistical point of view. The test is inspired
by the following equation:

E

[
rt

CV aRα,t
+ 1

∣∣∣∣rt + V aRα,t < 0

]
= 0 (55)

As VaR needs to be previously validated, the result of this test has to be assessed
together with the two aforementioned tests.

� In addition to the previous test, Acerbi and Szekely (2014) introduced another
method (AS2) to validate the CVaR without making any assumption about the
appropriateness of the VaR. To do so, this test tries to check a CVaR expression
that is not conditioned by the correctness of a previous VaR estimate.

Before beginning with the Stacked-ANN architecture, it is worth noticing that the
two first tests are parametric while the two last are non-parametric so, for further
details about how to compute the statistics and their distributions please refer to
aforementioned papers.

3.3 Stacked model

This section has been divided in several sub-sections in order to explain sequentially
the proposed volatility forecasting model. As the Stacked-ANN model is composed
by two different levels, the two first sub-sections are dedicated to the input data and
the algorithms within the first level of the Stacked-ANN model, while the third and
forth sub-sections are focused on the data required to generate the stacking procedure
and the details of the ANN fitted with the aforementioned information. (Figure 12
explains briefly the process followed to estimate and test the Stacked-ANN model)

37

First level: Input data

The first step is concerned with the creation of the database containing the volatility
proxy to be used as a response and the explanatory variables selected to fit the
algorithms. As the aim of the study is to predict future volatilities, the True Realized
Volatility (hereinafter TRV) is going to be used as response variable (Roh 2006):

TRVt =

√√√√ 1

n

n∑

i=1

(rt+i−1 − r̂t)2 (56)

Where r̂t =
∑n

i=n(rt+i−1)/n and n = 5. The window has been selected to be large
enough to compute a stable TRV and small enough to avoid, as much as possible,
mixing different volatility regimes.

The variables given to the first level algorithms to forecast the TRV are the last 30
volatilities computed with returns already observed in the market:

Vt =

√√√√ 1

n

n−1∑

i=0

(rt−n+i − r̂t)2 (57)

Where r̂t =
∑n−1

i=0 (rt−n+i)/n and n = 5. Only the last 30 volatilities have been se-
lected because the correlations between previous volatilities and the TRV are residual
and therefore their explanatory power is considered to be non-significant. The his-
torical data to compute all the aforementioned variables is obtained by using the
quantmod (Ryan and Ulrich 2017) package from the R project (R Core Team 2017)
and, as suggested by Hastie et al. (2009), they will be scaled to the range [0, 1] to
improve the training of the algorithms.

Before beginning with the section related with the algorithms included within the
first level, it is important to mention that the first 25% of the data is used to fit the
first level algorithms, the next 50% is dedicated to the ANN estimation and the last
25% is the test set. The comparison of the benchmark models with the proposed one
in terms of accuracy and risk measurement will be made with a different set of data
containing the information of the following year (e.g. if data from 2000 to 2007 is
used to train and test the Stacked-ANN model, the out of sample data selected for
comparison purposes would be market movements happened during 2008).

First level: Individual algorithms

The methods applied to optimize the hyper-parameters of the algorithms within the
first level of the Stacked-ANN architecture are introduced below:

� Minimization of the Mean Square Error (hereinafter, MMSE) for the whole
database to train the first level algorithms.

38

Figure 12: Stacked-ANN model structure

� Circular Block Bootstrap (CBB). This method (Politis and Romano 1991) gen-
erates new samples by selecting random blocks from the original database. The
length of these blocks is fixed and the procedure to calculate it was introduced
by Politis and White (2004) and Patton et al. (2009). CBB can only be applied
to stationary time series.

� Stationary Bootstrap (hereinafter, SB) (Politis and Romano 1994). Similar to
the case of CBB, this method can only be used with stationary time series.
However, the difference with the former method is that the length of the blocks
instead of being fixed, it is randomly selected with a certain average that can be
calculated using different approaches (see Politis and White 2004 and Patton
et al. 2009).

� Maximum Entropy Bootstrap (hereinafter, MEB) (Vinod 2006 and Vinod and
de Lacalle 2009). Unlike the two previous approaches, stationarity is not re-
quired as the new samples are obtained from the maximum entropy distribution
of the original time series.

� H Cross-Validation (HCV). This method introduced by Chu and Marron (1991)

39

tries to avoid the effect of the correlation that can exist between the response
and the explanatory variables while dealing with time series by eliminating h
data points between them. The bandwidth selection is obtained minimizing the
absolute autocorrelation between the response and explanatory variables, with
a maximum width of 100 days.

The optimum hyper-parameters combination of each one of the five previous meth-
ods is obtained by applying grid search. Then, these combinations are tested against
data out of sample (the following 50% of the database) to choose the most accurate
option for fitting the algorithm.

As stated before, the first level of the stacked model architecture is composed by three
algorithms: Random Forest (RF) (Breiman 2001), Gradient Boosting with regression
trees (GB) (Friedman 2000) and Support Vector Machine (SVM) (Cortes and Vapnik
1995).

Second level: Input data

As explained in Section 3.3, the first 25% percent of data is dedicated to fit the first
level algorithms while the following 50% and 25% are used for fitting the ANN and
testing the results respectively. The explanatory variables given to the ANN are:

� As with the first level algorithms, the last 30 volatilities (Vt, Vt−1, ..., Vt−29)
scaled to the range [0, 1].

� The True Realized Volatility forecasts made by the first level algorithms: Ran-
dom forest (T̂RV t,RF), Gradient boosting (T̂RV t,GB) and Support Vector Ma-

chine (T̂RV t,SVM).

The response variable is the TRVt as defined in Section 3.3.

Second level: Stacking algorithm

As stated previously, the last step of the Stacked-ANN model is the fitting of the
ANN, which is the algorithm stacking the forecasts made by the RF, GB and SVM.
Before starting with the details of the ANN architecture, notice that the methods
and procedures related to the hyper-parameters optimization are the same as the first
level algorithms: Grid search in combination with the methods explained in Section
3.3 and final hyper-parameters decision based on the out of sample error (last 25%
of the database).

Below, the main characteristics and details of the stacking algorithm are presented:

� The feed-forward ANN has two hidden layers with 20 and 10 neurons respec-
tively. The sigmoid activation function has been selected for all the neurons
within the hidden layers while the linear activation function has been used in
the output layer, which is comprised by one neuron.

40

� The optimization algorithm selected is Adaptive Moment Estimation (ADAM),
which was created by Kingma and Ba (2014). This method consists in a pro-
gressive adaptation of the initial learning rate, taking into consideration current
and previous gradients. The default calibration proposed by the authors is ap-
plied: β1 = 0.9 and β2 = 0.999.

� The number of epochs are 10,000 and the batch size is equal to the length of
the data used for training the ANN.

� The backward pass calculations are done according to the selection of root mean
squared error as a loss function.

� As indicated in Section 3.3, the 50% of the information is selected for training
the ANN while the following 25% of the data is the test set. Note that the first
25% of the data is used to fit the first level algorithms.

� The parameter adjusting the level of L2 regularization (ϕ) and the initial learn-
ing rate λ used within ADAM are the hyper-parameters to be optimized during
the estimation process.

Taking into consideration all the above-mentioned details, the TRVt forecasted by
the Stacked-ANN model (S-ANN) is obtained by means of the following expression:

T̂RV t,S−ANN = f̂(T̂RV t,RF , T̂RV t,GB, T̂RV t,SVM , Vt, Vt−1, ..., Vt−29) =

= h(3)




10∑

k=1

w
(3)
1,kh

(2)




20∑

j=1

w
(2)
k,jh

(1)

(
33∑

i=1

w
(1)
j,i xi + w

(1)
j,0

)
+ w

(2)
k,0


+ w

(3)
1,0


 (58)

As explained in Section 3.3, xi are the last 30 volatilities scaled to the range [0, 1]
and the forecasts made by the first level algorithms.

3.4 Results

During this section, the data used in the empirical analysis, the fitting process and the
final comparison between the Stacked-ANN and the benchmark models are shown.

Data

In order to analyse the models under different market conditions, the algorithms have
been trained and tested five different times with the S&P 500 volatilities observed
in the following periods: 2000-2007, 2001-2008, 2002-2009, 2009-2016 and 2010-2017.
As stated in Section 3.3, during the training and testing of the models the first 25%
of the periods selected is dedicated to fit the first level algorithms, the next 50% is
used to optimize the ANN while the last 25% is reserved for testing purposes. The
year after the aforementioned periods (2008, 2009, 2010, 2017 and 2018 respectively
for each period) has been used to compare the out of sample results of the Stacked-
ANN with the benchmark models. The first three data-sets have been selected in
order to analyse the performance of the models during the years after the financial

41

crisis, when the markets where dominated by a high volatile regime. Although the
years influenced by the financial crisis are valuable to test the accuracy of the volatil-
ity forecasting models, the two last data-sets have been selected in order to analyse
the models performance with the most recent data. Additionally, the lower level of
volatility during the last periods, especially in 2017, allows to assess the robustness
of the models by analysing them in different market conditions. In order to support
the explanations given during this paragraph, Table 2 summarizes the moments of
the TRV during the different periods selected to compare the models:

Table 2: True Realised Volatility statistics

Period Mean STD Skewness Kurtosis

Year 2008 0.022 0.016 1.510 4.519
Year 2009 0.015 0.008 0.853 3.248
Year 2010 0.010 0.006 0.854 3.736
Year 2017 0.004 0.002 0.911 3.369
Year 2018 0.009 0.006 1.406 4.702

Source: own elaboration

In addition, the Kolmogorov-Smirnov test has been applied sequentially to the TRV
in order to assess statistically if the behaviour of the volatility changes over the dif-
ferent periods. As 2008 is the year when the most extreme events related with crisis
happened and the market changed from a low to a high volatile regime, the skewness
and mean of that year volatility is higher than the one related with 2009. Because
of that, the aforementioned test reveals that the volatility of 2008 and 2009 do not
belong to the same distribution (KSp−value = 0.001). However, when comparing the
volatility of 2009 with the 2010 one, the test indicates that they come from the same
distribution (KSp−value = 0.690). Even though the volatility follows a downward
trend, both years are heavily conditioned by the events occurred during 2008 and
therefore the test accepts the hypothesis that volatilities belong to the same distri-
bution. Finally, the pair comprised by the volatilities of 2017 and 2018 shows an
upward trend. Nevertheless, this increase is not big enough to reject the hypothesis
that they come from the same distribution (KSp−value = 0.167).

The use of some of the methods proposed in Section 3.3 requires the time series to be
stationary. Therefore, before using block bootstrap it has been checked if historical
volatility satisfies this property by applying the Augmented Dickey-Fuller test (Dickey
and Fuller (1979)) to the different data-sets dedicated to fit the algorithms within
the first and second level. The results are shown in Table 3:

As the critical values are −2.63 and −3.43 with a probability of 5% and 1% respec-
tively, it can be concluded that the data meet the requirements imposed by CBB and
SB methods.

Previously to the fitting of the algorithms, the parameters needed for the different

42

Table 3: Augmented Dickey-Fuller Test

ADF statistic: Data for ADF statistic: Data for
Period training 1st level training 2nd level

(2000-2007) -6.61 -6.41
(2000-2008) -6.13 -7.91
(2000-2009) -5.25 -7.57
(2009-2016) -4.72 -7.27
(2010-2017) -4.58 -8.82

Source: own elaboration

bootstrap and cross validation methods are obtained by means of the methodologies
presented in Section 3.3. As the Stacked-ANN architecture is comprised by two dif-
ferent levels, the length of blocks for CBB, the average of the blocks for SB and the
distance, h, to be used within the HCV method are obtained for both, the data-set
to fit first level algorithms and the one dedicated to the second level. Table 4 sum-
marizes the former parameters and it shows non-significant changes over time for the
different periods and levels:

Table 4: Calibration of the elements for bootstrap and CV

Data for training Data for training
Method Period 1st level algorithms 2nd level algorithm

CBB Block (2000-2007) 28 63
CBB Block (2001-2008) 36 58
CBB Block (2002-2009) 40 56
CBB Block (2009-2016) 39 58
CBB Block (2010-2017) 38 30
SB Block average (2000-2007) 25 55
SB Block average (2001-2008) 32 51
SB Block average (2002-2009) 35 49
SB Block average (2009-2016) 34 51
SB Block average (2010-2017) 33 27
HCV length (2000-2007) 26 31
HCV length (2001-2008) 31 51
HCV length (2002-2009) 31 40
HCV length (2009-2016) 32 55
HCV length (2010-2017) 35 27

Source: own elaboration

43

Fitting of the Stacked-ANN model

As explained in Section 3.3, different approaches have been followed to find the
optimum hyper-parameter combination. Table 5 shows the methods that minimize
the out of sample error per each algorithm and period:

Table 5: Methods optimizing OOS error

Stacking Gradient Support
Period Algorithm (ANN) Random Forest Boosting Vector Machine

(2000-2007) ME SB CBB SB
(2001-2008) CBB CBB CBB SB
(2002-2009) CBB CBB CBB CBB
(2009-2016) HCV HCV HCV SB
(2010-2017) SB CBB SB SB

Source: own elaboration

Regardless of the period, the empirical results suggest that CBB and SB outperform
the rest of the methods. These outcomes are expected as these two methods based
on re-sampling blocks from the original database are specifically prepared to work
with stationary time series. Table 6 summarizes the hyper-parameters suggested by
the methods shown in Table 5:

Table 6: Final hyper-parameters

Stacking Gradient Support
Period Algorithm (ANN) Random Forest Boosting Vector Machine

(2000-2007) ϕ = 0 N = 10 B = 1479 γ = 0.0001
λ = 0.0033 Obs = 24 λ = 0.003 ϵ = 0.45

(2001-2008) ϕ = 0.01 N = 10 B = 3000 γ = 0.0001
λ = 0.0059 Obs = 107 λ = 0.001 ϵ = 0.55

(2002-2009) ϕ = 0 N = 1 B = 3583 γ = 0.0004
λ = 0.0136 Obs = 37 λ = 0.001 ϵ = 0.17

(2009-2016) ϕ = 0.02 N = 30 B = 1000 γ = 0.0002
λ = 0.085 Obs = 118 λ = 0.009 ϵ = 0.13

(2010-2017) ϕ = 0.01 N = 7 B = 1000 γ = 0.0001
λ = 0.011 Obs = 175 λ = 0.003 ϵ = 0.54

Source: own elaboration

44

Where λ is the learning rate of the ANN and GB, ϕ the parameter adjusting the
level of L2 regularization of the ANN, B the number of iterations performed while
fitting the GB, N the number of variables randomly selected by the RF and Obs the
minimum number of observations to be kept in the terminal nodes of every fitted tree
within the RF architecture. Finally, γ refers to the parameter included within the
radial basis function kernel (the lower the parameter, the higher the non-linearity)
and ϵ defines the threshold where the error begins to be penalized by the SVM.

Comparison against benchmark models

Once the Stacked-ANN is fitted, its performance is compared with the benchmark
models explained in Section 3.2 (ANN, ANN-GARCH(1,1), ANN-EGARCH(1,1) and
Heston Model). Before beginning with the comparisons, the three following remarks
about the benchmark models have to be done:

� Due to the nature of the Heston Model, 20,000 simulations per each day have
been computed and the daily average of them has been taken to assess its
accuracy.

� The GARCH(1,1) and EGARCH(1,1) (included in the ANN-GARCH(1,1) and
ANN-EGARCH(1,1) architecture respectively) have been estimated assuming
Student-t innovations.

� The fitting procedure and architecture of the ANNs included within ANN-
GARCH(1,1), ANN-EGARCH(1,1) and ANN models are the same as the ones
explained for the Stacked-ANN (see Section 3.3).

Table 7: Accuracy analysis

RMSE: RMSE: RMSE: RMSE: RMSE:
Model 2008 2009 2010 2017 2018

Stacked-ANN 0.01192 0.00534 0.00494 0.00254 0.00544
ANN-EGARCH 0.01332 0.00588 0.00537 0.00276 0.00571
ANN-GARCH 0.01335 0.00584 0.00539 0.00263 0.00575
Heston 0.02066 0.00714 0.00547 0.00359 0.00610
ANN 0.01526 0.00615 0.00541 0.00274 0.00590

Source: own elaboration

Table 7 shows the out of sample error of the different periods selected to compare the
performance and robustness of the Stacked-ANN with the benchmark models. The
results shown in this table suggest the following conclusions:

� Regardless of the period, the Stacked-ANN outperforms other hybrid models
based on auto-regressive methodologies like ANN-GARCH and ANN-EGARCH.
In relative terms, minor deviations are observed between the different periods.

� All the hybridized models tend to outperform the pure ANN model.

45

� As expected due to the extremely high volatilities observed during the financial
crisis, the results show that, regardless of the model, 2008 forecasts are less
accurate. All the models minimize their error rate in the year with the lowest
level volatility, 2017.

� The forecasts made by the Heston Model tend to be the less accurate due to
the non-predictive nature of this model.

In addition to the above-mentioned analysis, the risk measures obtained by using
each one of the volatility models are tested. In order to do so, a returns distribution
is selected for each one of the forecasting volatility methods. As described in Section
3.2, Heston Model requires the changes in stock prices to follow a Brownian diffusion
process. Nevertheless, for the rest of the benchmark models and the Stacked-ANN
(which are free of assumptions about the returns) a Student t-distribution has been
combined with the different volatility forecasts. This assumption about Student t-
distribution has been selected when possible as returns tend to be leptokurtic and
heavier-tailed than Normal distribution (McNeil et al. 2015).

Before analysing the results of the tests presented in Section 3.2, it is worth men-
tioning that the level of confidence (99%) and number of days (10) selected are based
on the ones set by Basel Directive, whose aim is to monitor, amongst others, the
market risk. Table 8 shows the p-value of the tests dedicated to VaR (Kupiec and
Christoffersen) and CVaR (AS1 and AS2). If a 95% is set as confidence level, Stacked-
ANN in combination with Student t-distribution is the only model that produces an
appropriate p-value for Kupiec, AS1 and AS2 tests in every period under analysis.
All the models show difficulties to produce a p-value higher or equal than 0.05 for
the Christoffersen test because VaR exceedances tend to happen in a short period
of time instead of spread over the period analysed. It is worth mentioning that the
hybrid models taken as benchmark (ANN-EGARCH and ANN-GARCH) also fail in
producing an appropriate value for the Kupiec test in several periods while, as stated
before, the proposed hybrid model (Stacked-ANN) pass the test for every period.
Finally, Heston Model tends to produce less appropriate risk measures due to the
distribution constrain mentioned previously.

3.5 Conclusions

This paper introduces a Stacked-ANN model based only on Machine Learning tech-
niques with the aim to improve the accuracy of the volatility forecasts made by other
hybrid models based on a combination of GARCH or EGARCH with ANNs. Its pre-
dictive power and performance has been tested in terms of RMSE, VaR and CVaR.

Two main results have to be pointed out. Firstly, the Stacked-ANN has been able to
generate more accurate volatility forecasts than other models in a high volatile regime
period like the one occurred after the Financial Crisis of 2007-2008. The models out-
performed by the Stacked-ANN during that time lapse are other hybrid models like
ANN-GARCH and ANN-EGARCH, the most widely used stochastic volatility the-
ory (Heston Model) and a feed-forward ANN without any combination with other

46

Table 8: P-value of the VaR and CVaR tests

Period: Period: Period: Period: Period:
Model Test 2008 2009 2010 2017 2018

Stacked-ANN Kupiec 0.85 0.84 0.65 0.85 0.85
Christ. 0.01 0.79 0.02 0.01 0.01
AS1 0.66 0.85 0.61 0.90 0.91
AS2 0.56 0.63 0.36 0.67 0.69

ANN-EGARCH Kupiec 0.12 0.12 0.84 0.03 0.03
Christ. 0.00 0.00 0.01 0.03 0.03
AS1 0.52 0.85 0.61 1.00 1.00
AS2 0.07 0.19 0.62 0.91 0.91

ANN-GARCH Kupiec 0.12 0.03 0.01 0.03 0.03
Christ. 0.00 0.03 0.00 0.03 0.03
AS1 0.51 1.00 0.77 1.00 1.00
AS2 0.08 0.92 0.05 0.85 0.89

Heston Model Kupiec 0.00 0.00 0.65 0.03 0.00
Christ. 0.00 0.00 0.59 0.03 0.00
AS1 0.00 0.01 0.83 1.00 0.06
AS2 0.00 0.00 0.36 0.92 0.00

ANN Kupiec 0.65 0.04 0.65 0.30 0.29
Christ. 0.02 0.00 0.00 0.00 0.00
AS1 0.24 0.86 0.59 0.81 0.00
AS2 0.29 0.11 0.35 0.24 0.00

Source: own elaboration

algorithms or statistical models. Notwithstanding the Stacked-ANN performance, it
is observed for every model that the higher the volatility the lower the accuracy. In
addition to this analysis, the Stacked-ANN has been tested with the most recent data
(2017 and 2018) in order to check its performance in the current market conditions.
As it occurred with the tests carried out during the financial crisis, the proposed
architecture outperforms the benchmark models in terms of accuracy. The superior
performance shown by the Stacked-ANN in periods with different levels of volatility
are due to the model flexibility. In contrast with ANN-GARCH or ANN-EGARCH,
the inputs introduced in the ANN stacked model do not follow any theoretical as-
sumption about the returns distribution or volatility. As explained throughout Sec-
tion 3.3, the architecture proposed uses previous volatilities and forecasts made by a
random forest, gradient boosting with regression trees and support vector machine
as inputs. Before beginning with the second point of the conclusion, it is worth
mentioning that it has been empirically demonstrated that block bootstrap methods
are of special interest when fitting algorithms to volatility as these procedures are
especially prepared to work with stationary time series.

Secondly, the forecasts made by the volatility models have been combined with a cer-
tain distribution in order to compute the VaR and CVaR for all the different periods

47

analysed. The distribution selected has been the Student’s t-distribution for every
model with the exception of the Heston Model which requires changes in asset prices
to follow a Brownian diffusion process. The empirical results demonstrated that only
the Stacked-ANN model is able to produce an appropriate p-value for Kupiec, AS1
and AS2 tests in every period under analysis, including those ones related with the
financial crisis.

The aforementioned flexibility and predictive power of the Stacked-ANN compared
with other volatility models suggest to develop further investigations about the im-
plications of using this model for derivative valuation purposes. As the price of these
instruments is closely related to the volatility of the underlying assets, further re-
searches should be done in order to compare the implied volatilities observed in the
market with the ones arising from the proposed model. If the volatility measured by
the Stacked-ANN is more accurate than market expectations, it would be possible to
identify under and overvalued derivatives.

48

4 Stochastic reserving with a stacked model based on a
hybridized Artificial Neural Network

Authors: Eduardo Ramos-Pérez, Pablo J. Alonso-González and José Javier Núñez-
Velázquez.

Journal: Expert Systems with Applications, vol: 163 1-12. ISSN 0957-4174.

DOI: 10.1016/j.eswa.2020.113782

Journal Impact Factor in 2020 (last available): 6.954
Rank by Journal Impact Factor in 2020 (last available): 8/84 in Operations
Research and Management Business (Q1-D1).

Journal Citation Indicator in 2020 (last available): 1.68
Rank by Journal Citation Indicator in 2020 (last available): 6/99 in Opera-
tions Research and Management Business (Q1-D1).

Published: January 2021

Citations: 1 (Web of Science), 4 (Google Scholar).

Arxiv Repository: https://arxiv.org/abs/2008.07564
This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

49

https://arxiv.org/abs/2008.07564
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

Currently, legal requirements demand that insurance companies increase their
emphasis on monitoring the risks linked to the underwriting and asset man-
agement activities. Regarding underwriting risks, the main uncertainties that
insurers must manage are related to the premium sufficiency to cover future
claims and the adequacy of the current reserves to pay outstanding claims. Both
risks are calibrated using stochastic models due to their nature. This paper in-
troduces a reserving model based on a set of machine learning techniques such
as Gradient Boosting, Random Forest and Artificial Neural Networks. These
algorithms and other widely used reserving models are stacked to predict the
shape of the runoff. To compute the deviation around a former prediction, a
log-normal approach is combined with the suggested model. The empirical re-
sults demonstrate that the proposed methodology can be used to improve the
performance of the traditional reserving techniques based on Bayesian statistics
and a Chain Ladder, leading to a more accurate assessment of the reserving risk.

Keywords: Stochastic reserving, Reserving Risk, Machine Learning, General insurance,
Run-off prediction

AMS Subject Classification: 62-07, 62P05, 65C60, 90-08.

4.1 Introduction

As with any other company, the survival of an insurance firm depends on its ability
to obtain a sustainable profit over the years. These entities have to offer their services
at an adequate and competitive premium, while the ultimate cost of the claims is
subject to uncertainty. Thus, reserving models were developed in order to estimate
and monitor the expected ultimate cost of outstanding claims. Although life insur-
ance contracts manifest uncertainty about the claims cost, reserving takes a special
relevance in general insurance as that uncertainty tends to be higher, at least in the
short term.

Methods of estimating the level of reserves in non-life insurance have evolved from
classical and deterministic methods toward others that take into account the loss
reserve uncertainty. The aim of the first type is to estimate the expected level of
reserves by taking the historical information into consideration. Chain Ladder is the
most frequently used method of this family. When historical data are not stable
enough to use the Chain Ladder technique, the Bornhuetter and Ferguson (1972)
model tends to be the preferred option to obtain an adequate estimate of the ex-
pected ultimate cost.

The increasing interest of investors in the risk profile of financial institutions since
the Financial Crisis of 2007-2008 and the implementation of the Solvency II Direc-
tive in the European market have fostered the use of stochastic reserving models.
As in the case of deterministic approaches, stochastic models based on the Chain
Ladder technique are the most commonly used. One of the main techniques within
this family is the Overdispersed Poisson (ODP) model developed by Renshaw and
Verrall (1998) and its bootstrap implementation suggested by England and Verrall

50

(1999) and England (2002) which assumes that incremental claims follow an ODP
distribution where the variance is proportional to the mean.

In this model, incremental claims must be positive, but this limitation can be over-
come by using the quasi-likelihood approach introduced by McCullagh and Nelder
(1989). In cases where the ODP assumption does not properly fit the data, Kremer
(1982), Mack (1991) and Verrall (2000) developed other models assuming log-normal,
gamma and negative binomial distributions respectively. In contrast to the methods
within this family, Mack (1993) developed a free-distribution model by focusing and
limiting the claims reserve distribution analysis to the first two moments.

Thus, the bootstrap implementation of Mack’s model allows the analyst to obtain a
reserve distribution without the necessity of defining a theoretical distribution for the
cumulative or incremental claim cost. If the bootstrapping procedure is to be avoided,
England and Verrall (2006) introduced a stochastic Bayesian implementation of the
ODP, Negative Binomial and this last free-distribution model. This approach was
recently expanded by Meyers (2015), who developed some Bayesian Markov Chain
Monte-Carlo (MCMC) models (Levelled Chain-Ladder, Correlated Chain-Ladder,
Levelled Incremental Trend, Correlated Incremental Trend and Changing Settlement
Rate) for incurred and paid data. Their aim is to improve the performance of ODP
and Mack models by using different approaches such as recognizing the correlation
between accident years, including a skewed distribution to model negative incremen-
tal payments, introducing a trend over the development years and allowing changes
in the claim settlement rate.

Another set of models is focused on using several triangles simultaneously in order to
take into consideration different characteristics of incurred and paid data. The main
models within this family are the Munich Chain Ladder (MCL) method and Double
Chain Ladder (DCL) model developed by Quarg and Mack (2004) and Mart́ınez-
Miranda et al. (2012), respectively. By modifying this last method, Margraf et al.
(2018) addressed the problem of calculating general insurance reserves when the port-
folio is covered by an excess-of-loss reinsurance. In addition to MCL and DCL, Merz
and Wüthrich (2010) introduced a Bayesian implementation of the paid-incurred
chain (PIC) reserving method (Posthuma et al. 2008) based on using both incurred
and paid data. Happ et al. (2012) and Happ and Wüthrich (2013) also investigated
and developed models related to the PIC method, while Halliwell (2009) and Venter
(2008) introduced regression approaches based on using both data sources. Pigeon
et al. (2014), Antonio and Plat (2014), and Mart́ınez-Miranda et al. (2013b) also
proposed models by taking into consideration different data sources to estimate the
expected ultimate claim cost.

In addition to the different approaches exposed above, it is possible to find models
where the information is not organized in an aggregated way, as in the classical tri-
angles, but rather in individual claims data (see Taylor et al. 2008, Jessen et al.
2011, Pigeon et al. 2013, Antonio and Plat 2014, Mart́ınez-Miranda et al. 2015,
Charpentier and Pigeon 2016, or Wüthrich 2018b).

51

Thanks to the increase in computational power, machine learning techniques have
turned into an adequate tool for reserving purposes. Artificial Neural Networks
(Gabrielli and Wüthrich 2018 and Wüthrich 2018b), regression trees (Wüthrich
2018a), Recurrent Neural Networks (Kuo 2018) or tree-based algorithms (Lopez et al.
2019) have been used to predict claim reserves. Gabrielli et al. (2018) embedded the
ODP model into a neural network framework, and Baudry and Robert (2019) intro-
duced a nonparametric reserving model based on extremely randomized trees (Geurts
et al. 2006) and individual claims data. In addition to the aforementioned algorithms,
other machine learning techniques were used by Mart́ınez-Miranda et al. (2013a) for
reserving purposes, and a support vector machine was applied to classify risks prior
to the reserve calculation (Duma et al. 2011).

The research carried out in this paper develops a nonparametric reserving model
based on the stacking algorithm methodology. The proposed architecture consists of
two different levels. Random Forest (RF) (Breiman 2001), Gradient Boosting (GB)
with regression trees (Friedman 2000), Artificial Neural Network (ANN) (Mcculloch
and Pitts 1943), Changing Settlement Rate (CSR) reserving model and the Chain
Ladder assumptions are incorporated within the first level, while an ANN is included
in the second level of the stacked model (Stacked-ANN) architecture in order to gen-
erate the final predictions. Therefore, the aim of this hybrid model is to improve
the performance of the individual components by creating an architecture that can
to learn from the different algorithms and the reserving models included within the
first level.

Although the overall methodology is based on that proposed by Ramos-Pérez et al.
(2019) for stock volatility forecasting purposes, the model architecture proposed in
this study is different. In this research, machine learning algorithms and reserving
models are present in the first level, while in the architecture developed by Ramos-
Pérez et al. (2019), only machine learning algorithms were included. Therefore, the
most popular models for forecasting volatility such as GARCH or EGARCH were
not integrated within the model architecture, while in this case, Chain Ladder and
CSR are incorporated. It is also worth mentioning that in contrast to the hybrid
model proposed for forecasting volatility purposes, in this research, the second level
only receives information already processed by the models within the first level. In
addition to the main differences explained above, it should be pointed out that the
stacking algorithm methodology has not appeared previously in the actuarial litera-
ture related to the valuation of loss reserves. Apart from that, a log-normal approach
is combined with the suggested reserving model based on machine learning in order
to compute the reserve variability.

As all the different algorithms and reserving models of the first level are incorporated
in the ANN of the second level, some of the most important research studies carried
out in the context of selecting the optimal ANN architecture will be discussed. There
is a significant amount of literature supporting the use of ANNs with just one hid-
den layer because under mild assumptions on the activation functions, the universal

52

approximation theorem states that a feedforward ANN with a single hidden layer
and a finite number of neurons can approximate any continuous function on compact
subsets of the Euclidean space.

Based on regularization techniques and using just one hidden layer network, Pog-
gio and Girosi (1990) developed a theoretical framework to approximate nonlinear
mappings named regularization networks. These authors demonstrated that their
architecture can approximate any continuous function on a compact domain if the
number of units is high enough. Cybenko (1989) and Hornik et al. (1989) also proved
that one hidden layer networks with sigmoidal activation functions can approximate
continuous functions on any compact Euclidean space. It was also shown that, under
certain conditions, an arbitrarily small error between a single hidden layer ANN and
any other continuous function can be obtained by increasing the number of neurons
(Barron 1994, Funahashi 1989 and Hornik 1993). Nakama (2011) showed that the
range of effective learning rates is wider in the case of ANN with one hidden layer
than in architectures with multiple hidden layers.

On the other hand, Hornik (1991) and Leshno et al. (1993) demonstrated that ANNs
have the potential of being universal approximators not only due to the choice of a
specific activation function but also because of the possibility of using several hidden
layers. Limitations of the approximation capabilities of one hidden layer networks
were demonstrated by Chui et al. (1994) and Chui et al. (1996). In recent years,
multi-hidden layer architectures have improved the state of the art in machine learn-
ing.

For example, in the context of natural language processing, the models and archi-
tectures created by Devlin et al. (2018) (BERT), Brown et al. (2020) (GPT3) and
Vaswani et al. (2017) (Transformer) overcome the performance of other less complex
models. In addition, it is worth mentioning that agents trained with multi-hidden
layer ANNs have been able to overcome the human performance in specific tasks such
as playing chess (Silver et al. 2017) or ‘go’ (Silver et al. 2016). With respect to the
optimal number of neurons, Celikoglu (2007) analysed this issue in the context of
solving the dynamic network loading problem, while Sheela and Deepa (2013) pro-
posed a list of principles to select this number.

Results from recently published papers in the actuarial field support the idea of ap-
plying ANNs with multiple hidden layers. Indeed, Richman and Wüthrich (2018) and
Nigri et al. (2019) applied this structure to model human mortality, while Castellani
et al. (2018) used it for estimating the economic capital of insurance companies under
the Solvency II framework. Thus, the ANNs included within the architecture of the
Stacked-ANN model have several hidden layers.

The rest of the paper proceeds as follows: Section 4.2 presents the set of models used
for comparison purposes. Additionally, the error and risk measures taken to validate
the stochastic reserves, payments and ultimate losses are discussed. In Section 4.3,
the theoretical background and architecture of the reserving model based on stacking

53

algorithms (Stacked-ANN) are explained. Details about the log-normal approach
proposed for obtaining a stochastic distribution are also given in this section. The
empirical results, error and risk measures of the different reserving models are shown
in Section 4.4. Finally, Section 4.5 presents the main conclusions derived from the
results and comparisons presented in Section 4.4.

4.2 Benchmark models and validation

As previously stated, this section explains the benchmark models and the different
measures used to assess their performance. Thus, the first paragraphs are dedicated
to ODP, Mack’s model, CSR and a nonparametric approach based on ANNs, while
the end of this section presents the indicators used to compare and validate the re-
serve distribution functions estimated by the benchmark models with those simulated
by the model presented in Section 4.3.

The first benchmark model is ODP (Renshaw and Verrall 1998 and England and
Verrall 1999). Denoting the origin year as i and the development year as j, this
reserving model based on the Chain Ladder technique assumes that incremental pay-
ments, Cij , follow an overdispersed Poisson distribution with a variance proportional
to the mean:

E[Cij] = µij V ar[Cij] = ϕµij (59)

where ϕ is the parameter that determines the level of overdispersion. Even though
this model assumes Cij to be a positive integer, the quasi-likelihood (McCullagh and
Nelder 1989) approach allows fits the model to non-integer data, which can be either
positive or negative. The bootstrapping procedure used in this study to compute a
reserve distribution function with the ODP model was introduced by England and
Verrall (1999) and England (2002).

Mack (1993) model, which is also based on the Chain Ladder technique, is the second
benchmark. The main characteristic of this reserving model is the lack of assumptions
about the underlying distribution of the payments. This is achieved by using only
the first two moments:

E[Dij] = λjDi,j−1 V ar[Dij] = σ2
jDi,j−1 (60)

where λj and σ2
j refer to the parameters to be estimated, and Dij is the cumulative

payment. As with the ODP model, a bootstrapping procedure is used to calculate
the reserve distribution function with Mack’s model.

The third benchmark model is CSR, a Bayesian approach introduced by Meyers
(2015). The default calibration and prior distributions suggested by this author will
be used in this study:

� αi ∼ N(lnPi+logelr,
√
10), where logelr ∼ U(−1, 0.5) and Pi are the premiums

by accident year.

54

� βj ∼ U(−5, 5) for j = 1, ..., J − 1. In the last development year, βJ = 0.

� µi,j = αi + βj(1− γ)i−1, where γ ∼ N(0, 0.025).

� Each σj =
∑J

i=j ai, where ai ∼ U(0, 1).

Taking into consideration the aforementioned distributions and parameters, the cu-
mulative payments simulated by the CSR model follow a log-normal distribution,
Di,j ∼ LN(µi,j , σj), subject to the constraint σ1 > σ2 > ... > σJ .

To analyse the improvement in the performance due to the stacking procedure that is
presented in Section 4.3, the last benchmark model to be introduced is an individual
ANN. The inputs and characteristics (hidden layers, activation functions, etc.) of
this algorithm will be the same as those used for the ANN included within the first
level of the Stacked-ANN. Additionally, the log-normal procedure to obtain the re-
serve variability is the same as that for the Stacked-ANN model. To avoid repeating
content, refer to Section 4.3 for further details about the characteristics of the ANN
used as a benchmark.

Once the four benchmark models are explained, the different measures selected to
compare the performance of the Stacked-ANN with the aforementioned reserving
models are presented. Insurance regulations such as the Solvency II Directive and
Swiss Solvency Test ask the general insurance companies to evaluate their expected
reserves and potential deviations from these central scenarios. Thus, the error of
the estimated reserves will be computed in order to compare the performance of
the different models. As several triangles with different levels of payments are used
during this study, the measure for evaluating the reserves is

%RMSE(Rt) =

√∑K
k=1 (R̂

t
k,µ −Rt

k)
2/K

∑K
k=1R

t
k

∗ 100 =
RMSE(Rt)
∑K

k=1R
t
k

∗ 100 (61)

where K is the total number of triangles, t is the calendar year when the reserves
are evaluated, R̂t

k,µ is the reserve predicted by the reserving model using the triangle

k and Rt
k the reserves that were actually observed for that triangle. As it can be

derived from the former expression, the aim of this error measure is the evaluation of
the weight of the root mean squared error over the total reserves. To understand the
model’s performance, this error measure will also be calculated for the next year’s
payments (%RMSE(P t+1)) and the ultimate loss cost (%RMSE(U t)).

In addition to the aforementioned error measures, the reserving risk (RR) per unit
of reserve derived from the use of the different stochastic reserving models will be
analysed. As previously stated, the models are going to be fitted to several triangles,
so the average of the former ratio is taken as a risk measure:

Ratio(RRt
1−α) =

∑K
k=1 (R̂

t
k,1−α − R̂t

k,µ)/R̂
t
k,µ

K
=

∑K
k=1RRt

1−α/R̂
t
k,µ

K
(62)

55

where R̂t
k,µ is the mean and R̂t

k,1−α is the percentile 1 − α of the estimated reserve
distribution function of the company k. A deeper evaluation of the variation esti-
mated by the different stochastic models is carried out by calculating the standard
deviation per unit of reserve:

Ratio(σ) =

∑K
k=1 σ(R̂

t
k)/R̂

t
k,µ

K
(63)

Finally, in order to check the adequacy of the reserving risk calculated for the different
companies, the Kupiec (1995) test is applied in order to verify if the number of
excesses is aligned with the selected confidence level. The empirical results of the
test and measures are collected in Section 4.4.

4.3 Stochastic reserving model based on the stacking algorithm ap-
proach

This section is divided into several subsections in order to sequentially explain the
proposed reserving model. In addition, Figure 24 presents the model architecture in
order to support the explanation.

Model inputs

Before estimating the different reserving models within the first level of the Stacked-
ANN model, the database used, as well as the response and explicative variables for
fitting the algorithms within this level, need to be defined.

The lower and upper triangles needed to fit and validate the models are obtained from
Schedule P of the NAIC Annual Statement. This database (available on the CAS
website) was collected from property and casualty insurers that underwrite business
in the US, and it contains both paid and incurred losses (net of reinsurance) of the
accident years from 1988 to 1997. Ten development years are available for every
accident year. In addition to loss data, gross and net premiums by accident year are
also reported in the database.

In this paper, the different reserving models will be fitted to 200 loss triangles from
NAIC Schedule P, 50 from each of the following lines of business: Commercial Auto
(CA), Private Passenger Auto Liability (PA), Workers’ Compensation (WC) and
Other Liability (OL). As pointed out by Meyers (2015), selecting triangles from in-
surers who made significant changes in business operations is one of the main mistakes
that could be made with NAIC Schedule P data. The coefficient of variation of the
net premiums and the net/gross premium ratio should be appropriate indicators of
changes in business operations, so this author selected insurers that minimize the
aforementioned metrics. The triangles selected by Meyers (2015) are used in this re-
search in order to avoid the former issue and ensure comparability with other studies.

56

https://www.casact.org/research/index.cfm?fa=loss_reserves_data
https://www.casact.org/research/index.cfm?fa=loss_reserves_data

Figure 13: Stacked-ANN model structure

With regard to the explanatory variables, as with other nonparametric reserving
models based on Generalized Additive Models (Hastie and Tibshirani 1986 and Eng-
land and Verrall 2002) or RNN (Kuo 2018), accident i and development j years were
selected to be the inputs of the first-level algorithms. Both were initialized as one
and then scaled to range [0, 1] (hereinafter AY ∗

i and DY ∗
j) in order to facilitate the

fitting of the algorithms (Hastie et al. 2009).

The response variable of these algorithms is the scaled cumulative payments D∗
ij .

Depending on the data availability and the characteristics of the portfolio to be mod-
elled, different exposure measures can be selected to scale Dij . In this paper, net
premiums Pi play the role of exposure measure, as this is the most relevant option
between the variables available in the database.

Loss triangles are a representation of payments over time by accident or underwriting
year. Thus, the training and optimization of the deep learning algorithms within the
Stacked-ANN model architecture need to take into consideration that loss triangles
are composed of temporal series. Accordingly, the last diagonal is selected as a test

57

Figure 14: Train and test sets

set because it contains the most updated information, while the rest of the triangle
is used for fitting the algorithms (Figure 26).

During the optimization process, different configurations of the algorithms are fitted
with the training data. To obtain the best configuration, the test set is predicted, and
the root mean squared error of every option is computed. Finally, the configuration
that minimizes the former test error is selected.

First level: Individual models

The first level of the Stacked-ANN model consists of a Chain Ladder, CSR, and three
algorithms whose inputs were described in Section 4.3. It is worth mentioning that as
ODP and Mack’s model are based on the Chain Ladder technique, the Stacked ANN
model incorporates the core rationale behind these stochastic reserving models. The
machine learning algorithms (RF, GB and ANN) fitted at this step are explained in
the following paragraphs and will be optimized by applying a grid search to some
hyperparameters and by measuring the test error. Additionally, at the end of this
subsection, the Chain Ladder and CSR hypothesis are integrated within the Stacked-
ANN model architecture.

The Random Forest (RF) algorithm introduced by Breiman (2001) averages B dif-
ferent regression trees. In every fitted tree, the explanatory variables and data points
used during the training are randomly selected. Therefore, the formal expression to
predict the scaled cumulative payments is:

D̂∗RF
ij =

D̂RF
ij

Pi
=

∑B
b=1 Tb(X)

B
(64)

Tb represents the b-th regression tree fitted and X the selected subset of AY ∗
i and

DY ∗
j to fit Tb. During the estimation process, the hyper-parameters optimized are

the number of variables randomly selected, N , and the minimum number of obser-
vations to be kept in the terminal nodes of every fitted tree, ObsRF .

The second algorithm within the first level is Gradient Boosting (GB) with regression
trees (Friedman 2000). In this case, the gradient is minimized by sequentially fitting
B regression trees. The subset of data to be used during the estimation process of

58

every tree is also randomly selected. The expression to obtain the predicted scaled
cumulative payments is

D̂∗GB
ij =

D̂GB
ij

Pi
= f̂B−1(X) + δGBTB(X) (65)

f̂B−1(X) represents the function obtained after adding sequentially B − 1 regression
tree models and, δGB is the learning rate. The hyperparameter selected to be opti-
mized during the training process is the minimum number of observations to be kept
in the terminal nodes of every fitted tree, ObsGB. Regarding the hyperparameters,
it is worth mentioning that the learning rate, δGB, is set to 0.01.

The last algorithm of the first layer is an Artificial Neural Network (ANN) (Mcculloch
and Pitts 1943). Following the notation provided by Bishop (2006) and taking into
consideration that the feed-forward ANN used in this paper is composed of 2 hidden
layers with 5 neurons each, the formal expression to obtain the predictions can be
defined as follows:

D̂∗ANN
ij = D̂ANN

ij /Pi =

= h(3)




5∑

k=1

w
(3)
1,kh

(2)




5∑

j=1

w
(2)
k,jh

(1)

(
2∑

i=1

w
(1)
j,i xi + w

(1)
j,0

)
+ w

(2)
k,0


+ w

(3)
1,0


 (66)

where h(n) is the activation function associated with layer n, w
(n)
z,v is the v-th weight

associated with the neuron z inside layer n, and xi refers to the i-th input variable of
the database composed of two explanatory variables, the scaled accident (AY ∗

i) and
development year (DY ∗

j). The percentage of dropout regularization θ is the hyper-
parameter to be optimized by applying a grid search and measuring the test error.
As with the other algorithms, upper triangle predictions will be used as input within
the second level of the architecture.

In addition to the three aforementioned algorithms, Chain Ladder assumptions are
incorporated in the model architecture. To do so, the development factors of the
Chain Ladder technique are used as an input in the second level of the Stacked-ANN
model:

λ̂∗CL
j =

∑n−j−1
i=1 D∗

ij∑n−j−1
i=1 D∗

ij−1

(67)

where {λ̂∗CL
j : j = (2, 3, . . . , J)}. Although the Chain Ladder methodology does not

produce any parameters for j = 1, the second-level algorithm needs a value for j = 1.
Thus, within the Stacked-ANN methodology, it is assumed that λ̂∗CL

1 = 1.

Finally, CSR methodology (Meyers 2015) is integrated. To achieve this, 10,000
MCMC simulations are produced within the first level of the Stacked-ANN model.
Then, the expected scaled cumulative payments of the upper triangle arising from

59

the aforementioned simulations are used as input in the algorithm within the second
level of the Stacked-ANN model:

D̂∗CSR
ij =

∑10,000
k=1 D̂CSR

ijk /Pi

10, 000
(68)

Second level: Stacking algorithm

As previously stated, the inputs of this level are the scaled cumulative payments pre-
dicted by the algorithms named in Section 4.3 (RF, GB and ANN), the development
factors based on the Chain Ladder technique and the expected scaled cumulative
payments simulated by the CSR model. On the other hand, the output of the ANN
within the second level and the Stacked-ANN are the cumulative payments D̂∗S−ANN

ij

by accident and development year.

Figure 15: Second-level structure

Similar to the first-level algorithms, the training and optimization processes of the
ANN within this level need to recognize that loss triangles are composed of a set of
time series. The most recent information of the loss triangles is the last diagonal;
thus, the explicative and response variables of this diagonal are selected as a test set,
while the rest of the upper triangle data is used as a training set.

Once the test and training sets are defined, the optimum configuration of the ANN
needs to be obtained. To do so, the training data are used to fit ANNs with different
levels of dropout regularization θ. Then, the root mean squared error is computed
by taking into consideration the predictions made by every ANN configuration. The
θ that minimizes the test error is selected.

Due to the Stacked-ANN architecture, two substeps need to be carried out in or-
der to make the final predictions. First, the lower triangle of the first-level models

60

need to be predicted. Second, the data predicted in the previous step are used as
input of the ANN within the second layer to make the final predictions. Thus, the
Stacked-ANN model tries to obtain more accurate predictions by combining different
reserving models and algorithms.

Figure 24 shows the overall Stacked-ANN architecture, and Figure 27 provides a
detailed summary of the process defined in the previous paragraphs. Technical details
about the feedforward ANN fitted within this level of the Stacked-ANN model are
presented below:

� It contains two hidden layers with 5 neurons each. The sigmoid activation
function was selected for all neurons within the hidden layers while the linear
activation function was used in the output layer, which is composed of one
neuron.

� The selected optimization algorithm is Adaptive Moment Estimation (ADAM),
which was created by Kingma and Ba (2014). This method consists of a pro-
gressive adaptation of the initial learning rate, taking into consideration current
and previous gradients. The default calibration proposed by the authors for the
ADAM parameters is applied as β1 = 0.9 and β2 = 0.999. Thus, the ANN pa-
rameters are updated as follows:

ωt = ωt−1 − δANN
m̂t√
v̂t + ϵ

(69)

m̂t =
β1mt−1 + (1− β1)gt

1− βt
1

(70)

v̂t =
β2vt−1 + (1− β2)g

2
t

1− βt
2

(71)

where ω is the parameter to be updated and gt the gradient in the epoch t.
The initial learning rate is set to δANN = 0.01.

� The number of epochs is 10,000, and the batch size is equal to the length of the
data used for training the ANN.

� The backward pass calculations are done according to the selection of the root
mean squared error as a loss function.

� As previously stated, the percentage of dropout regularization θ is the hyper-
parameter to be optimized by applying a grid search and measuring the test
error.

Taking the abovementioned details into consideration, the scaled cumulative pay-
ments predicted by the Stacked-ANN model are obtained by means of the following

61

expression:

D̂∗S−ANN
ij =

D̂∗S−ANN
ij

Pi
= f̂(D̂∗RF

ij , D̂∗GB
ij , D̂∗ANN

ij , λ̂∗CL
j , D̂∗CSR

ij) =

= h(3)




5∑

k=1

w
(3)
1,kh

(2)




5∑

j=1

w
(2)
k,jh

(1)

(
5∑

i=1

w
(1)
j,i xi + w

(1)
j,0

)
+ w

(2)
k,0


+ w

(3)
1,0




(72)

Log-normal simulation

To compute the Kupiec test and the measures related to reserve variability (Section
4.2), the deviation around the central scenario predicted by the Stacked-ANN model
needs to be obtained. Due to its right skewness and long tail, log-normal distribution
is widely used within reserving models to derive the variability of the claims cost.
Many papers used the lognormal distribution to compute this variability (see, among
others, Kremer (1982), Antonio et al. (2006), Rehman and Klugman (2009), Weke
and Ratemo (2013), Meyers (2015) or more recently, Omari et al. (2018)).

In this study, a log-normal distribution is used to compute the reserve variability
around the central scenario predicted by the Stacked-ANN. To do so, the parameters
of this distribution are obtained using the aforementioned predictions and the mo-
ments method. Therefore, regardless of the distribution selected, the central scenario
is that predicted by the Stacked-ANN, and thus, changing the distribution has no
effect on the error measures described in Section 4.2. Nevertheless, changes to the
log-normal hypothesis will modify the variability and, consequently, the risk measures
(Ratio(RRt

1−α) and Ratio(σ)) and the results of the Kupiec test. Below, the steps
of the procedure are described:

1. Starting with the scaled cumulative payments predicted by the Stacked-ANN
(D̂∗S−ANN

ij), the variance by development year is computed as follows:

V ar[D̂∗S−ANN
j] =

∑n
i=1

(
D̂∗S−ANN

ij − E[D̂∗S−ANN
j]

)2

n− 1
(73)

where n refers to the total number of accident years and E[D̂∗S−ANN
j] is the

mean of the scaled cumulative payments by development year.

2. By using the method of the moments and values calculated in the previous step,
the parameters of the log-normal distribution are obtained:

µ̂ij [D̂
∗S−ANN] = ln


 E[D̂∗S−ANN

j]2
√
V ar[D̂∗S−ANN

j] + E[D̂∗S−ANN
j]2


 (74)

σ̂2
j [D̂

∗S−ANN] = ln

(
1 +

V ar[D̂∗S−ANN
j]

E[D̂∗S−ANN
j]

)
(75)

62

3. For t = (1, 2, ..., T):

(a) A triangle is generated by sampling random values from the following

distribution function: Ĉ∗S−ANN,k
ij ∼ LN(µ̂ij [D̂

∗S−ANN], σ̂2
j [D̂

∗S−ANN]).

(b) The final simulated values, ĈS−ANN,k
ij , are obtained by removing the scal-

ing. Hence, the scaled payments obtained in the previous step are multi-
plied by Pi.

4.4 Results

In this section, the data used, the fitting process and a final comparison between the
Stacked-ANN and the benchmark models are shown.

Data and fitting of the Stacked-ANN

As stated in Section 4.3, the upper and lower triangles required to fit and validate the
models are obtained from Schedule P of the NAIC Annual Statement. This database
contains the losses, reserves and premiums from 1988 until 1997 of different property
and casualty insurers that underwrite business in the United States.

Meyers (2015) indicated that one of the main mistakes with the NAIC Schedule P data
is selecting triangles from insurers that made significant changes in their businesses.
Meyers used the coefficient of variation of the net premiums and the net-on-gross
ratio to select 50 triangles of each of the following lines of business: Commercial
Auto (CA), Private Passenger Auto Liability (PA), Workers’ Compensation (WC)
and Other Liability (OL). This triangle selection was also used in this paper in order
to ensure comparability with other studies that take as a reference the selection made
by Meyers (2015). For further details about the data used to fit the Stacked-ANN,
refer to Section 4.3.

Once the data have been presented, the subsection focuses on the fitting of the
Stacked-ANN. The first level of the proposed model is composed of three individual
algorithms (RF, GB and ANN), the CSR reserving model and the development factors
derived from the use of the Chain Ladder technique. The second level is composed
of an ANN. As pointed out in Sections 4.3 and 4.3, the optimum hyperparameters of
the algorithms within the first and second levels are obtained for each triangle using
a grid search. Table 9 lists the minor differences across the lines of business in the
means of the 50 optimum hyperparameters obtained for each algorithm.

63

Table 9: Mean of the optimum hyperparameters by line of business

Line of RF first GB first ANN first ANN second
Business level level level level

CA ObsRF = 2.04; N = 1.94 ObsGB = 4.38 θ = 0.10 θ = 0.09
PA ObsRF = 2.66; N = 1.86 ObsGB = 4.22 θ = 0.07 θ = 0.06
WC ObsRF = 1.78; N = 1.68 ObsGB = 3.66 θ = 0.13 θ = 0.12
OL ObsRF = 1.50; N = 1.82 ObsGB = 4.24 θ = 0.12 θ = 0.12

Source: own elaboration

As previously stated, the development factors (λ̂∗CL
j) obtained by applying the Chain

Ladder technique to D∗
ij are used as input for the ANN included within the second

level of the Stacked-ANN model. These values are calculated for each triangle. Table
10 presents the means of the development factors by line of business.

With regard to the three algorithms of the first layer and the Chain Ladder tech-
nique, the CSR model is also incorporated in the Stacked-ANN architecture by means
of inputting D̂∗CSR

ij in the second-level algorithm. This Bayesian reserving model is
fitted to every single triangle. Tables 11 and 12 list the means of the CSR parameters
by line of business.

Table 10: Mean of the development factors by line of business

Development factors CA PA WC OL

λ̂∗CL
1 1.89 1.77 2.21 6.66

λ̂∗CL
2 1.35 1.22 1.29 1.90

λ̂∗CL
3 1.16 1.10 1.13 1.33

λ̂∗CL
4 1.08 1.06 1.07 1.18

λ̂∗CL
5 1.04 1.03 1.04 1.10

λ̂∗CL
6 1.02 1.01 1.02 1.04

λ̂∗CL
7 1.00 1.01 1.02 1.02

λ̂∗CL
8 1.01 1.00 1.01 1.02

λ̂∗CL
9 1.00 1.00 1.01 1.01

λ̂∗CL
10 1.00 1.00 1.00 1.00

Source: own elaboration

Table 11, which is focused on the parameters needed to calculate the mean of the
cumulative payments, presents positive γ and negative βj for every line of business
with the unique exception of CA, where β6, β7, β8 and β9 are positive. According to
the model definition, the claims settlement speed increases when βj < 0 and γ > 0.
This common trend across the different lines of business about the claim settlement
rate of the NAIC Schedule P data was already observed by Meyers (2015).

64

Table 11: CSR parameters by line of business: Di,j mean

CSR CSR
parameter CA PA WC OL parameter CA PA WC OL

α1 7.094 8.959 8.423 6.162 β1 -1.235 -0.987 -1.447 -2.446
α2 7.166 9.047 8.612 6.269 β2 -0.514 -0.400 -0.626 -1.332
α3 7.171 9.148 8.779 6.330 β3 -0.229 -0.198 -0.322 -0.709
α4 7.280 9.143 8.666 6.309 β4 -0.085 -0.097 -0.178 -0.363
α5 7.348 9.201 8.644 6.334 β5 -0.003 -0.042 -0.089 -0.173
α6 7.347 9.282 8.537 6.515 β6 0.039 -0.017 -0.057 -0.079
α7 7.554 9.374 8.595 6.480 β7 0.060 -0.008 -0.041 -0.045
α8 7.540 9.389 8.514 6.327 β8 0.028 -0.001 -0.029 -0.030
α9 7.494 9.464 8.543 6.543 β9 0.012 -0.001 -0.013 -0.014
α10 7.556 9.492 8.500 6.327 γ 0.021 0.008 0.016 0.028

Source: own elaboration

The comparison of the CSR deviation by development year presented in Table 12
reveals that OL is the most volatile portfolio, while PA has the most stable reserves.
For CA and WC, the reserve variability estimated by this Bayesian reserving model
is quite similar, and it is located at an intermediate point between the OL and PA
lines of business.

Table 12: CSR parameters by line of business: Di,j STD

CSR Parameter CA PA WC OL

σ1 0.303 0.028 0.236 0.771
σ2 0.176 0.011 0.164 0.488
σ3 0.109 0.007 0.117 0.327
σ4 0.079 0.004 0.090 0.229
σ5 0.063 0.003 0.069 0.164
σ6 0.052 0.002 0.052 0.120
σ7 0.043 0.002 0.037 0.087
σ8 0.035 0.001 0.025 0.061
σ9 0.026 0.001 0.016 0.038
σ10 0.014 0.001 0.008 0.019

Source: own elaboration

Comparison against benchmark models

Once the Stacked-ANN reserving model is fitted, its performance is compared with
the benchmark models explained in Section 4.2 (ODP, Mack, CSR and an individual
ANN).

Table 13 lists the %RMSEs associated with reserves Rt, next year payments P t+1

and ultimate losses U t by line of business and reserving model. For further details

65

about the measures presented in the table, refer to Section 4.2.

Table 13: %RMSE by line of business and reserving model

Error Line of ODP Mack’s CSR ANN Stacked
Measure Business Model ANN

%RMSE(Rt) CA 0.896% 0.896% 0.534% 1.768% 0.739%
%RMSE(P t+1) CA 0.668% 0.669% 0.573% 1.775% 0.876%
%RMSE(U t) CA 0.170% 0.171% 0.102% 0.337% 0.141%

%RMSE(Rt) PA 1.012% 1.004% 0.823% 5.006% 0.254%
%RMSE(P t+1) PA 1.290% 1.286% 0.258% 1.900% 0.320%
%RMSE(U t) PA 0.131% 0.131% 0.107% 0.651% 0.033%

%RMSE(Rt) WC 1.295% 1.286% 1.751% 1.943% 1.058%
%RMSE(P t+1) WC 0.887% 0.880% 1.531% 1.525% 0.676%
%RMSE(U t) WC 0.222% 0.221% 0.301% 0.333% 0.182%

%RMSE(Rt) OL 5.274% 5.086% 3.153% 5.725% 0.722%
%RMSE(P t+1) OL 2.216% 2.102% 5.528% 0.268% 1.095%
%RMSE(U t) OL 1.760% 1.709% 1.056% 1.918% 0.242%

Source: own elaboration

The results obtained by using the different reserving models are summarized as fol-
lows:

� The Stacked-ANN model outperforms the individual ANN. The proposed ar-
chitecture is empirically more accurate because it can learn from the reserving
models (Chain Ladder and CSR) and machine learning algorithms (RF, GB and
ANN) included within the first level of the Stacked-ANN, while the individual
ANN must base its training only on the origin data (AY ∗

i and DY ∗
j) without

taking advantage of other models that are able to capture different patterns
and characteristics.

� As they are based on Chain Ladder assumptions, the mean of the distributions
generated by ODP and Mack’s model should converge to the values obtained
by applying the deterministic approach of the Chain Ladder technique. Con-
sequently, the error measures observed in Table 13 for these two stochastic re-
serving models are almost the same. The table also reveals that ODP and Mack
are less accurate than the Stacked-ANN model in most cases. %RMSE(P t+1)
of CA is a unique category in which the benchmark models based on the Chain
Ladder technique are more accurate than the proposed methodology.

� Regarding the comparison between Stacked-ANN and CSR, Rt and U t of PA,
WC and OL estimated by the proposed model are significantly more accurate
than those obtained when using the Bayesian model. Additionally, %RMSE(P t+1)
of the Stacked-ANN model is lower in WC and OL. Thus, in the majority of
cases, the CSR model is outperformed by the proposed methodology.

66

Figure 16: %RMSE(Rt) by line of business and volume of reserves.

To enhance the analysis of the results presented in Table 13, Figure 25 shows the
%RMSE(Rt) by line of business and volume of reserves. First, the companies were
classified in four different groups taking into consideration the volume of reserves and
the quartiles associated with the distribution. Then, the error rate of each reserving
model was computed by line of business. The former calculation was carried out
without making any distinction between lines of business.

The results of the aforementioned figure reveal that when no distinction between
lines of business is made, the Stacked-ANN architecture outperforms the rest of the
reserving models regardless of the company size. This difference is especially relevant
for those companies with a higher level of reserves, whose results are collected in the
graph labelled ‘Percentile: 75%-100%’. As expected, some fluctuations in the perfor-
mance of the models are observed when the results are analysed by line of business
and volume of reserves. Nonetheless, the error rate of the Stacked-ANN tends to be
lower than the rest of the benchmark models.

In accordance with the reasons explained within the former paragraphs, it can be
concluded that the Stacked-ANN model takes advantage of the different characteris-
tics of several reserving models and machine learning algorithms, leading to a more

67

flexible and precise architecture in most of the cases.

In addition to the error analysis, the risk measures (Ratio(RRt
1−α) and Ratio(σ))

and the p-values of the Kupiec test obtained by using each reserving model are com-
pared. Before examining the results, it is important to point out that Mack’s model
does not make any assumptions about the payment distribution, ODP assumes that
incremental payments follow an overdispersed Poisson distribution, and CSR, ANN
and Stacked-ANN presume that cumulative payments are log-normally distributed.
The hypothesis taken regarding the payments impact the distribution shape and con-
sequently the risk measures. Therefore, in this case, ODP and Mack’s model are not
going to converge like they did in the central scenario.

Table 14: Risk measures by line of business and reserving model

Risk Line of ODP Mack’s CSR ANN Stacked
measures Business Model ANN

Ratio(RRt
0.995) CA 1.936 1.460 2.776 1.387 1.884

Ratio(σ) CA 2.561 0.461 0.681 0.456 0.642
Kupiec p-value CA ≥ 0.05 ≥ 0.05 ≥ 0.05 < 0.05 ≥ 0.05

Ratio(RRt
0.995) PA 0.544 0.373 0.918 0.783 0.888

Ratio(σ) PA 0.277 0.135 0.270 0.279 0.332
Kupiec p-value PA ≥ 0.05 ≥ 0.05 ≥ 0.05 ≥ 0.05 ≥ 0.05

Ratio(RRt
0.995) WC 2.525 0.691 1.797 2.194 2.149

Ratio(σ) WC 1.273 0.245 0.474 0.682 0.717
Kupiec p-value WC < 0.05 < 0.05 < 0.05 < 0.05 ≥ 0.05

Ratio(RRt
0.995) OL 7.506 3.287 4.843 2.315 3.522

Ratio(σ) OL 6.275 1.217 1.119 0.690 1.099
Kupiec p-value OL ≥ 0.05 ≥ 0.05 ≥ 0.05 ≥ 0.05 ≥ 0.05

Source: own elaboration

The Ratio(RRt
1−α) and the p-values collected in Table 29 evaluate the 99.5 percentile

(α = 0.005) of the reserve distribution function, which is the confidence level set up
by Solvency II to calculate the risk of the insurance companies. The results of this
table are summarized below:

� According to the results of the Kupiec test, the Stacked-ANN generates an
adequate risk assessment for every line of business. It is worth mentioning
that when compared with the individual ANN, the empirical results show that
the stacking process not only improves the error rate but also allows for the
generation of more appropriate distribution functions using the same simulation
approach (presented in Section 4.3). With regard to the comparison between
the Stacked-ANN and the rest of benchmark models, the Kupiec test reveals
that CSR, ODP and Mack’s model do not produce appropriate risk measures
for WC, while the proposed methodology passes the test.

� Intuitively, the duration of the liabilities should have a close relation with

68

Ratio(RRt
0.995) and Ratio(σ): the longer the duration, the higher is the un-

certainty around each economic unit of reserve. The development factors based
on the Chain Ladder technique measure the claim settlement speed. Therefore,
they can be considered a good indicator of the duration of liabilities. A de-
velopment factor at year t, λt, means that the t + 1 cumulative payment is λt

times the cumulative claims settled at t. Consequently, high development fac-
tors indicate a long duration, while low values reflect a high settlement speed.
According to Table 10, OL is the line of business with the highest duration,
while PA has the lowest. CA and WC, whose durations are in a similar range,
are located at an intermediate point between PA and OL. As can be observed
in Table 29, this intuition about the relation between the duration and reserve
uncertainty is followed by the Stacked-ANN and benchmark models.

� In general, the Ratio(RRt
0.995) and Ratio(σ) by line of business are similar

across the different reserving models. The two main exceptions are the risk
measures of ODP for OL and Mack for WC. The high values observed in the
ODP estimations for OL are due to two companies whose RRt

1−α/R̂
t
k,µ ratios

are higher than 60, while in the second case, Mack’s model systematically un-
derestimates the variability of the payments, leading to lower values compared
with the rest of the models and an inadequate risk assessment according to the
results of the Kupiec test. The Ratio(RRt

0.995) and Ratio(σ) of the Stacked-
ANN are in line with the majority of the benchmark models, and no extremely
high/low risk measures are observed in Table 29.

Sensitivity analysis of the number of hidden layers

As explained in Section 4.3, the ANNs included within the proposed Stacked-ANN
architecture are composed of two hidden layers, each with five neurons. To analyse
the impact of the ANN complexity (Cybenko 1989, Hornik et al. 1989, Hornik 1991
and Leshno et al. 1993, among others, introduced the theoretical framework to anal-
yse the approximation capabilities of neural networks) on the predictive power of the
Stacked-ANN model, a sensitivity analysis of the number of hidden layers was carried
out. Thus, Table 15 compares the configuration selected for the Stacked-ANN model
in this paper with two alternative configurations: ANNs composed of one and three
hidden layers with five neurons each.

Two main conclusions can be drawn from the results obtained. First, the high level
of error of the one hidden layer model demonstrates that more complexity is needed
in order to properly predict general insurance reserves. The structure proposed dur-
ing this study for the Stacked-ANN model (two hidden layers) performs significantly
better than this first alternative in every single line of business.

Second, the performance of the three hidden layers alternative is similar to that of
the suggested architecture. As no significant differences are observed, the two hidden
layer structure is considered more appropriate because the three hidden layer struc-
ture adds complexity to the model without a significant improvement in the error rate.

69

Table 15: Sensitivity analysis of the number of hidden layers

Hidden Line of
layers Business %RMSE(Rt) %RMSE(P t+1) %RMSE(U t)

1 CA 0.840% 0.766% 0.160%
2 CA 0.739% 0.876% 0.141%
3 CA 0.780% 0.643% 0.149%

1 PA 2.512% 3.507% 0.326%
2 PA 0.254% 0.320% 0.033%
3 PA 0.231% 0.115% 0.030%

1 WC 1.398% 1.296% 0.240%
2 WC 1.058% 0.676% 0.182%
3 WC 1.140% 1.030% 0.196%

1 OL 1.419% 1.145% 0.475%
2 OL 0.722% 1.095% 0.242%
3 OL 0.613% 0.794% 0.205%

Source: own elaboration

4.5 Conclusions

This paper introduced a stochastic reserving model based on stacking different ma-
chine learning algorithms (RF, GB and ANN) and reserving models (Chain Ladder
and CSR). The predictive power and reserve volatility of the proposed approach,
named Stacked-ANN, were compared with stochastic reserving models based on the
Chain Ladder technique (ODP and Mack’s model), an individual ANN and CSR,
which is a Bayesian loss reserving model.

Three main conclusions were drawn. First, a comparison of the Stacked-ANN with the
individual ANN revealed that the predictions of the reserves Rt, next year payments
P t+1 and ultimate losses U t made by machine learning algorithms were improved by
applying the proposed stacking procedure. The hybrid architecture learns patterns
and characteristics from several algorithms and reserving models, resulting in a more
flexible and accurate model than an individual ANN, whose inputs for training are
limited to the original data.

Second, the empirical results indicated that the Stacked-ANN model is more precise
than CSR and the most widely used stochastic reserving models based on the Chain
Ladder technique (ODP and Mack’s model). In particular, the Rt and U t predictions
made by the Stacked-ANN were more precise than those of ODP and Mack’s model in
all the lines of business analysed, while the Bayesian model (CSR) was outperformed
by the proposed architecture in three out of four lines of business. It is important to
remark that in Other Liability (OL), which is a line of business with a longer duration
and therefore a portfolio where the importance of an accurate reserves estimation is
especially relevant, the error of the models based on Chain Ladder or Bayesian statis-
tics was more than four times the error of the Stacked-ANN. Therefore, it can be

70

concluded that machine or deep learning techniques can be used to improve the per-
formance of the traditional reserving techniques based on Bayesian statistics or the
Chain Ladder.

With regard to accuracy, it is worth mentioning that the proposed structure of the
ANNs (two hidden layers) within the Stacked-ANN model seems to be the optimal
configuration according to the empirical results. On the one hand, the error increased
significantly when the number of hidden layers is reduced to one. On the other hand,
the results demonstrated that increasing the number of hidden layers does not have
an impact on the accuracy. Thus, increasing the complexity of the ANNs by up to
three hidden layers will extend the training phase without making any significant
improvement in the error.

Third, the results of a Kupiec test revealed that the risk estimation made by the
Stacked-ANN can be considered as appropriate in all lines of business analysed, while
the rest of the benchmark models failed the test at least once. In particular, CSR,
ODP and Mack’s model were unable to produce an appropriate p-value for the Kupiec
test in the Workers’ Compensation (WC) business, while the individual ANN failed
the test in Commercial Auto (CA) and, as with the previous models, in Workers’
Compensation. Taking into consideration that the same log-normal approach was
used to obtain the reserves variability of the individual ANN and the Stacked-ANN,
it must be mentioned that the stacking procedure not only increases the accuracy
but also allows for the simulation of more adequate distribution functions.

The aforementioned robustness and predictive power of the Stacked-ANN compared
with other reserving models suggest that further investigation should be conducted
about the possible application of this model within the actuary in the box approach.
The generation of outliers is one of the main problems when using the former method-
ology with Chain Ladder models. Therefore, the robustness of the Stacked-ANN can
be exploited in order to improve the actuary in the box methodology, which is widely
used to assess the fact that reserves can be insufficient to cover their runoff over a
12-month time horizon.

71

5 Multi-Transformer: A new neural network-based ar-
chitecture for forecasting S&P volatility

Authors: Eduardo Ramos-Pérez, Pablo J. Alonso-González and José Javier Núñez-
Velázquez.

Journal: Mathematics. 9/15 1-18. ISSN 2227-7390.

DOI: 10.3390/math9151794

Journal Impact Factor in 2020 (last available): 2.258
Rank by Journal Impact Factor in 2020 (last available): 24/330 in Mathe-
matics (Q1-D1).

Journal Citation Indicator in 2020 (last available): 2.10
Rank by Journal Citation Indicator in 2020 (last available): 18/471 in Math-
ematics (Q1-D1).

Published: July 2021

Citations: 2 (Google Scholar).

Arxiv Repository: https://arxiv.org/abs/2109.12621
This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

72

https://arxiv.org/abs/2109.12621
http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

Events such as the Financial Crisis of 2007-2008 or the Covid-19 pandemic caused
significant losses to banks and insurance entities. They also demonstrated the
importance of using accurate equity risk models and having a risk management
function able to implement effective hedging strategies. Stock volatility forecasts
play a key role in the estimation of equity risk and, thus, in the management
actions carried out by financial institutions. Therefore, this paper has the aim of
proposing more accurate stock volatility models based on novel machine and deep
learning techniques. This paper introduces a neural network-based architecture,
called Multi-Transformer. Multi-Transformer is a variant of Transformer models,
which have already been successfully applied in the field of natural language
processing. Indeed, this paper also adapts traditional Transformer layers in
order to be used in volatility forecasting models. The empirical results obtained
in this paper suggest that the hybrid models based on Multi-Transformer and
Transformer layers are more accurate and, hence, they lead to more appropriate
risk measures than other autoregressive algorithms or hybrid models based on
feed forward layers or long short term memory cells.

Keywords: Deep Learning, Neural Networks, Risk Management, Stock Volatility, Trans-
former.

5.1 Introduction

Since the Financial Crisis of 2007-2008, financial institutions have enhanced their
risk management framework in order to meet the new regulatory requirements set
by Solvency II or Basel III. These regulations have the aim of measuring the risk
profile of financial institutions and minimizing losses from unexpected events such
as the European sovereign debt crisis or Covid-19 pandemic. Even though banks
and insurance entities have reduced their losses thanks to the efforts made in the
last years, unexpected events still cause remarkable losses to financial institutions.
Thus, efforts are still required to further enhance market and equity risk models in
which stock volatility forecasts play a fundamental role. Volatility, understood as a
measure of an asset uncertainty (Hull 2015 and Rajashree and Ranjeeeta 2015), is
not directly observed in stock markets. Thus, taking into consideration the stock
market movements, a statistical model is applied in order to compute the volatility
of a security.

GARCH-based models (Engle 1982 and Bollerslev 1986) are widely used for volatil-
ity forecasting purposes. This family of models is especially relevant because it takes
into consideration the volatility clustering observed by Mandelbrot (1963). Never-
theless, as the persistence of conditional variance tends to be close to zero, Engle
and Lee (1999), Haas et al. (2004a), Haas et al. (2004b) and Haas and Paolella
(2012) developed more flexible variations of the traditional GARCH models. In addi-
tion, the models introduced by Nelson (1991) (EGARCH) and Glosten et al. (1993)
(GJR-GARCH) take into consideration that stocks volatility behaves differently de-
pending on the market trend, bearish or bullish. Multivariate GARCH models were
developed by Kraft and Engle (1982) and Engle et al. (1984). Bollerslev et al.
(1988) applied the previous model to financial time series, while Tse and Tsui (2002)

73

introduced a time-varying multivariate GARCH. Dynamic conditional correlation
GARCH, BEKK-GARCH and Factor-GARCH were other variants of this family that
were developed by Engle (2002), Engle and Kroner (1995) and Engle et al. (1990)
respectively. Finally, it is worth mentioning that, in contrast to classical GARCH, the
first-order zero-drift GARCH model (ZD-GARCH) proposed by Zhang et al. (2018)
is non-stationary regardless of the sign of Lyapunov exponent and, thus, it can be
used for studying heteroscedasticity and conditional heteroscedasticity together.

Another relevant family is composed by stochastic volatility models. As they assume
that volatility follows its own stochastic process, these models are widely used in
combination with Black-Scholes formula to assess derivatives price. The most pop-
ular process of this family is the Heston (1993) model which assumes that volatility
follows an Cox-Ingersoll-Ross (Cox, Ingersoll, and Ross 1985) process and stock re-
turns a Brownian motion. The main challenge of the Heston model is the estimation
of its parameters. Melino and Turnbull (1990) and Andersen and Sorensen (1999)
proposed a generalized method of moments to obtain the parameters of the stochas-
tic process, while Durbin and Koopman (1997), Broto and Ruiz (2004), Danielsson
(2004) and Andersen (2009) used a simulation approach to estimate them. Other
relevant stochastic volatility processes are Hull-White (Hull and White 1987) and
SABR (Hagan et al. 2002) models.

The last relevant family is composed of those models based on machine and deep
learning techniques. Even though GARCH models are considered part of the ma-
chine learning tool-kit, these models are considered another different family due to
the significant importance that they have in the field of stock volatility. Thus, this
family takes into consideration the models based on the rest of the machine and deep
learning algorithms such as artificial neural networks (Mcculloch and Pitts 1943),
gradient boosting with regression trees (Friedman 2000), random forests (Breiman
2001) or support vector machines (Cortes and Vapnik 1995). Gestel et al. (2001),
Gupta and Dhinga (2012), Dias et al. (2019) applied machine learning techniques
such as Support Vector Machines or hidded Markov models to forecast financial time
series. Hamid and Iqbid (2002) applied Artificial Neural Networks (ANNs) to demon-
strate that the implied volatility forecasted by this algorithm is more accurate than
Barone-Adesi and Whaley models.

ANNs have been also combined with other statistical models with the aim of improv-
ing the forecasting power of individual ANNs. The most common approach applied
in the field of stocks volatility is merging GARCH-based models with ANNs. Roh
(2006), Hajizadeh et al. (2012), Kristjanpoller et al. (2014), Monfared and Enke
(2014), Lu et al. (2016), Kim and Won (2018) and Back and Kim (2018) developed
different architectures based in the previous approach for stock volatility forecasting
purposes. All these authors demonstrated that hybrid models overcome the perfor-
mance of traditional GARCH models in the field of stock volatility forecasting. It is
also worth mentioning the contribution of Bildirici and Ersin (2009), who combined
different GARCH models with ANNs in order to compare their predictive power.
ANN-GARCH models have been also applied to forecast other financial time series

74

such as metals (Kristjanpoller and Minutolo 2015 and Kristjanpoller and Hernández
2017) or oil (Kristjanpoller and Minutolo 2016 and Verma 2021) volatility. Apart
from the combination with GARCH-based models, ANNs have been merged with
other models for volatility forecasting purposes. Ramos-Pérez et al. (2019) merged
ANNs, random forests, support vector machines (SVM) and gradient boosting with
regression trees in order to forecast S&P500 volatility. This model overcame the per-
formance of a hybrid model based on feed forward layers and GARCH. Vidal and
Kristjanpoller (2020) proposed an architecture based on convolutional neural net-
works (CNNs) and long-short term memory (LSTM) units to forecast gold volatility.
LSTMs were also used by Jung and Choi (2021) to forecast currency exchange rates
volatility. It is also worth mentioning that GARCHmodels have not been only merged
with ANNs, Peng et al. (2018) combined SVM with GARCH-based models in order
to predict cryptocurrencies volatility.

The aim of this paper is to introduce a more accurate stock volatility model based
on an innovative machine and deep learning technique. For this purpose, hybrid
models based on merging Transformer and Multi-Transformer layers with other ap-
proaches such as GARCH-based algorithms or LSTM units are introduced by this
paper. Multi-Transformer layers, which are also introduced in this paper, are based
on the Transformer architecture developed by Vaswani et al. (2017). Transformer
layers have been successfully implemented in the field of natural language process-
ing (NLP). Indeed, the models developed by Devlin et al. (2018) and Brown et al.
(2020) demonstrated that Transformer layers are able to overcome the performance
of traditional NLP models. Thus, this recently developed architecture is currently
considered the state-of-the-art in the field of NLP. In contrast to LSTM, Transformer
layers do not incorporate recurrence in their structure. This novel structure relies
on a multi-head attention mechanism and positional embeddings in order to forecast
time series. As Vaswani et al. (2017) developed Transformer for NLP purposes, po-
sitional embeddings are used in combination with word embeddings. The problem
faced in this paper is the forecasting of stock volatility and, thus, the word embedding
is not needed and the positional embedding has been modified as it is explained in
Section 5.2.

In contrast to Transformer, Multi-Transformer randomly selects different subsets of
training data and merges several multi-head attention mechanisms to produce the
final output. Following the intuition of bagging, the aim of this architecture is to
improve the stability and accurateness of the attention mechanism. It is worth men-
tioning that the GARCH-based algorithms used in combination with Transformer
and Multi-Transformer layers are GARCH, EGARCH, GJR-GARCH, TrGARCH,
FIGARCH and AVGARCH.

Therefore, three main contributions are provided by this study. First, Transformer
layers are adapted in order to forecast stocks volatility. In addition, an extension of
the previous structure is presented (Multi-Transformer). Second, this paper demon-
strates that merging Transformer and Multi-Transformer layers with other models
lead to more accurate volatility forecasting models. Third, the proposed stock volatil-

75

ity models generate appropriate risk measures in low and high volatility regimes. The
Python implementation of the volatility models proposed in this paper is available in
https://github.com/EduardoRamosP/MultiTransformer.

As it is shown by the extensive literature included in this section, stock volatility
forecasting has been a relevant topic not only for financial institutions and regulators
but also for the academia. As financial markets can suffer drastic sudden drops, it
is highly desirable to use models that can adequately forecast volatility. It is also
useful to have indicators that can accurately measure risk. This paper makes use of
recent deep and machine learning techniques to create more accurate stock volatility
models and appropriate equity risk measures.

The rest of the paper is organized as follows: Section 5.2 describes the dataset,
the measures used for validating the volatility forecasts and provides a look at the
volatility models used as benchmark. Then, this section presents the volatility fore-
casting models proposed in this paper, which are based on Transformer and Multi-
Transformer layers. As NLP Transformers need to be adapted in order to be used
for volatility forecasting purposes and Multi-Transformer layers are introduced by
this paper, explanations about the theoretical background of these structures are
also given. The analysis of empirical results is presented in section 5.3. Finally, the
results are discussed in Section 5.4, followed by concluding remarks in Section 5.5.

5.2 Materials and Methods

This section is divided in five different subsections. The first one (Section 5.2) de-
scribes the data for fitting the models. The measures for validating the accuracy and
value at risk (VaR) of each stock volatility model are explained in Section 5.2. Sec-
tion 5.2 presents the stock volatility models and algorithms used for benchmarking
purposes. Section 5.2 explains the adaptation of Transformer layers in order to be
used for volatility forecasting purposes and, finally, the Multi-Transformer layers and
the models based on them are presented in Section 5.2.

Data and model inputs

The proposed architectures and benchmark models are fitted using the rolling win-
dow approach (see Figure 17). This widely used methodology has been applied in
finance, among others, by Swanson (1998), Goyal and Welch (2002), Zivot and Wang
(2006) and Molodtsova and Papell (2012). Rolling window uses a fixed sample length
for fitting the model and, then, the following step is forecasted. As in this paper the
window size is set to 650 and the forecast horizon to 1, the proposed and benchmark
models are fitted using the last 650 S&P trading days and, then, the next day volatil-
ity is forecasted. This process is repeated until the whole period under analysis is
forecasted. The periods used as training and testing set will be defined at the end of
this subsection.

76

https://github.com/EduardoRamosP/MultiTransformer

Figure 17: Rolling window methodology

The input variables of the models proposed are the daily logarithmic returns (rt−i)
and the standard deviation of the last five daily logarithmic returns:

σt−1 =

√∑n
i=1

(
rt−i − E[r]

)2

n− 1
(76)

As Multi-Transformer, Transformer and LSTM layers are able to manage time series,
a lag of the last 10 observations of the previous variables are taken into consideration
for fitting these layers. Thus, the input variables are:

X1 = (σt−1, σt−2, . . . , σt−10) (77)

X2 = (rt−1, rt−2, . . . , rt−10) (78)

In accordance with other studies such as Roh (2006) or Ramos-Pérez et al. (2019),
the realized volatility is used as response variable for the models based on ANNs;

Y = σ̂i,t =

√∑i−1
n=0 (rt+n − E[rf])2

i− 1
(79)

where E[rf] =
∑i−1

n=0 rt+n/i and i = 5. As shown in the previous formula, the re-
alized volatility can be defined as the standard deviation of future logarithmic returns.

The dataset for fitting and evaluating the volatility forecasting models contains mar-
ket data of S&P from 01/01/2008 to 31/12/2020. The optimum configuration of the
models is obtained by applying the rolling window approach and selecting the con-
figuration which minimizes the error (RMSE) in the period going from 01/01/2008
to 31/12/2015. The optimum configuration in combination with the rolling window
methodology is applied in order to forecast the volatility contained in the testing set
(from 01/01/2016 to 31/12/2020). The empirical results presented in Section 5.3 are
based on the forecasts of the testing set.

77

Models validation

This subsection presents the measures selected for validating and comparing the per-
formance of the benchmark models with the algorithms proposed in this paper.

The mean absolute value (MAE) and the root mean squared error (RMSE) have
been selected for validating the forecasting power of the different stock volatility
models:

MAE =

N∑

t=1

| σi,t − σ̂i,t |
N

/ RMSE =

N∑

t=1

(σi,t − σ̂i,t)
2

N
(80)

where N is the total number of observations.

The validation carried out by this study is not only interested on the accuracy, but
also on the appropriateness of the risk measures generated by the different stock
volatility forecasting models. In accordance with Solvency II Directive, 99.5% VaR
has been selected as risk measure. Although Solvency II has the aim of obtaining
the yearly VaR, the calculations carried out in this paper will be based on a daily
VaR in order to have more data points and, thus, more robust conclusions on the
performance of the different models. The parametric approach developed by Kupiec
(1995) is used for validating the different VaR estimations. The aim of this test is ac-
cepting (or rejecting) the hypothesis that the number of VaR exceedances are aligned
with the confidence level selected for calculating the risk measure. In addition to the
previous test, the approach suggested by Christoffersen et al. (1997) is also applied
in order to validate the appropriateness of VaR.

Benchmark models

This subsection introduces the benchmark models used in this paper: GARCH,
EGARCH, AVGARCH, GJR-GARCH, TrARCH, FIGARCH and two architectures
that combine GARCH-based algorithms with ANN and LSTM respectively. The
GARCH-based algorithms will be fitted assuming that innovations, ϵt, follow a Stu-
dent’s t-distribution. Thus, the returns generated by these models follow a condi-
tional t-distribution (Bauwens et al. 2012).

The generalized autoregressive conditional heteroskedasticity (GARCH) model de-
veloped by Bollerslev (1986) has been widely used for stock volatility forecasting
purposes. GARCH(p,q) has the following expression:

σ̂2
t = ω +

q∑

i=1

αir
2
t−i +

p∑

i=1

βiσ
2
t−i / r̂t = σ̂tϵt (81)

where ωi, αi and βi are the parameters to be estimated, rt−i the previous returns
and σ2

t−i the last observed volatility. As previously stated, innovations (ϵt) follow a
Student’s t-distribution.

78

The absolute value GARCH (Taylor 1986), AVGARCH(p,q), is similar to the tra-
ditional GARCH model. In this case, the absolute value of previous return and
volatility is taken into consideration to forecast volatility:

σ̂t = ω +

q∑

i=1

αi | rt−i |+
p∑

i=1

βiσt−i (82)

As volatility behaves differently depending on the market tendency, models such
as EGARCH, GJR-GARCH or TrGARCH were developed. EGARCH(p,q) (Nelson
1991) has the following expression for the logarithm of stocks volatility:

log σ̂2
t = ω +

p∑

i=1

αi log σ̂
2
t−i +

q∑

i=1

(βiet−i + γi(| et−i | −E(| et−i |))) (83)

where ωi, αi, βi and γi are the parameters to be estimated and et = rt/σt. The GJR-
GARCH(p,o,q) developed by Glosten et al. (1993) has the following expression:

σ̂2
t = ω +

q∑

i=1

αir
2
t−i +

o∑

i=1

γir
2
t−iI[rt−1<0] +

p∑

i=1

βiσ
2
t−i (84)

As with EGARCH model, ωi, αi, βi and γi are the parameters to be estimated.
I[rt−1<0] takes the value of 1 when the subscript condition is met. Otherwise I[rt−1<0] =
0. The volatility of the Threshold GARCH(p,o,q) (TrGARCH) model is obtained as
follows:

σ̂t = ω +

q∑

i=1

αi | rt−i |+
o∑

i=1

γi | rt−i | I[rt−i<0] +

p∑

i=1

βiσt−i (85)

As with the previous two architectures, ωi, αi, βi and γi are the model parameters.
The last GARCH-based algorithm used in this paper is the fractionally integrated
GARCH (FIGARCH) model developed by Baillie et al. (1996). The conditional
variance dynamic is

σ̂t = ω +
[
1− βL− ϕL(1− L)d

]
ϵ2t + σht−1 (86)

where L is the lag operator and d the fractional differencing parameter.

In addition to the previous approaches, two other hybrid models based on merging
autoregressive algorithms with ANNs and LSTMs are also used as benchmark. Figure
18 shows the architecture of ANN-GARCH and LSTM-GARCH. The inputs of the
algorithms are the following:

� The last daily logarithmic return, rt−1, for the ANN-GARCH and the last ten
in the case of the LSTM-GARCH (as explained in Section 5.2).

� The standard deviation of the last five daily logarithmic returns:

σt−1 =

√∑n
i=1 (rt−i − E[r])2

n− 1
(87)

79

where E[r] =
∑n

i=1 rt−i/n and n = 5. As with the previous input variable, the
last standard deviation is considered in the ANN-GARCH, whereas the last ten
are taken into consideration by the LSTM-GARCH architecture.

The GARCH-based algorithms included within the ANN-GARCH and LSTM-GARCH
models are the six algorithms previously presented in this same subsection (GARCH,
EGARCH, AVGARCH, GJR-GARCH, TrARCH, FIGARCH).

Figure 18: ANN-GARCH and LSTM-GARCH architectures

As explained in Section 5.2, the true implied volatility, σi,t, is used as response
variable to train the models. This variable is the standard deviation of the future
logarithmic returns:

σ̂i,t =

√∑i−1
n=0 (rt+n − E[rf])2

i− 1
(88)

where E[rf] =
∑i−1

n=0 rt+n/i. In this paper, i = 5.

As it is shown in Figure 18, the input of the ANN-GARCH model is processed by
two feed forward layers with dropout regularization. These layers have 16 and 8
neurons respectively. The final output is produced by a feed forward layer with one
neuron. In the case of the LSTM-GARCH, inputs are processed by a LSTM layer
with 32 units and two feed forward layers with 8 and 1 neurons respectively in order
to produce the final forecast.

Transformer-based models

Before explaining the volatility models based on Transformer layers (see Figure 19),
all the modifications applied to their architecture are presented in this subsection.

80

As previously stated, Transformer layers (Vaswani et al. 2017) were developed for
NLP purposes. Thus, some modifications are needed in order to apply this layer for
volatility forecasting purposes.

Figure 19: Transformer and Multi-Head attention mechanism

In contrast to LSTM, recurrence is not present in the architecture of Transformer
layers. The two main components used by these layers in order to deal with time
series are the following:

� Positional encoder. As previously stated, Transformer layers have no recurrence
structure. Thus, the information about the relative position of the observations
within the time series needs to be included in the model. To do so, a positional
encoding is added to the input data. In the context of NLP, Vaswani et al.
(2017) suggested the following wave functions as positional encoders:

PE(pos,2i) = sin(pos/10002i/dim) (89)

PE(pos,2i+1) = cos(pos/10002i/dim) (90)

where dim is the total number of explanatory variables (or word embedding
dimension in NLP) used as input in the model, pos is the position of the ob-
servation within the time series and i = (1, 2, . . . , dim − 1). This positional
encoder modifies the input data depending on the lag of the time series and the
embedding dimension used for the words.

As volatility models do not use words as inputs, the positional encoder is mod-
ified in order to avoid any variation of the inputs depending on the number of
time series used as input. Thus, the positional encoder suggested in this paper
changes depending on the lag, but it remains the same across the different ex-
planatory variables introduced in the model. As in the previous case, a wave

81

function plays the role of positional encoder:

PEpos = cos

(
π

pos

Npos − 1

)
= sin

(
π

2
+ π

pos

Npos − 1

)
(91)

where pos = (0, 1, . . . , Npos − 1) is the position of the observation within the
time series and Npos maximum lag.

� Multi-Head attention. It can be considered the key component of the Trans-
former layers proposed by Vaswani et al. (2017). As shown in Figure 19,
Multi-Head attention is composed of several scaled dot-product attention units
running in parallel. Scaled dot-product attention is computed as follows:

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V (92)

where Q, K and V are input matrices and dk the number of input variables
taken into consideration within the dot-product attention mechanism. Multi-
Head attention splits the explicative variables in different groups or ‘heads’
in order to run the different scaled dot-product attention units in parallel.
Once the different heads are calculated, the outputs are concatenated (Concat
operator) and connected to a feed forward layer with linear activation. Thus,
the Multi-Head attention mechanism has the following expression:

MultiHead(Q,K, V) = Concat (head1, . . . , headh)W
O (93)

headi = Attention(QWQ
i ,KWK

i , V W V
i) (94)

where h is the number of heads. It is also worth mentioning that all the matrices
of parameters (WQ

i , WK
i , W V

i and WO) are trained using feed forward layers
with linear activations.

In addition to the scaled dot-product and the Multi-Head attention mechanisms, Fig-
ure 19 shows the Transformer layers used in this paper. As suggested by Vaswani
et al. (2017), the Multi-Head attention is followed by a normalization, a feed forward
layer with ReLU activation and, again, a normalization layer. Transformer layers also
include two residual connections (He et al. 2016). Thanks to these connections, the
model will decide by itself if the training of some layers needs to be skipped during
some phases of the fitting process.

The modified version of Transformer layers explained in the previous paragraphs are
used in the volatility models presented in Figure 20. The T-GARCH architecture
proposed in this paper merges the six GARCH algorithms presented in Section 5.2
with Transformer and feed forward layers in order to forecast σ̂i,t. In addition to
the previous algorithms and layers, TL-GARCH includes a LSTM with 32 units. In
this last model, the temporal structure of the data is recognized and modelled by
the LSTM layer and, thus, no positional encoder is needed in the Transformer layer.
Both models have the following characteristics:

82

Figure 20: T-GARCH and TL-GARCH volatility models

� Adaptative Moment Estimator (ADAM) is the algorithm used for updating the
weights of the feed forward, LSTM and Transformer layers. This algorithm
takes into consideration current and previous gradients in order to implement
a progressive adaptation of the initial learning rate. The values suggested by
Kingma and Ba (2014) for the ADAM parameters are used in this paper and
the initial learning rate is set to δ = 0.01.

� The feed forward layers with dropout present in both models have 8 neurons,
while the output layer has just one.

� The level of dropout regularization θ (Srivastava et al. 2014) is optimized with
the training set mentioned in Section 5.2.

� The loss function used for weights optimization and back propagation purposes
is the mean squared error.

� Batch size is equal to 64 and the models are trained during 5,000 epochs in
order to obtain the final weights.

Multi-Transformer-based models

This subsection presents the Multi-Transformer layers and the volatility models based
on them. The Multi-Transformer architecture proposed in this paper is a variant of
the Transformer layers proposed by Vaswani et al. (2017). The main differences
between both architectures are the following:

� As shown in Figure 21, Multi-Transformer layers generate T different random
samples of the input data. In the volatility models proposed in this paper, 90%

83

Figure 21: Multi-Transformer architecture

of the observations of the database are randomly selected in order to compute
the different samples.

� Multi-Transformer architecture is composed of T Multi-Head attention units (in
this paper T = 5), one per each random sample of the input data. Then, the
average of the different units is computed in order to obtain the final attention
matrix. Thus, the Average Multi-Head (AMH) mechanism present in Multi-
Transformer can be defined as follows:

AMH(Q,K, V) =

∑T
t=1Concat (head1,t, . . . , headh,t)W

O
t

T
(95)

headi,t = Attention(QtW
Q
i,t,KtW

K
i,t , VtW

V
i,t) (96)

As with the Transformer architecture applied in this paper, the positional encoder
used is PEpos instead of PE(pos,2i) and PE(pos,2i+1).

The aim of the Multi-Transformer layers presented in the paper is to improve the
stability and accuracy by applying bagging (Breiman 1996) to the attention mecha-
nism. This technique is usually applied to algorithms such as linear regression, neural
networks or decision trees. Instead of applying the procedure to all the data received
by the model, the proposed methodology applies bagging only to the key component
of the layer architecture.

The computational power required by bagging is one of the main limitations of this
technique. As Multi-Transformer applies bagging to the attention mechanisms, their
weights are trained several times in each epoch. Nevertheless, bagging is not applied
to the rest of the layer weights and, thus, this offsets partially the previous limitation.

84

It is also worth mentioning that bagging preserves the bias and this may result in
underfitting.

On the other hand, this technique should bring two main advantages to the Multi-
Transformer layer. First, bagging reduces significantly the error variance. Second,
the aggregation of learners using this technique leads to a higher accuracy and re-
duces the risk of overfitting.

The structure of the volatility models based on Multi-Transformer layers (Figure 22)
is similar to the architectures presented in Section 5.2. The MT-GARCH merges
Multi-Transformer and feed forward layers with the six GARCH models presented in
Section 5.2. In addition to the previous algorithms and layers, MTL-GARCH adds a
LSTM with 32 units. The rest of the characteristics such as the optimizer, the num-
ber of neurons of the feed forward layers or the level of dropout regularization are the
same than those presented in the previous section for T-GARCH and TL-GARCH.

Figure 22: MT-GARCH and MTL-GARCH volatility models

The risk measures of ANN-GARCH, LSTM-GARCH and all the models introduced
by this paper (sections 5.2 and 5.2) are calculated assuming that daily log-returns
follow a non-standardize Student’s t-distribution with standard deviation equal to
the forecasts made by the volatility models. It is worth mentioning that Student’s
t-distribution generates more appropriate risk measures than normal distribution due
to the shape of its tail (Jeremic and Terzić 2014 and McNeil et al. 2015). In addition,
this assumption is in line with the GARCH-based models used as benchmark and the
inputs of the hybrid models presented in this paper.

85

5.3 Results

In this section, the forecasts and the risk measures of the volatility models presented in
previous sections are compared with the ones obtained from the benchmark models.
In addition, the following subsection shows the optimum hyperparameters of the
benchmark and proposed hybrid volatility models.

Fitting of models based on neural networks

As explained in Section 5.2, rolling window approach (Swanson 1998, Goyal and
Welch 2002, Zivot and Wang 2006 and Molodtsova and Papell 2012 among oth-
ers) is applied for fitting the algorithms. The training set used for optimizing the
level of dropout regularization contains S&P returns and observed volatilities from
01/01/2008 to 31/12/2015. Table 16 presents the error by model and level of θ.

Table 16: RMSE by level of θ

Model θ = 0 θ = 0.05 θ = 0.10 θ = 0.15

ANN-GARCH 0.0351 0.0092 0.0085 0.0082
LSTM-GARCH 0.0065 0.0057 0.0056 0.0054

T-GARCH 0.0089 0.0076 0.0072 0.0074
TL-GARCH 0.0050 0.0045 0.0044 0.0045
MT-GARCH 0.0068 0.0062 0.0064 0.0064
MTL-GARCH 0.0047 0.0045 0.0042 0.0044

Source: own elaboration

The results of the optimization process reveals that θ = 0 generates higher error
rates than the rest of the possible values regardless of the model. This means that
models based on architectures such as Transformer, LSTM or feed forward layers
need an appropriate level of regularization in order to avoid overfitting. According
to the results, this is especially relevant for ANN-GARCH, where the error strongly
depends on the level of regularization. The dropout level that minimizes the error of
each model is selected.

Comparison against benchmark models

Once the optimum dropout level of each of the proposed volatility forecasting models
based on Transformer and Multi-Transformer is selected, their performance is com-
pared with the benchmark models (traditional GARCH processes, ANN-GARCH and
LSTM-GARCH) presented in Section 5.2.

Tables 17 and 18 present the validation error (RMSE and MAE) by year and model.
The column ‘Total’ shows the error of the whole test period (from 01/01/2016 to
31/12/2020). The main conclusions drawn from the these tables are the following:

86

� Traditional GARCH processes are outperformed by models based on merging
artificial neural network architectures such as feed forward, LSTM or Trans-
former layers with the outcomes of autoregressive algorithms (also named hy-
brid models).

� The comparison between ANN-GARCH and the rest of the volatility forecasting
models based on artificial neural networks (LSTM-GARCH, T-GARCH, TL-
GARCH, MT-GARCH and MTL-GARCH) reveals that feed forward layers lead
to less accurate forecasts than other architectures. Multi-Transformer, Trans-
former and LSTM were specially created to forecast time series and, thus, the
volatility models based on these layers are more accurate than ANN-GARCH.

� Merging Multi-Transformer and Transformer layers with LSTMs leads to more
accurate predictions than traditional LSTM-based architectures. Indeed, TL-
GARCH achieves better results than LSTM-GARCH, even though the number
of weights of TL-GARCH is significantly lower. Thus, the novel Transformer
and Multi-Transformer layers introduced for NLPs purposes can be adapted as
described in section 5.2 and 5.2 in order to generate more accurate volatility
forecasting models. It is also worth mentioning that Multi-Transformer layers,
which were also introduced in this paper, lead to more accurate forecasts thanks
to their ability to average several attention mechanisms. In fact, the model
that achieves the lower MAE and RMSE is a mixture of Multi-Transformer
and LSTM layers (MTL-GARCH).

Table 17: RMSE by volatility model and year

Model 2016 2017 2018 2019 2020 Total

GARCH(1,1) 0.0058 0.0026 0.0095 0.0073 0.1026 0.0464
AVGARCH(1,1) 0.0053 0.0027 0.0076 0.0056 0.0847 0.0383
EGARCH(1,1) 0.0056 0.0028 0.0093 0.0078 0.0880 0.0399

GJR-GARCH(1,1,1) 0.0090 0.0028 0.0126 0.0068 0.1248 0.0565
TrGARCH(1,1,1) 0.0074 0.0027 0.0115 0.0058 0.1153 0.0521
FIGARCH(1,1) 0.0062 0.0029 0.0095 0.0066 0.1011 0.0457
ANN-GARCH 0.0042 0.0023 0.0060 0.0044 0.0171 0.0086
LSTM-GARCH 0.0032 0.0021 0.0043 0.0030 0.0101 0.0054

T-GARCH 0.0048 0.0029 0.0058 0.0044 0.0117 0.0067
TL-GARCH 0.0030 0.0019 0.0033 0.0026 0.0070 0.0040
MT-GARCH 0.0036 0.0021 0.0046 0.0033 0.0096 0.0054
MTL-GARCH 0.0030 0.0016 0.0033 0.0026 0.0066 0.0038

Source: own elaboration

87

Table 18: MAE by volatility model and year

Model 2016 2017 2018 2019 2020 Total

GARCH(1,1) 0.0037 0.0019 0.0058 0.0044 0.0363 0.0105
AVGARCH(1,1) 0.0034 0.0019 0.0049 0.0037 0.0296 0.0087
EGARCH(1,1) 0.0035 0.0020 0.0060 0.0048 0.0333 0.0100

GJR-GARCH(1,1,1) 0.0048 0.0020 0.0074 0.0042 0.0404 0.0118
TrGARCH(1,1,1) 0.0042 0.0020 0.0069 0.0038 0.0365 0.0107
FIGARCH(1,1) 0.0038 0.0021 0.0055 0.0041 0.0361 0.0104
ANN-GARCH 0.0029 0.0019 0.0038 0.0029 0.0095 0.0042
LSTM-GARCH 0.0022 0.0015 0.0027 0.0021 0.0060 0.0029

T-GARCH 0.0035 0.0021 0.0041 0.0031 0.0070 0.0040
TL-GARCH 0.0020 0.0014 0.0021 0.0018 0.0044 0.0023
MT-GARCH 0.0024 0.0016 0.0031 0.0023 0.0057 0.0030
MTL-GARCH 0.0019 0.0012 0.0021 0.0018 0.0041 0.0022

Source: own elaboration

To enhance the analysis of the results shown in tables 17 and 18, Figure 23 collects
the RMSE and the observed volatility by year. Notice that only the most accurate
GARCH-based model is shown in order to improve the visualization of the graph.
The black dashed line shows that the observed volatility of 2020 was significantly
higher than the rest of the years due to the turmoil caused by Covid-19 outbreak.
As expected, the error of every model is also higher in 2020 because the market
volatility was more unpredictable than the rest of the years. Nevertheless, it has
to be mentioned that the 2020 forecasts of traditional autoregressive algorithms are
significantly less accurate than hybrid models based on architectures such as LSTM,
Transformer or Multi-Transformer layers.

Although the observed volatility is lower in years before 2020, autoregressive models
are also outperformed by hybrid models. Nevertheless, the difference between both
sets of models is remarkably lower.

The p-values of the Kupiec and Christoffersen tests by volatility model and year are
shown in tables 19 and 20 respectively. In contrast to the approach suggested by
Kupiec, Christoffersen test is not only focused on the total number of exceedances,
but it also takes into consideration the number of consecutive VaR exceedances. As
stated in Section 5.2, the risk measure and confidence level (99.5% VaR) selected are
in line with Solvency II Directive. This regulation sets the principles for calculating
the capital requirements and assessing the risk profile of the insurance companies
based in the European Union. This law covers not only the underwriting risks but
also financial risks such as the potential losses due to variations on the interest rate
curves or the equity prices.

The column ‘Total’ of tables 19 and 20 reveal that only TL-GARCH, MT-GARCH
and MTL-GARCH produce appropriate risk measures (p-value higher than 0.05 in

88

Figure 23: Observed volatility and RMSE by year

both tests) for the period 2016-2020. The rest of the models fail both tests and, thus,
their risk measures can not be considered to be appropriate for that period.

As with any other statistical test, the higher the number of data points the more rel-
evant are the outcomes obtained from the test. That is the reason why the previous
paragraph focuses on the ‘Total’ column and not on the specific results obtained by
year. The results by year show that most of the models fail the test in 2020 due to
the high level of volatility produced by Covid-19 pandemic.

Table 19: Kupiec test (p-values) by volatility model and year

Model 2016 2017 2018 2019 2020 Total

GARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008
AVGARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008
EGARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008

GJR-GARCH(1,1,1) 0.543 0.540 0.011 0.543 0.190 0.008
TrGARCH(1,1,1) 0.543 0.540 0.051 0.810 0.190 0.042
FIGARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008
ANN-GARCH 0.543 0.540 0.001 0.002 0.012 0.001
LSTM-GARCH 0.810 0.186 0.540 0.188 0.190 0.042

T-GARCH 0.188 0.540 0.002 0.543 0.052 0.001
TL-GARCH 0.543 0.540 0.813 0.810 0.810 0.782
MT-GARCH 0.112 0.540 0.540 0.188 0.052 0.089
MTL-GARCH 0.543 0.113 0.113 0.810 0.190 0.910

Source: own elaboration

89

Table 20: Christoffersen test (p-values) by volatility model and year

Model 2016 2017 2018 2019 2020 Total

GARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002
AVGARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002
EGARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002

GJR-GARCH(1,1,1) 0.522 0.520 0.002 0.523 0.179 0.002
TrGARCH(1,1,1) 0.522 0.520 0.004 0.800 0.179 0.009
FIGARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002
ANN-GARCH 0.522 0.520 0.001 0.002 0.002 0.001
LSTM-GARCH 0.800 0.180 0.520 0.177 0.179 0.037

T-GARCH 0.176 0.520 0.001 0.523 0.048 0.001
TL-GARCH 0.522 0.520 0.803 0.800 0.797 0.693
MT-GARCH 0.113 0.520 0.520 0.177 0.048 0.079
MTL-GARCH 0.522 0.113 0.113 0.800 0.179 0.790

Source: own elaboration

According to these results, the stock volatility models introduced in this paper (T-
GARCH, TL-GARCH, MT-GARCH and MTL-GARCH) produce more accurate es-
timations and appropriate risk measures in most of the cases. Regarding the models
accuracy, it is specially remarkable the difference observed in 2020, where Covid-19
caused a significant turmoil in the stock market. Concerning the appropriateness
of equity risk measures, three out of four models based on Transformer and Multi-
Transformer pass Kupiec and Christofferesen test for the period 2016-2020, while all
the benchmark models fail at least one of them. Notice that the proposed models
are compared with other approaches belonging to its own family (ANN-GARCH and
LSTM-GARCH) and autoregressive models belonging to the GARCH family.

5.4 Discussion

This paper introduced a set of volatility forecasting models based on Transformer
and Multi-Transformer layers. As Transformer layers were developed for NLP pur-
poses (Vaswani et al. 2017), their architecture is adapted in order to generate stock
volatility forecasting models. Multi-Transformer layers, which are introduced by this
paper, have the aim of improving the stability and accuracy of Transformer layers
by applying bagging to the attention mechanism. The predictive power and risk
measures generated by the proposed volatility forecasting models (T-GARCH, TL-
GARCH, MT-GARCH and MTL-GARCH) are compared with traditional GARCH
processes and other hybrid models based on LSTM and feed forward layers.

Three main outcomes were drawn from the empirical results. First, hybrid mod-
els based on LSTM, Transformer or Multi-Transformer layers outperform traditional
autoregressive algorithms and hybrid models based on feed forward layers. The val-
idation error by year shows that this difference is more relevant in 2020, when the
volatility of S&P500 was significantly higher than in the previous years due to Covid-
19 pandemic. Volatility forecasting models are mainly used for pricing derivatives

90

and assessing the risk profile of financial institutions. As the more relevant shocks
on the solvency position of financial institutions and derivatives prices are observed
in high volatility regimes, the accurateness of these models is particularly important
in years such as 2020.

The higher performance of hybrid models have been also demonstrated by Roh (2006),
Hajizadeh et al. (2012), Kristjanpoller et al. (2014), Monfared and Enke (2014), Lu
et al. (2016), Kim and Won (2018) and Back and Kim (2018). These papers merged
traditional GARCH models with feed forward layers to predict stock market volatil-
ity. This type of models have shown also a superior performance in other financial
fields such as oil market volatility (Kristjanpoller and Minutolo 2016 and Verma
2021) and metals price volatility (Kristjanpoller and Minutolo 2015 and Kristjan-
poller and Hernández 2017). Notice that this paper does not only present a compar-
ison with traditional autoregressive models, but it also shows that Transformer and
Multi-Transformer can lead to more accurate volatility estimations than other hybrid
models.

Second, Multi-Transformer layers lead to more accurate volatility forecasting models
than Transformer layers. As expected, applying bagging to the attention mechanism
has a positive impact on the performance of the models presented in this paper. It is
also remarkable that empirical results demonstrate that merging LSTM with Trans-
former or Multi-Transformer layers has also a positive impact on the models perfor-
mance. On one hand, the volatility forecasting model based on Multi-Transformer
and LSTM (named MTL-GARCH) achieves the best results in the period 2016-2020.
On the other hand, the merging of Transfomer with LSTM (TL-GARCH) leads to a
lower error rate than the hybrid model based only on LSTM layers (LSTM-GARCH)
even though the number of weights of the first model is significantly lower. Thus, the
use of Transfomer layers can lead to simpler and more accurate volatility forecasting
models. Notice that Transformer layers are already considered the state of art thanks
to BERT (Devlin et al. 2018) and GPT-3 (Brown et al. 2020). These models have
been successfully used for sentence prediction, conversational response generation,
sentiment classification, coding and writing fiction, among others.

Third, the results of Kupiec and Christoffersen tests revealed that only the risk esti-
mations made by MTL-GARCH, TL-GARCH and MT-GARCH can be considered as
appropriate for the period 2016-2020, whereas traditional autoregressive algorithms
and hybrid models based on feed forward and LSTM layers failed, at least, one of
the tests. As previously stated, volatility does not play only a key role in risk man-
agement but also in derivative valuation models. Thus, using a volatility model that
generates appropriate risk measures can lead to more accurate derivatives valuation.

5.5 Conclusion

Transformer layers are the state of the art in natural language processing. Indeed,
the performance of this layer have overcome the performance of any other previous

91

model in this field (Brown et al. 2020). As Transformer layers were specially created
for natural language processing, they need to be modified in order to be used for
other purposes. Probably, this is one of the main reasons why this layer have not
been already extended to other fields. This paper provides the modifications needed
to apply this layer for stock volatility forecasting purposes. The results shown in this
paper demonstrates that Transformer layers can overcome also the performance of
the main stock volatility models.

Following the intuition of bagging (Breiman 1996), this paper introduces Multi-
Transformer layers. This novel architecture has the aim of improving the stability
and accuracy of the attention mechanism, which is the core of Transformer layers.
According to the results, it can be concluded that this procedure improves the accu-
racy of stock volatility models based on Transformer layers.

Leaving aside the comparisons between Transformer and Multi-Transformer layers,
the hybrid models based on them have overcome the performance of autoregressive al-
gorithms and other models based on feed forward layers and LSTMs. The architecture
of these hybrid models (T-GARCH, TL-GARCH, MT-GARCH and MTL-GARCH)
based on Transformer and Multi-Transformer layers is also provided in this paper.

According to the results, it is also worth noticing that the risk estimations based on
the previous models are specially appropriate. The VaR of most of these models can
be considered accurate even in years such as 2020, when Covid-19 pandemic caused
a remarkable turmoil in the stock market.

Consequently, the empirical results obtained with the hybrid models based on Trans-
fomer and Multi-Transformer layers suggest that further investigation should be con-
ducted about the possible application of them for derivative valuation purposes. No-
tice that volatility plays a key role in the financial derivatives valuation. In addition,
the models can be extended by merging Transformer or Multi-Transformer layers
with other algorithms (such as gradient boosting with trees or random forest) or
modifying some key assumptions of the attention mechanism.

92

6 Mack-Net model: Blending Mack’s model with Re-
current Neural Networks

Authors: Eduardo Ramos-Pérez, Pablo J. Alonso-González and José Javier Núñez-
Velázquez.

Journal: Expert Systems With Applications. ISSN 0957-4174.

DOI: 10.1016/j.eswa.2022.117146

Journal Impact Factor in 2020 (last available): 6.954
Rank by Journal Impact Factor in 2020 (last available): 8/84 in Operations
Research and Management Business (Q1-D1).

Published: March 2022

Journal Citation Indicator in 2020 (last available): 1.68
Rank by Journal Citation Indicator in 2020 (last available): 6/99 in Opera-
tions Research and Management Business (Q1-D1).

This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

93

http://creativecommons.org/licenses/by-nc-nd/4.0/

Abstract

In general insurance companies, a correct estimation of liabilities plays a key role
due to its impact on management and investing decisions. Since the Financial
Crisis of 2007-2008 and the strengthening of regulation, the focus is not only
on the total reserve but also on its variability, which is an indicator of the
risk assumed by the company. Thus, measures that relate profitability with
risk are crucial in order to understand the financial position of insurance firms.
Taking advantage of the increasing computational power, this paper introduces
a stochastic reserving model whose aim is to improve the performance of the
traditional Mack’s reserving model by applying an ensemble of Recurrent Neural
Networks. The results demonstrate that blending traditional reserving models
with deep and machine learning techniques leads to a more accurate assessment
of general insurance liabilities.

Keywords: Deep Learning, Mack’s model, Recurrent Neural Networks, Reserving Risk,
Stochastic Reserving.

AMS Subject Classification: 62-07, 62P05, 65C60, 90-08.

6.1 Introduction

As an accurate estimation of future payments and its volatility allows the manage-
ment to take correct underwriting and reinsurance decisions, reserving, understood
as the calculation of the amount of required reserves for insurance policies, plays a
fundamental role in general insurance firms. The interest of investors and regulators
in analysing the volatility of financial institutions has increased significantly since
the 2007-2008 Financial Crisis. Regulatory requirements have been enhanced with
laws such as Solvency II Directive and Solvency Swiss Test in order to assess the
risk profile of insurance companies. Since then, investors are not only focused on the
profit but also on the level of risk assumed by the insurance firm to obtain it. Thus,
indicators that relate profitability with risk such as the Return on Risk Adjusted
Capital (Braun et al. 2018) have increased remarkably their influence on the stock
prices of financial institutions.

Taking into consideration the historical information, the first reserving methods for
estimating the ultimate cost in non-life insurance were only focused on obtaining
the most likely scenario. Therefore, these deterministic models were unable to esti-
mate the loss reserve uncertainty. Chain Ladder is the most widely used methodol-
ogy within this family of reserving models. Nevertheless, Bornhuetter and Ferguson
(1972) model tends to perform better when historical information is not stable enough
to apply the Chain Ladder methodology.

As stated previously, general insurance firms are not only interested in the expected
ultimate cost but also in its volatility. Consequently, different stochastic methodolo-
gies linked to the Chain Ladder procedure were developed. One of the most popular
models for estimating the loss reserve variability was introduced by Mack (1993).
This methodology, commonly known as Mack’s model in the literature, derives the
reserve variability by focusing on the first two moments. England and Verrall (2006)

94

developed a bootstrap method that allows the analyst to obtain a complete reserve
distribution by applying the free-distribution model of Mack.

Another widely used method to calculate reserve variability is the Overdispersed
Poisson (ODP) model, which was developed by Renshaw and Verrall (1998). This
method assumes that incremental payments follow an ODP distribution, where their
variance is proportional to their mean. In this model, incremental payments must
be positive, but this limitation can be overcome by using the quasi-likelihood ap-
proach developed by McCullagh and Nelder (1989). As in the case of Mack’s model,
a complete reserve distribution can be obtained by applying the bootstrap procedure
suggested by England and Verrall (1999) and England (2002).

For those cases where data does not follow an ODP distribution, there are other
methods based on Chain Ladder such as the log-normal model of Kremer (1982), the
gamma procedure of Mack (1991) and the negative binomial methodology developed
by Verrall (2000). The distribution function of some of the former models can be
obtained by using Bayesian inference. England and Verrall (2006) introduced the
procedure for implementing a Bayesian ODP, Mack and Negative Binomial models.
The computation of the loss reserve distribution by means of Bayesian inference was
recently expanded by Meyers (2015), who introduced several Bayesian Markov Chain
Monte-Carlo (MCMC) models for incurred and paid data. These models (Levelled
Chain-Ladder, Correlated Chain-Ladder, Levelled Incremental Trend, Correlated In-
cremental Trend and Changing Settlement Rate) have the aim of improving the
performance of the traditional models based on Chain Ladder. This is achieved by
including effects such as recognizing the correlation between accident years, applying
a skewed distribution to negative incremental payments, introducing a trend over the
different development years and implementing the possibility of applying changes in
the claim settlement rate.

As incurred and paid data can have different patterns and characteristics, there is
a set of loss reserving models, based on the Chain Ladder methodology, which were
developed in order to take into consideration both data sources. The most relevant
methods within this family are Munich Chain Ladder (Quarg and Mack 2004), Dou-
ble Chain Ladder Mart́ınez-Miranda et al. (2012) and Paid-Incurred Chain Posthuma
et al. (2008). With regard to this last model, it is worth mentioning that Merz and
Wüthrich (2010) developed a Bayesian implementation of it, while Happ, Merz, and
Wüthrich (2012) and Happ and Wüthrich (2013) introduced methods strongly re-
lated to this approach. Finally, Halliwell (2009) and Venter (2008) used incurred and
paid data to develop regression-based reserving models, while Pigeon et al. (2014),
Antonio and Plat (2014) and Mart́ınez-Miranda et al. (2013b) used both sources of
information to estimate the expected ultimate cost.

The increase of the computational power and the success of machine and deep learning
in many fields LeCun et al. (2015b), Silver et al. (2016), Silver et al. (2017), Brown
et al. (2020) and Ramos-Pérez et al. (2021a) have facilitated the formation of a new
family of reserving models based on these techniques. Gabrielli and Wüthrich (2018)

95

and Wüthrich (2018b) applied Artificial Neural Networks (ANN) to predict claim
reserves, while Lopez et al. (2019), Baudry and Robert (2019) and Wüthrich (2018a)
used a tree-based algorithm, extremely randomized trees Geurts et al. (2006) and
regression trees respectively for that purpose. Gabrielli et al. (2018) and Gabrielli
(2019) demonstrated that it is possible to embed traditional Chain Ladder techniques
(ODP model) into a neural network framework. This algorithm was also used by Kuo
(2018) in order to predict the expected future payments. Ramos-Pérez et al. (2021b)
combined ANNs with Random Forests (Breiman 2001) and Gradient Boosting with
regression trees (Friedman 2000) in order to predict general insurance reserves. In
addition to the previous reserving models, Duma et al. (2011) applied support vector
machines to classify data in homogeneous groups of risks before the reserve calcula-
tion.

The stochastic reserving model presented in this paper (Mack-Net) combines Re-
current Neural Networks Rumelhart et al. (1986b) with Mack’s model in order to
produce more accurate reserve predictions and risk measures. For each individual
triangle, an ensemble of Recurrent Neural Networks (RNNs) is fitted in order to fore-
cast both the future payments and the Mack’s model parameters. In a second stage,
a bootstrap method based on Mack’s model is combined with the former predictions
in order to compute a full reserve distribution. Consequently, the proposed model has
the aim of improving the performance of Mack’s model by applying RNNs, which can
learn more features than the Chain Ladder technique. Mack-Net model differs from
other methods in many ways but the two main differences are explained. First of all,
most of the existing reserving models based on machine and deep learning does not
produce an estimate of the reserves variability. The few of them that can produce this
estimation need to assume a pre-defined theoretical distribution for the payments or
incurred cost. Nevertheless, the suggested methodology produces a full reserve dis-
tribution without considering any assumption about the payments or incurred cost
distribution. Second, information from the same portfolios of several entities tend to
be used for fitting reserving models based deep or machine learning techniques. As
suggested by regulations like Solvency II Directive, actuaries must aggregate data in
homogeneous risk groups, leading to a situation where individual companies do not
have available several triangles with similar characteristics to fit the former models.
Besides regulatory requirements, if individual companies split triangles with similar
characteristics into different pieces, the resulting triangles will not be enough robust
in most of the cases. As only one triangle is needed to fit the Mack-Net model, this
problem is not present in the suggested methodology. The implementation of the
MackNet model in R, the database used for fitting the models and code examples are
available in https://github.com/EduardoRamosP/MackNet

The proposed model has the aim of producing a more appropriate risk estimation and
reserve distribution than other stochastic reserving approaches. Regulations such as
Solvency II, Swiss Solvency Test or IFRS promote the use of stochastic models. For
example, Risk Adjustment of IFRS 17 has to be based on a certain percentile of
the reserve distribution and Reserving Risk of Solvency II Directive can be derived
from an stochastic reserving model. Therefore, the calculation of an accurate reserve

96

https://github.com/EduardoRamosP/MackNet

distribution can lead to lower solvency requirements and less liabilities (Risk Adjust-
ment). It is also worth mentioning that an accurate estimation of the risk profile
can lead to a more efficient risk strategy, better portfolio management actions and,
therefore, an optimization of the profit-risk indicators. Since the Financial Crisis
of 2007-2008, the valuation of financial institutions is not only based on the future
profit but also on its volatility or uncertainty. Nowadays, profit-risk indicators are
particularly relevant for the valuation of financial institutions.

The rest of the paper proceeds as follows: Section 6.2 defines the validations metrics
and models used as benchmark to assess the performance of the suggested method.
In Section 6.3, the theoretical background and architecture of the Mack-Net model
are explained. Empirical results of the benchmark and proposed model are shown
in Section 6.4. Finally, Section 6.5 presents the main conclusions drawn from the
results shown in Section 6.4

6.2 Benchmark model and validation metrics

Benchmark model

This paper presents an extension, based on RNNs, of the traditional Mack’s model.
Thus, this approach Mack (1993) and its bootstrap implementation England and
Verrall (2006) will be used as benchmark for validating the proposed model.

The main characteristic of this model compared to others based on Chain Ladder is
the lack of assumptions about the underlying distribution of the payments. Mack’s
model assumes that cumulative payments, Dij , or incurred cost have the following
variance and expected value:

E[Dij] = f̂jDi,j−1 V ar[Dij] = σ̂2
jDi,j−1 (97)

where i = (1, 2, . . . , I) indicates the accident or underwriting year and j = (1, 2, . . . , I)
the development year. As explained by Mack (1993), the parameters of the previous
expressions are calculated as follows:

f̂j =

∑I−j+1
i=1 Dij∑I−j+1

i=1 Di,j−1

σ̂2
j =

1

I − j − 1

I−j+1∑

i=1

Di,j−1

(
Dij

Di,j−1
− f̂j

)2

(98)

where {f̂j : j = (2, 3, . . . , I)} and {σ̂2
j : j = (2, 3, . . . , I)}. The residuals needed for

the bootstrap method England and Verrall (2006) are calculated as defined below:

r̂ij =

√
Di,j−1 ∗

(
Dij

Di,j−1
− f̂j

)

σ̂j
(99)

To obtain the final residuals, the bias adjustment is added accordingly to the expres-
sion suggested by England and Verrall (2006):

r̂ij =

√
N

N − p
∗
√
Di,j−1 ∗

(
Dij

Di,j−1
− f̂j

)

σ̂j
(100)

97

where N is the total number of residuals and p the number of parameters. Hence,
the resampled link ratios are obtained as follows:

fB
ij = f̂j + rBij

σ̂j√
Di,j−1

(101)

where B refers to the number of upper triangles to be simulated and rBij to the resid-

ual resampled in the position (i, j) of the Bth triangle. Taking into consideration Di,j

and the resampled link ratios, a new set of development factors, f̃B
j , is computed.

Typically, a zero mean adjustment is applied to the residuals in order to ensure that
the mean of the stochastic process is the same as the deterministic Chain Ladder
method, which is fully dependent on f̂j .

The lower triangle (Di,j where i+ j > I + 1) is predicted by combining f̃B
j and the

upper triangle (Di,j where i+ j ≤ I +1). Then, the process variance is incorporated
to the lower triangle by adding the following expression: σ̂jr

B
ij

√
Di,j−1. In case fur-

ther details about the bootstrap method are needed, refer to England and Verrall
(2006) and Joseph Lo (2011).

Although the methodology proposed in this paper merges RNNs with Mack’s model,
other two approaches have been selected as benchmark: Staked-ANN Ramos-Pérez
et al. (2021b) and Changing Settlement Rate. The first model combines ANNs
with Random Forests and Gradient Boosting with regression trees Friedman (2000)
to predict general insurance reserves. The stochastic procedure of Stacked-ANN as-
sumes that payments follow a log-normal distribution. On the other hand, Changing
Settlement Rate (CSR) is a Bayesian Markov Chain Monte-Carlo model. The prior
distributions and the simulation approach are proposed by Meyers (2015).

Validation metrics

General insurance companies are asked by insurance regulations like Solvency II Di-
rective and Solvency Swiss Test to evaluate their reserve variability. Thus, the accu-
racy and variability of Mack-Net model (Section 6.3) will be validated and compared
with the benchmark model defined in Section 6.2.

To assess the accuracy of the reserve predicted by the models, the following error
measure will be computed for every line of business:

%RMSE(U t) =

√√√√ 1

K

K∑

n=1

(
Û t
n − U t

n

U t
n

)2

∗ 100 (102)

%MAE(U t) =
100

K

K∑

n=1

∣∣∣∣∣
Û t
n − U t

n

U t
n

∣∣∣∣∣ (103)

98

where K is the total number of companies analysed, Û t
n the ultimate cost predicted

by the reserving model for the nth company and U t
n the ultimate cost that was actu-

ally observed. The Model Confidence Test Hansen et al. (2011) will be also applied
to produce a more robust comparison of models accuracy. This procedure consists
on a sequence of tests which permit the identification of the best models at a certain
confidence level.

In addition to the previous error measures, the reserve variability produced by the
different stochastic reserving models will be assessed by applying the statistical test
introduced by Kupiec (1995). The aim of this test is to validate the Value-at-Risk
(VaR) by comparing the number of VaR breaches with the percentile selected for
calculating the VaR. In this paper, the percentile selected for evaluating the reserve
variability is α = 0.995, which is the level set up by Solvency II to calculate the
risk of insurance companies. The empirical results of the test and %RMSE(Rt) are
collected in Section 6.4.

6.3 Data and Mack-Net architecture

The aim of this section is to explain the architecture of the Mack-Net model. To do
so, this section has been divided into three different subsections. The inputs of the
model are described in the first one, the ensemble of RNNs is explained in the second
subsection and, in the last one, the bootstrap method to obtain a reserve distribution
is presented. To support the explanation, Figure 24 shows the architecture of the
proposed stochastic reserving model.

Figure 24: Mack-Net model architecture

99

Data source and model inputs

The starting point of the Mack-Net model is the definition of inputs used within the
ensemble of RNNs. Hence, the goal of this subsection is to define the database used,
as well as the response and explicative variables for fitting the RNNs ensemble.

The database of Schedule P of the NAIC Annual Statement (available on CAS web-
site) is selected for fitting and validating the Mack-Net model. The paid data, in-
curred cost and premiums available in the previous database were collected from
general insurance companies from the US. The range of accident years contained in
the Schedule P database is 1988-1997. As the upper and lower triangles are included,
ten development years are available for each accident year.

The benchmark and the proposed model will be fitted to the 200 loss triangles se-
lected by Meyers (2015) from the Schedule P database. This author pointed out that
one of the main mistakes that could be made with NAIC Schedule P data is select-
ing triangles from insurance companies that have experienced significant changes in
business operations. Therefore, the net-on-gross premiums ratio and the coefficient
of variation of the net premiums were used by Meyers to identify those companies
that made changes in their business operations or reinsurance structure. Taking into
consideration these indicators, Meyers selected 50 loss triangles from each of the fol-
lowing lines of businesses: Commercial Auto (CA), Private Passenger Auto Liability
(PA), Workers’ Compensation (WC) and Other Liability (OL). The codes of the
companies selected can be found in Meyers (2015).

It is worth mentioning that loss triangles are considered the primary method to orga-
nize the observed incurred cost or payments for general insurance reserving purposes.
Loss triangles show the total losses of different underwriting or accident years at var-
ious valuation dates. This data shows the claim settlement speed, ultimate cost and
policyholders’ behaviour. Thus, this data is normally not available because insurance
entities do not make public this information. Schedule P database is used in the aca-
demic field by several authors (such as Leong et al. 2014, Meyers (2015), Kuo (2018)
or Ramos-Pérez et al. 2021b) because it offers the possibility of testing triangles from
numerous companies and different lines of business.

Before starting with the definition of the explanatory and response variables, it is
worth mentioning that the last diagonal of the triangle is selected as a test set for
fitting the ensemble of RNNs. Thus, the remaining triangle (9 development years) is
used to train the algorithms. The sequences used as explanatory variables, Xi, and

100

https://www.casact.org/research/index.cfm?fa=loss_reserves_data
https://www.casact.org/research/index.cfm?fa=loss_reserves_data

the response variable, Y , are the following:

Y = C∗
ij =

Cij

Pi
(104)

X1 =
(
C∗
ij−1, C

∗
ij−2, . . . , C

∗
ij−8

)
=

(
Cij−1

Pi
,
Cij−2

Pi
, . . . ,

Cij−8

Pi

)
(105)

X2 =
(
DY ∗

j−1, DY ∗
j−2, . . . , DY ∗

j−8

)
=

(
DYj−1

I
,
DYj−2

I
, . . . ,

DYj−8

I

)
(106)

X3 =
(
R∗

j−1, . . . , R
∗
j−8

)
=

(∑I−j+2
i=1 D∗

ij−1∑I−j+2
i=1

ICij−1

Pi

, . . . ,

∑I−j+9
i=1 D∗

ij−8∑I−j+9
i=1

ICij−8

Pi

)
(107)

where Pi is the premium, Cij is the incremental payment, D∗
ij is equal to Dij/Pi,

I the total number of accident years and ICij represents the incurred cost of the
accident year i and development j. R∗

j is the scaled cumulative payments between
the scaled incurred cost. Thus, X1, X2 and X3 are the time series used as input in
the RNNs to predict the next year payment. Two remarks about the variables need
to be made:

1. Payments and development years were scaled. DYj were initialized as one and
then scaled to the range [0, 1]. To do so, DYj were divided between the total
number of accident years, I. In the case of payments, premiums (Pi) play
the role of exposure measure. The use of exposure measures is widely used in
reserving models, otherwise the changes in the claims settlement speed will be
mixed with variations in the business volume.

2. As it can be observed in the formal definition of the explanatory variables, the
last 8 observations of each variable are selected. This number was chosen due
to the size of the triangles. Ten development years are available but only 9 of
them are used during the training of the RNNs. The other development year is
used as a test set. Thus, as the aim of the RNNs is to predict the value in t, the
maximum lag available for training the algorithms is t−8. Each RNN forecasts
the next payment by taking into consideration the information available in the
last 8 periods.

Before concluding this subsection it is worth mentioning that the model can be applied
to predict the incurred cost. To do so, X1 and Y should be substituted by the
following expressions:

Y ′ = i∗ij =
iij
Pi

(108)

X ′
1 =

(
IC∗

ij−1, IC
∗
ij−1, . . . , IC

∗
ij−8

)
=

(
ICij−1

Pi
,
ICij−2

Pi
, . . . ,

ICij−8

Pi

)
(109)

where iij is the incremental incurred cost. The method and calculations that will
be explained in Section 6.3 and 6.3 are the same regardless of the variable to be
predicted (payments or incurred cost).

101

Figure 25: Recurrent Neural Network Architecture

Ensemble of RNNs

As shown in Figure 24, once the model inputs are prepared, 20 Recurrent Neural
Networks composed of several Fully Connected (FC) and Long-Short Term Memory
(LSTM) layers (Figure 25) are fitted. The number of Recurrent Neural Networks
fitted is high enough to obtain the average model prediction regardless their initial
weights. This strategy was also applied by Kuo (2018).

It has to be pointed out that a skip connection between ‘FC Layer 1’ and ‘FC Layer
5’ has been included. This type of connection, introduced by He et al. (2016) in
the field of image recognition with Convolutional Neural Networks, gives the possi-
bility to skip the training of a part of the Neural Network architecture. During the
learning process, the RNN will decide by itself if ‘FC Layer 3’ and/or ‘FC Layer 4’
send information to ‘FC Layer 5’. Apart from giving to the network the possibility
to simplify the structure by skipping layers, this kind of connection helps to avoid
the problem of vanishing gradients by using the activation of a previous layer until
the skipped one learns its weights.

To take temporal dependencies into consideration, the first layer of every RNN is a
LSTM cell. This structure was introduced by Hochreiter and Schmidhuber (1997b)
for managing time series. Figure 26 and the following expressions define the LSTM

102

architecture:

ft = σ (Wf [ht−1, xt] + bf) (110)

it = σ (Wi[ht−1, xt] + bi) (111)

C̃t = tanh (Wc[ht−1, xt] + bc) (112)

Ct = ftCt−1 + itC̃t (113)

ot = σ (Wo[ht−1, xt] + bo) (114)

ht = ot tanh(Ct) (115)

Where Wf , Wi, Wc, Wo, bf , bi, bc and bo represent the weights and bias of the RNNs
and σ(x) the logistic sigmoid function.

Figure 26: LSTM structure

The main characteristics of the RNNs are defined below:

� The algorithm used to optimize the weights is Adaptative Moment Estimation
(ADAM), which was developed by Kingma and Ba (2014). Considering current
and previous gradients, this procedure allows to implement a progressive adap-
tation of the initial learning rate. These authors suggested the following default
values for the ADAM parameters: β1 = 0.9 and β2 = 0.999. In this paper, the
initial learning rate is set to δ = 0.01 and the default ADAM parameters are
used during the training process.

� The batch size is equal to the number of observations of the training set

� The backward pass calculations are done taking the mean squared error as loss
function.

103

� Each individual algorithm within the ensemble is randomly initialized. Glorot
initializer (Glorot and Bengio (2010)) is used for the LSTM weights responsible
of transforming linearly the inputs, while the LSTM weights for the linear
transformations within the recurrent states are initialized with the orthogonal
approach suggested by Saxe et al. (2013).

� In order to avoid overfitting, the level of dropout regularization θ Srivastava
et al. (2014) is set to 5%.

The training of the RNNs has been implemented using the Keras Chollet et al.
(2015) and Tensorflow Abadi et al. (2015). As previously stated, the initial weights
of the RNNs are randomly initialized. Thus, the lower triangle predicted by every
single algorithm is going to be different. Once the lower triangles are predicted with
each RNN, the Mack-Net parameters are computed with the predicted cumulative
payments or incurred cost as follows:

f̂p
j =

∑I
i=I−j+2 D̄ij

∑I
i=I−j+2 D̄i,j−1

(116)

σ̂2,p
j =

1

I − j − 1

I∑

i=1

D̄i,j−1

(
D̄ij

D̄i,j−1
− f̄j

)2

(117)

where f̄j is equal to
∑I

i=1 D̄ij/
∑I

i=1 D̄i,j−1 and D̄ij =
∑K

k=1 D̄
k
ij/K. In addition, D̄k

ij

represents the cumulative payments of the lower triangle (i + j > I + 1) predicted
by kth RNN and the observed values of the upper triangle (i+ j ≤ I + 1). K is the
number of RNNs included in the ensemble. Similar to the notation used in Section
6.2, {f̂p

j : j = (2, 3, . . . , I)} and {σ̂2,p
j : j = (2, 3, . . . , I)}.

As it can be derived from the model definition, rather than using the traditional Mack
parameters described in Section 6.2, Mack-Net model parameters are estimated by
taking into consideration the predictions made by the ensemble of RNNs. Therefore,
the central scenario of the stochastic Mack-Net model is equal to the reserve predicted
by the ensemble of RNNs, while the mean of the traditional Mack’s model converge
to the reserve estimated with the deterministic Chain Ladder method. As any other
general insurance reserving methodology such as Mack’s model, CSR or Stacked-
ANN, the approach suggested by this paper is valid until a new diagonal of the loss
triangle is available.

Stochastic procedure

As previously stated, the bootstrap method of Mack-Net is based on the traditional
Mack’s model. This last methodology has been selected as reference for producing the
full reserve distribution due to the two following reasons. First, Mack’s model derives
the distribution by focusing on the two first moments. In contrast to most of the
stochastic reserving models, this approach does not make any assumption about the
theoretical distribution followed by incurred cost or cumulative payments. Changes
in policyholders’ behaviour, reinsurance structures, regulation and number of policy

104

holders can modify significantly the payments or incurred cost collected by loss tri-
angles. Therefore, a free-distribution model is especially appropriate for insurance
companies and regulators because the previous portfolio changes happen quite often
in the sector. Second, Mack’s model is already applied by insurance companies to
comply with regulations such as Solvency II Directive, Swiss Solvency Test or IFRS.
Thus, the bootstrap method of Mack-Net is familiar and aligned with the procedures
already used by the insurance market.

As no assumption about the underlying distribution of cumulative payments or in-
curred cost is taken, the expected value and variance of Mack-Net model is defined
as follows:

E[Dij] = f̂p
j D̄i,j−1 V ar[Dij] = σ̂2,p

j D̄i,j−1 (118)

The Mack-Net model uses the predictions made by the ensemble of RNNs to deter-
mine the mean and variance of the reserve distribution. By doing so, the forecasting
power of deep and machine learning techniques are taken into consideration. The
calculation of residuals needed for the bootstrap method is based on the expression
provided by England and Verrall (2006) for Mack’s model:

r̂pij =

√
D̄i,j−1 ∗

(
D̄ij

D̄i,j−1
− f̄j

)

σ̂p
j

(119)

where {r̂pij : j = (2, . . . , I); i = (1, . . . , I)}. As in Mack’s model, Mack-Net model
is bias adjusted in accordance with the procedure suggested by England and Verrall
(2006):

r̂pij =

√
N

N − p

√
D̄i,j−1 ∗

(
D̄ij

D̄i,j−1
− f̄j

)

σ̂p
j

(120)

As with Mack’s model, p is equal to the number of development factors. Once the
set of residuals has been calculated, the resampled upper triangles of link ratios are
calculated as follows:

fB,p
ij = f̂p

j + rB,p
ij

σ̂p
j√

D̄i,j−1

(121)

where B refers to the number of upper triangles to be simulated and rB,p
ij to the

residual resampled in the position (i, j) of the bth triangle. Similar to the Mack’s
model presented in Section 6.2, a zero mean adjustment should be applied to the
residuals in order to avoid deviations between the simulated and theoretical mean.
The resampled development factors (f̃B,p

j) are

f̃B,p
j =

∑I−j+1
i=1 D̄i,j−1f

B,p
ij∑I−j+1

i=1 D̄i,j−1

(122)

105

It is worth mentioning that the previous calculation is carried out with the upper
triangle (i + j ≤ I + 1). Then, D̄i,j−1 can be substituted by Di,j−1. The resampled

development factors, f̃B,p
j , are used to calculate the lower triangle (i+ j > I + 1) by

applying the Chain Ladder methodology:

D̂ij = D̄i,j−1f̃
B,p
j (123)

Then, as well as in the case of Mack’s model, the process variance is included in
the Mack-Net model in order to take into consideration the randomness in future
outcomes:

D̂ij = D̂ij + σ̂p
j r

B,p
ij

√
D̄i,j−1 (124)

Notice that, as the procedure is applied recursively, D̄i,j−1 is used in the previous
equation only when the simulation refers to year after the last diagonal observed. In
the rest of the cases, the recurrence is applied and, thus, D̄i,j−1 substituted by D̂ij−1.
As explained in Section 6.2 for Mack’s model, this procedure England and Verrall
(2006) allows the recognition of the process variance, which is the variability in the
forecasts of future payments.

6.4 Model fitting and results

In this section, Mack-Net parameters by line of business and the comparison between
the performance of the benchmark and the Mack-Net model are presented.

Fitting of Mack-Net model

This subsection presents Mack-Net parameters by line of business. As stated before,
the model has been fitted individually to each of the 200 triangles selected by Meyers
(2015) from the Schedule P of the NAIC Annual Statement. For further details about
the database refer to Section 6.3.

As explained in Section 6.3, once the ensemble of RNNs has been fitted, the Mack-
Net architecture proceeds with the calculation of f̂p

j and σ̂2,p
j . Similar to f̂j and σ̂2

j

in Mack’s model, Mack-Net parameters define the variance and expected value of
the cumulative payments or incurred cost. Thus, Tables 21, 22, 23 and 24 present
a comparison between the average Mack and Mack-Net parameters by line of business.

106

Table 21: Average f̂p
j and f̂j by line of business (Paid data).

CA PA WC OL

Dev Mack Mack Mack Mack
Year Mack Net Mack Net Mack Net Mack Net

1 1.90 1.88 1.77 1.75 2.21 2.59 3.12 3.10
2 1.35 1.35 1.22 1.22 1.29 1.38 1.72 1.67
3 1.16 1.15 1.10 1.10 1.13 1.15 1.34 1.30
4 1.08 1.06 1.06 1.05 1.07 1.08 1.18 1.16
5 1.04 1.03 1.03 1.02 1.04 1.04 1.11 1.07
6 1.02 1.01 1.01 1.01 1.02 1.02 1.04 1.03
7 1.00 1.01 1.01 1.00 1.02 1.02 1.02 1.01
8 1.01 1.00 1.00 1.00 1.01 1.01 1.02 1.01
9 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.00

Source: own elaboration

Table 22: Average f̂p
j and f̂j by line of business (Incurred data).

CA PA WC OL

Dev Mack Mack Mack Mack
Year Mack Net Mack Net Mack Net Mack Net

1 1.27 1.33 1.14 1.15 1.31 1.40 1.45 1.56
2 1.09 1.09 1.03 1.03 1.07 1.09 1.21 1.20
3 1.03 1.03 1.01 1.01 1.02 1.03 1.07 1.07
4 1.01 1.01 1.00 1.00 1.01 1.01 1.03 1.03
5 1.00 1.01 1.00 1.00 1.00 1.01 1.04 1.01
6 0.99 1.01 1.00 1.00 1.00 1.01 1.01 1.02
7 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.01
8 1.00 1.01 1.00 1.00 1.00 1.01 1.01 1.01
9 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.01

Source: own elaboration

The averages of the development factors of the payment models (Table 21) present
non-significant differences in most of the cases. The only remarkable differences are
the second development factor of OL, and the first and second parameters of WC.
Mack-Net development factors are lower than Mack’s parameters in all the lines of
business with the only exception of Workers’ Compensation. This can be proved by
computing the multiplicative development factors (product of development factors
by line of business and model).

With regard to the incurred cost development factors (Table 22), the differences be-
tween both models are minor in the case of CA and PA. However, they become more
relevant in the case of WC and OL, especially in the case of the first development
year. It is also worth mentioning that Mack-Net development factors are higher than

107

Mack parameters regardless of the line of business.

Table 23: Average σ̂2,p
j and σ̂2

j by line of business (Paid data).

CA PA WC OL

Dev Mack Mack Mack Mack
Year Mack Net Mack Net Mack Net Mack Net

1 13.25 12.43 12.96 11.96 14.98 13.94 26.94 25.47
2 6.82 5.96 5.73 5.09 6.06 5.43 10.35 10.21
3 4.43 3.76 3.61 3.29 4.07 3.70 6.67 5.58
4 2.97 2.31 2.59 2.55 3.07 2.78 4.96 4.29
5 1.76 1.39 1.40 1.47 1.55 1.76 3.21 2.30
6 0.98 0.74 0.87 0.79 1.46 1.19 1.95 1.23
7 0.65 0.44 0.68 0.50 1.10 0.86 0.97 0.54
8 0.42 0.26 0.19 0.24 0.71 0.55 0.78 0.42
9 0.32 0.17 0.15 0.15 0.53 0.36 0.44 0.18

Source: own elaboration

Table 24: Average σ̂2,p
j and σ̂2

j by line of business (Incurred data).

CA PA WC OL

Dev Mack Mack Mack Mack
Year Mack Net Mack Net Mack Net Mack Net

1 7.95 7.29 10.11 9.23 15.13 13.85 13.69 12.67
2 4.67 4.11 4.79 4.35 9.48 8.23 9.00 8.56
3 3.19 2.71 3.06 3.04 4.09 3.50 5.24 4.40
4 2.29 1.96 1.62 1.57 2.69 2.19 4.01 3.58
5 1.54 1.27 1.18 1.10 2.12 1.64 3.66 2.53
6 1.13 0.97 0.78 0.71 1.79 1.34 1.50 1.18
7 0.77 0.68 0.31 0.38 1.30 0.94 1.15 0.78
8 0.41 0.46 0.18 0.26 0.80 0.64 0.52 0.48
9 0.33 0.38 0.15 0.18 0.49 0.41 0.43 0.34

Source: own elaboration

Before analysing the differences between σ̂2,p
j and σ̂2

j , it is worth mentioning that
previous cumulative payments or incurred cost play a key role in the model variance,
defined in equations 2 and 20 for Mack and Mack-Net model respectively. Thus, σ̂2,p

j

and σ̂2
j have to be analysed by taking into consideration the analysis of the develop-

ment factors explained in the previous paragraphs.

With regard to the models for paid loss data, σ̂2,p
j and σ̂2

j show non-material differ-
ences. Nevertheless, it has to be pointed out that Mack parameters are higher than
those of Mack-Net in every line of business. As the paid development factors of the

108

Mack model are also higher, the pattern shown in Table 23 reveals that Mack model
generates a higher volatility than the proposed methodology.

Table 24 shows that Mack’s parameters are higher than those of the Mack-Net model
fitted with incurred cost data. In contrast to the models for paid loss data, this effect
is partially offset by the Mack-Net development factors that, as shown in Table 22,
are higher than those of the Mack’s model.

As incurred cost includes the payments and the reserve set up by claim adjusters,
this variable should be closer to the ultimate claim cost than the payments. Thus,
development factors and reserve volatility should be lower in the case of the models
fitted with incurred cost data. The comparison of the average parameters of the
models for incurred (Table 22 and 24) and paid loss data (Table 21 and 23) reveals
that this trend is followed by both models.

Comparison against benchmark models

This subsection compares the performance of the Mack-Net model with the original
methodology proposed by Mack. The variability and accuracy will be compared with
the metrics and tests shown in Section 6.2.

As previously explained, the aim of the Mack-Net model is to improve the accuracy of
the traditional Mack’s methodology by using machine and deep learning algorithms
and techniques such as RNNs. Table 25 and 26 show the empirical results of the
metrics selected for comparing the models accuracy.

Table 25: %RMSE(U t) by model and line of business

Line of Mack Mack-Net Mack Mack-Net CSR Stacked
business Paid Paid Incurred Incurred ANN

CA 7.98% 6.80% 8.18% 8.03% 9.29% 8.92%
PA 6.06% 5.01% 2.62% 4.26% 5.46% 7.78%
WC 7.86% 6.77% 8.15% 6.99% 13.29% 7.36%
OL 20.20% 17.31% 17.38% 13.48% 27.78% 19.80%

Source: own elaboration

109

Table 26: %MAE(U t) by model and line of business

Line of Mack Mack-Net Mack Mack-Net CSR Stacked
business Paid Paid Incurred Incurred ANN

CA 5.96% 4.78% 5.46% 5.40% 6.35% 6.86%
PA 3.81% 3.44% 1.90% 2.86% 3.68% 3.76%
WC 5.32% 4.60% 5.27% 4.51% 6.01% 4.65%
OL 13.41% 12.16% 11.34% 9.88% 18.29% 13.47%

Source: own elaboration

With regard to the models for paid loss data, Mack-Net methodology improves the
accuracy of the Mack’s model in every line of business. %RMSE(U t) decreases by
14% in WC and OL, 15% in CA, and 17% in the case of PA. Similar improvements
are also observed in terms of %MAE(U t).

The comparison of the %RMSE(U t) and %MAE(U t) obtained from the models for
incurred loss data shows that Mack-Net model outperforms the Mack’s procedure in
all the lines of business with the only exception of PA. It is worth mentioning that
the accuracy of the Mack-Net model is especially higher in OL, which is the line
of business with the longer duration of liabilities. Thus, an appropriate estimation
of reserves is particularly relevant in this case. Empirical results demonstrate that
Mack-Net model also outperforms general insurance reserving approaches based on
Markov Chain Monte-Carlo or machine learning such as CSR or Stacked-ANN.

Tables 27 and 28 show the ranking proposed by Model Confidence Set (MCS) con-
sidering %RMSE(U t) and %MAE(U t) as loss functions. This approach confirms
the outcomes presented in the previous paragraphs. In fact, Mack-Net Incurred and
Paid are ranked as the best and second best model respectively when all the lines of
business are considered together (row ‘Total’).

Table 27: Ranking of models according to MSC (%RMSE(U t) and α = 0.05).

Line of Mack Mack-Net Mack Mack-Net CSR Stacked
business Paid Paid Incurred Incurred ANN

CA 2nd 1st 4th 3rd 5th 6th

PA 6th 3rd 1st 2nd 4th 5th

WC 6th 1st 5th 2nd 4th 3rd

OL 5th 2nd 3rd 1st 6th 4th

Total 5th 2nd 3rd 1st 6th 4th

Source: own elaboration

110

Table 28: Ranking of models according to MSC (%MAE(U t) and α = 0.05).

Line of Mack Mack-Net Mack Mack-Net CSR Stacked
business Paid Paid Incurred Incurred ANN

CA 5th 1st 3rd 2nd 4th 6th

PA 6th 3rd 1st 2nd 5th 4th

WC 6th 3rd 5th 1st 4th 2nd

OL 5th 3rd 2rd 1st 6th 4th

Total 5th 2nd 3rd 1st 6th 4th

Source: own elaboration

With regard to the validation of the reserves variability, Kupiec test Kupiec (1995)
is applied to assess the appropriateness of the reserve distribution generated by the
stochastic process. Table 29 collects the p-values of the Kupiec test assuming a VaR
percentile of α = 0.995, which is the value for evaluating the risk profile of insurance
companies under Solvency II Directive.

Companies included in each line of business have different volumes. This fact was
taken into consideration within the Kupiec test by giving different weights to each
company. The higher the standard deviation generated by the company, the higher
the weight given to compute the Kupiec test. Table 29 collects the p-values by model
and line of business.

Table 29: Kupiec test (p-values) by model and line of business

Line of Mack Mack-Net Mack Mack-Net
business Paid Paid Incurred Incurred

CA ≥ 0.05 ≥ 0.05 < 0.05 ≥ 0.05
PA ≥ 0.05 ≥ 0.05 ≥ 0.05 ≥ 0.05
WC < 0.05 < 0.05 < 0.05 ≥ 0.05
OL ≥ 0.05 ≥ 0.05 < 0.05 ≥ 0.05

Source: own elaboration

According to the results of the models for paid loss data, Mack and Mack-Net method-
ologies are unable to produce an appropriate Value at Risk (VaR) for Workers Com-
pensation. In the rest of lines of business, the excesses of the VaR estimated by both
models are aligned with the confidence level selected (α = 0.995). It is worth men-
tioning that, as discussed in Section 6.2, Mack-Net parameters reveal a lower level of
variance than those of the Mack’s model. Thus, the higher accuracy of the Mack-Net
model for paid loss data (Table 25) allows to generate appropriate risk measures with
a lower level of variability.

In the case of the models for incurred cost, Mack-Net model passes the test in all
the lines of business, while Mack’s model fails the test in three out of four lines of

111

business. As it will be presented in Table 30, the coefficients of variation generated
by the Mack-Net model are lower than those of the traditional Mack’s methodology.
Nevertheless, Mack-Net model passes the test because the accuracy of the mean of
the stochastic process is higher (Table 25).

Figure 27: Company code 620. Other Liability.

Mack’s model fails the test in most of the lines of business due to two reasons. First,
the lower level of accuracy leads to higher differences between the actual reserve and
the distribution function generated by the model. Second, the model is unable to
generate a higher variance in order to offset the lack of accuracy. To illustrate this,
Figure 27 shows one company of the OL segment where Mack’s model produces an
inappropriate VaR. The observed ultimate is represented by a black dashed line.

With the goal of comparing the volatility generated by the different stochastic reserv-
ing models, Table 30 collects the % of companies where the coefficient of variation,
CV (U t), of Mack-Net is lower than in the case of Mack’s model:

Table 30: % of companies where Mack-Net CV (U t) < Mack CV (U t)

Line of business Paid Incurred
business loss data loss data

CA 56% 72%
PA 46% 66%
WC 56% 54%
OL 58% 68%

Source: own elaboration

112

The results shown in tables 29 and 30 demonstrate that Mack-Net model does not
need to produce higher coefficients of variation in order to generate more appropriate
risk measures than Mack’s model. Thus, the proposed methodology produces more
efficient risk measures thanks to its predictive power.

Finally, on the trade-off between time and accuracy, Table 31 presents how training
time and error change when the input size increases. The database used for fitting the
algorithms (Schedule P of the NAIC Annual Statement) contains a maximum range
of 10 years per each general insurance company. This analysis sets 5 years of data as
the initial scenario and, then, the input size is increased until the maximum available
data is reached. The results show that the error decreases in a higher extent than
training time in relative terms. This is true even when the number of years is close
the to maximum (10 years). It is worth noticing that benchmark models accuracy
will also decrease if the input size is reduced. Therefore, Table 31 shows the trade-off
between time and accuracy of Mack-Net model in a standalone basis.

Table 31: Mack-Net: Training time and error versus input size

5 Years 6 Years 7 Years 8 Years 9 Years 10 Years

Time Index 100.00 102.14 105.48 113.86 126.00 140.55
Error Index 100.00 70.73 50.05 33.73 19.02 7.08

Source: own elaboration

6.5 Conclusions

The Mack-Net model introduced in this paper has the aim of blending the traditional
Mack’s reserving model with deep and machine learning techniques. To do so, an
ensemble of RNNs is fitted to the loss triangle. Then, the predictions of this ensem-
ble are used for calculating Mack’s model parameters. In this paper, the predictive
power and reserve variability of the proposed architecture and the traditional Mack’s
methodology are compared. Models were fitted to 200 incurred cost and paid loss
triangles from NAIC Schedule P database (available on CAS website) in order to
generate a robust comparison.

Three main conclusions are drawn from the results presented in Section 6.4. First, the
comparison of the accuracy reveals that adding deep learning techniques to Mack’s
model improves the predictive power. With regard to the models fitted with paid
data, this paper demonstrates that Mack-Net model outperforms Mack’s model in
every line of business. In the case of the models for incurred cost, Mack-Net is also
more accurate than Mack’s model in all the lines of business with the only exception
of Personal Auto (PA). The accuracy of reserving models is particularly relevant for
long-tail lines of business such as Other Liability (OL). In the case of this last portfo-
lio, Mack-Net methodology reduces the RMSE by 14% and 22% when using paid and
incurred cost data respectively. Empirical results demonstrate that Mack-Net model

113

https://www.casact.org/research/index.cfm?fa=loss_reserves_data

also outperforms other reserving approaches based on Markov Chain Monte-Carlo or
machine learning such as Changing Settlement Rate or Stacked-ANN respectively.

Second, Kupiec test demonstrated that Mack-Net model generates more appropri-
ate risk measures (Value at Risk) than the traditional Mack’s methodology. With
regard to the paid data, both models fail the test for Workers Compensation (WC).
However, in the case of the incurred data, Mack-Net model passes the test in every
line of business, while Mack’s model fails the test in three out of four lines. Thus,
Mack-Net model is not only more accurate but also generates a more appropriate
Value at Risk (VaR). The confidence level selected for the VaR is α = 0.995, which is
the level required by Solvency II to evaluate the reserving risk in insurance companies.

Third, the blending of traditional approaches with deep learning techniques gener-
ates more efficient models for evaluating the reserving risk, which is the potential
cost of deviations from the expected reserve. In other risks such as changes in equity
price, the mean of the distribution does not play a relevant role (the mean of the
returns are almost always close to zero). As the expected reserve can not be easily
predicted, this is not the case for reserving risk, where the appropriateness of the risk
measures strongly depends on both the mean and the variance of the reserving model.

Due to the reasons explained in the previous paragraph, Mack-Net model is able to
generate more appropriate risk measures with a lower variance. Thus, empirical re-
sults suggest that the proposed method is more efficient (in terms of risk assessment)
than Mack’s model because it generates a more reliable VaR with a lower variability.

Taking into consideration the previous conclusions, the blending of deep learning
techniques with reserving models can be extended to improve the accuracy and risk
measures derived from the use of other bootstrapping and Bayesian approaches. In
the specific case of the Bayesian reserving models, deep learning algorithms could be
applied in order to estimate the parameters of the distributions.

114

7 Conclusions

In this section, the main findings drawn from the proposed stock volatility and general
insurance reserving models and the future lines of research are presented.

7.1 Main Findings

Figure 28 shows the main conclusions of this thesis. They will be discussed in the
following paragraphs.

Figure 28: Thesis conclusions.

Source: Own ellaboration

Stacking leads to more accurate volatility and reserve estimation.

As demonstrated in sections 3 and 5, stacking provides more accurate volatility fore-
casts than traditional stock volatility models such as GARCH, EGARCH or Heston
model. This applies equally to the general insurance reserve estimation. The empiri-
cal results provided in sections 4 and 6 show that stacking also leads to more accurate
estimations than general insurance reserving models based on Chain Ladder (Mack
and Overdispersed Poisson) and Markov Chain Monte-Carlo (Changing Settlement
Rate).

Stacking is applied in all the different models proposed by this thesis. This tech-
nique consists in training an algorithm to combine the predictions of other algorithms
and/or models fitted with the training data. In the stock volatility and general in-
surance reserving models proposed in this thesis, Artificial Neural Network (ANN)
is the algorithm responsible of combining the rest of the models. This algorithm is
composed of layers and they can be modified to deal with different types of problems
such as computer vision, natural language processing, financial time series forecast-
ing, fraud detection or autonomous driving, among others. In addition, the structure

115

of an ANNs can be easily adapted by changing the activation function, number of lay-
ers, types of connection, regularization approach, etc. The flexibility of ANNs make
them especially appropriate for playing the role of combiner. Notice that models
based on stacking are usually called ‘hybrid’ in the field of stock volatility forecasting.

Section 5 introduces hybrid models based on Transformer and Multi-Transformer lay-
ers. As Transformer layers were developed for natural language processing purposes,
their architecture is modified in order to be applied in the field of stock volatility.
Multi-Transformer layers are an extension of Transformer and they are also intro-
duced by this thesis. As explained in this section, this layer has the aim of improving
the stability of Transformer layers by applying bagging to its attention mechanism.

Empirical results demonstrated that hybrid models based of Transformer and Multi-
Transformer layers outperform traditional autoregressive algorithms and hybrid mod-
els based on feed-forward layers. The difference in the performance is more relevant
in 2020, when volatility was specially higher than previous years due to Covid-19
pandemic. The higher shocks on the solvency position of financial institutions take
place in high volatility regimes. Thus, the accuracy of stock volatility models is par-
ticularly important in years such as 2007, 2008 and 2020.

The existing hybrid models in the field of stock volatility forecasting merge the output
of GARCH-based algorithms with feed forward layers or LSTM units. In contrast
to these approaches, the hybrid model introduced in Section 3 is only composed of
machine learning algorithms that take no assumption about the theoretical distri-
bution of stock returns. In this case, the outputs of random forest, support vector
machine and gradient boosting are merged with a feed forward neural network. Most
of the GARCH-based algorithms assume that returns follow a conditional normal or
Student-t distribution. The empirical results shown in Section 3 demonstrate that
the proposed methodology outperforms other existing hybrid approaches, traditional
GARCH algorithms and Heston model in high and low volatility regimes.

With regard to general insurance reserving, the model introduced in Section 4 com-
bines the outputs from ANN, random forest, gradient boosting, Chain Ladder and
Changing Settlement Rate (CSR) with feed forward layers, whereas the model pro-
posed in Section 6 applies LSTM cells to improve the performance of traditional
Mack’s model. As with the stock volatility models, empirical results show that stak-
ing can improve the performance of models based on Chain Ladder (Mack and ODP)
or Markov Chain Monte-Carlo (CSR).

The expectations about market volatility and general insurance reserve play a key
role in the management decisions taken by financial institutions. For instance, the
asset mix of the company can be rebalanced if a high volatility regime is foreseen
by the models. Thus, more precise models can lead to more accurate management
decisions. The Financial Crisis of 2007-2008 demonstrated that an appropriate risk
management strategy also leads to significant competitive advantages in the financial

116

sector.

It is also worth mentioning that models can estimate precisely a certain variable but
they might also ignore significant changes in the financial environment. Therefore,
the human supervision plays a key role to update and adapt the models to new eco-
nomic environments.

Equity and reserving risk estimation is improved thanks to deep
learning techniques.

As shown in sections 3, 4, 5 and 6, the stock volatility and general insurance reserv-
ing models introduced by this thesis lead to more appropriate equity and reserving
risk assessment than the existing models in these fields. After the Financial Crisis of
2007-2008, metrics that relate risk and profit have a significant impact on the investor
decisions, portfolio management and dividend payments, among others. Therefore,
the relevance of having accurate risk models have increased remarkably in the last
years.

The empirical results shown in sections 3 and 5 demonstrate that deep and machine
learning techniques can be applied to obtain more appropriate equity risk measures.
Figure 29 presents the validation of the equity risk measures produced by the pro-
posed and benchmark models of Section 5. As it can be observed, the benchmark
models do not produce appropriate risk measures for the period 2016-2020. Never-
theless, three out of four models based on Transformer and Multi-Transformer layers
generate appropriate equity risk measures. Notice that the period of analysis includes
the considerable turmoil provoked by Covid-19 pandemic in the stock markets.

With regard to general insurance reserving, Kupiec test also demonstrated that the
proposed models generate more appropriate reserving risk estimations than other
approaches based on Chain Ladder and Markov Chain Monte-Carlo. As liability
duration and product characteristics play a key role in general insurance reserving,
four different lines of business from 50 companies from the United States have been
analysed: Workers Compensation, Commercial Auto, Other Liability and Personal
Auto. The reserving models introduced by this thesis shown a better performance
regardless the portfolio characteristics and duration.

As previously stated, measures that relate profit with risk have a significant impact
on the market value of financial institutions. An accurate estimation of the risk profile
can lead to a more efficient risk strategy, better portfolio management actions and,
therefore, an optimization of the profit-risk ratio and other risk related measures such
as Solvency Ratio. Considering the increasing importance given by investors to these
ratios in the financial sector, non-appropriate risk models can lead to a significant
competitive disadvantage as it was demonstrated during the Financial Crisis of 2007-
2008, when numerous financial institutions went bankrupt or were sold at a sale price.

117

Figure 29: Test results. Period: 2016-2020. S&P Index

Source: Own ellaboration

The state of the art techniques in NLP can be adapted to develop
more accurate financial forecasting models.

Machine and deep learning have provoked major developments in the field of speech
recognition, autonomous driving, computer vision, on-line marketing and natural lan-
guage processing (NLP), among others. Nevertheless, most of financial forecasting
models are based on traditional algorithms or methodologies. As stated in the thesis
objectives, the proposed models have the aim of applying the latest deep and machine
learning techniques to financial models. Notice that the models introduced by this
thesis do not only apply novel machine learning techniques, but they also include in
their architectures other traditional approaches in the field of stock volatility fore-
casting and general insurance reserving.

Transformer layers have overcome the performance of any other algorithm in the field
of NLP. Models based on these layers such as BERT, GPT-3, XLNet or Megratron-
LM have brought a remarkable progress in this area. As stock volatility forecasting
and NLP have substantive differences, Section 5 modifies Transformer layers in order
to be applied in the field of stock volatility. In addition, an extension of this layer
called Multi-Transformer is also introduced by this section. This novel layer has the
aim of improving the accuracy and robustness of Transformer layers by applying bag-
ging to the attention mechanism.

The empirical results demonstrated that bringing the latest deep learning techniques
can add value to the current stock volatility forecasting models. Hybrid models

118

based on Transformer and Multi-Transformer were more accurate than other tradi-
tional stock volatility models such as GARCH or other hybrid models based on feed
forward layers. The difference in the performance is especially relevant in 2020, when
Covid-19 pandemic provoked a remarkable shock in the stock markets.

Figure 30: Performance by model (RMSE). S&P Index

Source: Own ellaboration

As shown in Figure 30, models based on Transformer and Multi-Transformer layers
are the top-3 performers during the period 2016-2020. As the higher shocks on the
solvency position of financial institutions take place in high volatility regimes, Figure
30 also shows 2020, when Covid-19 pandemic provoked a remarkable shock in the
financial markets. It is also worth mentioning that the risk measures based on these
top-3 models also pass the Kupiec and Christoffersen tests (see Figure 29).

Deep and machine learning can help to make better management
decisions.

As it was mentioned in the previous points, a more accurate estimation of the stock
volatility, general insurance reserve, equity risk and reserving risk can lead to a more
appropriate risk management strategy. The empirical results shown in this thesis
demonstrate that the proposed models generate more accurate estimations thanks to
deep and machine learning.

Models do not take decisions, they just provide useful data for the decision making
process. Therefore, financial institutions should not be only focused on having ac-
curate risk models, but they should also take into consideration the risk modelling

119

results in the decision making process.

After the Financial Crisis of 2007-2008, regulators have enhance the risk management
framework of financial institutions with laws such as Basel III, Solvency II or Swiss
Solvency Test. In addition, companies have embedded a stronger risk management
framework in their regular management process and they have integrated risk as-
sessment and monitoring activities in their internal control systems thanks to lessons
learned during this crisis.

Therefore, risk models are specially relevant in the current context due to their im-
portance in the decision making process of financial institutions. Indeed, measures
such as Solvency Ratio or Return on Risk Capital have a significant impact on divi-
dends and companies valuation. Thus, the models introduced by this thesis can lead
to competitive advantages thanks to the accuracy provided by deep and machine
learning algorithms.

It is also worth mentioning that big tech companies such as Alibaba, Alphabet, Ama-
zon or Tesla are starting to sell insurance and financial products. Deep and machine
learning algorithms are deeply embedded in the decision making process of these
companies. Therefore, financial institutions need to adopt these techniques in order
to cancel out this potential competitive advantage of big techs.

7.2 Further research

The empirical results obtained in this thesis suggest three additional research ar-
eas. First, volatility plays a key role in financial derivatives pricing models. Thus,
non-accurate stock volatility estimations lead to wrong valuations from these models.
The architectures introduced by this thesis for stock volatility forecasting purposes
can be used together with derivative pricing models in order to analyse if a more
accurate derivative valuation can be obtained. Thanks to the flexibility given by
derivatives, the size of their market has sharply increased in the last 25 years. There-
fore, a correct valuation of this instrument is specially relevant due to the potential
impact that they can have on the profit and solvency position of financial institutions.

Second, the state of the art of other areas different from natural language process-
ing can be adapted in order to generate novel financial models. This thesis brings
Transformer layers and staking to the field of stock volatility forecasting and general
insurance reserving. Nevertheless, other deep learning techniques such as generative
adversarial networks or convolutional neural networks can be adapted in order to be
applied in the field of quantitative finance. As Transformer layers in natural lan-
guage processing, generative adversarial networks and convolutional neural networks
are the state of the art in the field of computer vision and image generation. Their
ability to recognise interdependencies can be exploited for financial purposes, where
the correlation between different features play a key role. In addition to these al-
gorithms, extreme gradient boosting can also be applied in the field of quantitative

120

finance. This algorithm has demonstrated a great performance in classification and
regression problems with structured data. Notice that most of the finance data is
structured.

Third, the robustness and predictive power of the architectures proposed for general
insurance reserving purposes suggest that further investigation should be conducted
to blend deep and machine learning techniques with Bayesian reserving models based
on Markov Chain Montecarlo. The general insurance models introduced by this the-
sis blend Chain Ladder or theoretical distributions with deep and machine learning
algorithms.

121

8 Annexes

122

8.1 Annex I. Published Paper. Forecasting volatility with a
stacked model based on a hybridized Artificial Neural Network

123

Expert Systems With Applications 129 (2019) 1–9

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Forecasting volatility with a stacked model based on a hybridized

Artificial Neural Network

Eduardo Ramos-Pérez

1 , Pablo J. Alonso-González

∗, José Javier Núñez-Velázquez

Economics Department, Universidad de Alcalá, Plaza de la Victoria 2, Alcalá de Henares 28802, Spain

a r t i c l e i n f o

Article history:

Received 30 October 2018

Revised 26 March 2019

Accepted 27 March 2019

Available online 27 March 2019

MSC:

62-07

62P05

65C60

90-08

Keywords:

Machine learning

Stacking algorithms

Risk assessment

Volatility forecasting

Hybrid models

a b s t r a c t

An appropriate calibration and forecasting of volatility and market risk are some of the main challenges

faced by companies that have to manage the uncertainty inherent to their investments or funding opera-

tions such as banks, pension funds or insurance companies. This has become even more evident after the

20 07–20 08 Financial Crisis, when the forecasting models assessing the market risk and volatility failed.

Since then, a significant number of theoretical developments and methodologies have appeared to im-

prove the accuracy of the volatility forecasts and market risk assessments. Following this line of thinking,

this paper introduces a model based on using a set of Machine Learning techniques, such as Gradient

Descent Boosting, Random Forest, Support Vector Machine and Artificial Neural Network, where those al-

gorithms are stacked to predict S&P500 volatility. The results suggest that our construction outperforms

other habitual models on the ability to forecast the level of volatility, leading to a more accurate assess-

ment of the market risk.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

During the Financial Crisis of 20 07–20 08, unexpected falls in

stock prices resulted in significant losses for individual investors

and financial institutions. Since then, new regulations have en-

tered in force in order to ensure the correctness of the market risk

assessment provided by financial institutions and to allow indi-

vidual market participants to be aware of the risk linked to fi-

nancial products. As volatility is an indicator of the uncertainty

associated with the asset profitability (Hull, 2015; Rajashree & Ran-

jeeeta, 2015), this variable tends to play a key role within the

risk models. In fact, events like the bankruptcy of LTCM in 1998

(Lowenstein, 20 0 0), the dotcom crash in 2001 (Aharon, Gavious, &

Yosef, 2010) or, more recently, the aforementioned Financial Cri-

sis of 20 07–20 08 were not foreseen by most of the risk models

due to inaccurate estimates produced by the volatility forecasting

models. It is worth mentioning that, as volatility is not directly ob-

served, before estimating any statistical model it is necessary to

select a volatility proxy (Poon & Granger, 2003). In the following

∗ Corresponding author.

E-mail addresses: ramos.perez.e@gmail.com (E. Ramos-Pérez), pablo.alonsog@

uah.es (P.J. Alonso-González), josej.nunez@uah.es (J.J. Núñez-Velázquez).
1 Ph.D. Student (Economics and Management Program).

paragraphs, the proposed methodology and main families of

volatility forecasting models (GARCH, Stochastic and Machine

Learning) are presented.

First of all, GARCH models are introduced as this family of mod-

els is probably the most widely used in the literature due to its

ability to fit the volatility clustering (Mandelbrot, 1963) empiri-

cally observed in financial time series. This auto-regressive ap-

proach and its generalization were developed by Engle (1982) and

Bollerslev (1986) respectively. Classical GARCH models were dis-

covered to be too rigid for fitting returns series, especially over

a long time span, because the estimated persistence of condi-

tional variances is close to one (Bauwens, Hafner, & Laurent, 2012).

Therefore, more flexible GARCH models were developed in or-

der to overcome this problem. Engle and Lee (1999) suggested

a two equation model where each of them represents long-run

and short-run components of volatility, respectively. Mixed-normal

GARCH (Haas, Mittnik, & Paolella, 2004a) is a second way to

deal with this problem. This kind of model allows to choose

amongst several regimes in each instant of time t. The drawback

of this methodology is that it assumes that the variables used to

decide amongst regimes are all independent over time. To over-

come this problem, Haas, Mittnik, and Paolella (2004b) proposed a

Markov-switching model where the parameters of a GARCH model

change according to a Markov process. An extension of this kind

https://doi.org/10.1016/j.eswa.2019.03.046

0957-4174/© 2019 Elsevier Ltd. All rights reserved.

2 E. Ramos-Pérez, P.J. Alonso-González and J.J. Núñez-Velázquez / Expert Systems With Applications 129 (2019) 1–9

of model can be found in Haas and Paolella (2012) . Before con-

cluding with the GARCH models, it is important to mention that

volatility can behave differently depending on the trend of the

market: bullish or bearish. To fit this behaviour, Nelson (1991) de-

veloped the EGARCH model that allows the sign and the

volume of previous values to have separate impacts on the volatil-

ity forecasts. In addition to the EGARCH model, Glosten, Jagan-

nathan, and Runkle (1993) proposed the GJR-GARCH to replicate

the aforementioned behaviour. Other developments within this

family can be found in Engle and Kroner (1995) with their BEKK

model, the factor model (Engle, Ng, & Rotschild, 1990), the Con-

stant Conditional Correlation model (Bollerslev, 1990), the time-

varying correlation model (Tse & Tsui, 2002), the dynamic corre-

lation model (Engle, 2002) or the multivariate GARCH approach

proposed by Kraft and Engle (1982) and Engle, Granger, and

Kraft (1984) and its financial implementation by Bollerslev, En-

gle, and Wooldridge (1988) . More recently, Zhang, Zhu, and

Ling (2018) have proposed a first order zero drift GARCH (ZD-

GARCH) to study heteroscedasticity and conditional heteroscedas-

ticity together.

The second family is composed of those models which as-

sume that the volatility is driven by its own stochastic process.

This approach was introduced by Taylor (1982) as an Euler ap-

proximation of the underlying diffusion model. Assuming that

stock prices follow a Brownian motion, Heston (1993) derived a

model where the volatility follows an Ornstein–Uhlenbeck pro-

cess. To derive the parameters of the Heston Model, two different

strategies have been adopted in the literature: moment or sim-

ulation. For the first one, the Generalized Method of Moments

was proposed by Melino and Turnbull (1990) and Andersen and

Sorensen (1999) , while the simulation approach has been used

by Danielsson (2004) , Durbin and Koopman (1997) , Broto and

Ruiz (2004) or Andersen (2009) , amongst others.

The last family presented is Machine Learning, which com-

prises a set of techniques used to analyse the future evolution

of stock prices and volatility. These algorithms try to learn au-

tomatically and recognize patterns in a large amount of data

(Krollner, Vanstone, & Finnie, 2010). It is worth mentioning that

the fitting of these algorithms is quite sensitive to the forecasting

time-frame and the selected input variables. Armano, Marchesi,

and Murru (2005) and de Faria, Albuquerque, González, Caval-

cante, and Albuquerque (2009) suggest using one day as a time-

frame and lagged or technical indicators as input variables for

the Machine Learning algorithms. Stock prices, volatilities and

portfolio selection have been analysed using different methodolo-

gies based on Machine Learning, such as Support Vector Machine

(Gestel, Suykens, Baestens, Lambrechts, & Laneknet, 2001), hidden

Markov models (Dias, Nogueira, Peixoto, & Moreira, 2019; Gupta

& Dhinga, 2012) or Artificial Neural Networks (ANN) (Hamid &

Iqbid, 2002). These last authors showed that volatility forecasts

made by an ANN outperform the implied volatility derived from

Barone-Adesi and Whaley options models. Additionally, ANNs have

been applied successfully to other financial series different from

volatility and stock prices: bond rates (Surkan & Xingren, 2001)

and bank failures (Hutchinson, Lo, & Poggio, 1994). Deep learning

(LeCun, Bengio, & Hinton, 2015) is a framework closely related with

ANN which has been employed for predicting the evolution of Ko-

rean stock market index (Chang, Han, & Park, 2017).

Despite the high performance of ANN, predictions derived

from the use of this algorithm could be inaccurate when stock

prices move sharply (Patel & Yalamalle, 2014). To overcome

this problem, ANN were combined with other statistical models

(Kristjanpoller, Fadic, & Minutolo, 2014) creating the so called hy-

brid models. Hybridization can be defined as an approach in which

several models are merged to form a new enhanced model in order

to produce better forecasting results. Therefore, a hybrid model is

a combination of the artificial intelligence techniques with some

components of the traditional forecasting models (like the ones

presented within the GARCH family). Examples of this approach

are discussed in Roh (2006) , Hajizadeh, Seifi, Zarandi, and Turk-

sen (2012) , Lu, Que, and Cao (2016) Monfared and Enke (2014) or

Kristjanpoller et al. (2014) , where different outputs from a GARCH-

based model are used as inputs in an ANN. A more general pic-

ture of this type of hybrid models is provided by Bildirici and

Ersin (2009) , since they compared and combined an ANN with

different types of GARCH models (GARCH, EGARCH, GJR-GARCH,

TGARCH, NGARCH, SAGARCH, PGARCH, APGARCH and NPGARCH).

In addition to the above-mentioned researches, this type of hy-

brid models has been broadly used in other papers. Bildirici and

Ersin (2014) proposed a MS-GARCH with an ANN to improve the

forecasting accuracy, Bektipratiwi and Irawan (2011) combined a

radial basis function with an EGARCH to model stocks returns of

an Indonesian bank and Arneric and Poklepovic (2016) developed

an ANN model as an extension of a GJR-GARCH to forecast the

market returns of six European emerging markets. GARCH-based

models have been also combined with ANNs to predict the volatil-

ity in commodity markets, such as gold (Kristjanpoller & Minu-

tolo, 2015) or oil (Kristjanpoller & Minutolo, 2016). In this last

case, the hybrid model included financial variables to improve the

forecasts. This strategy can also be found in Kristjanpoller and

Hernández (2017) . Kim and Won (2018) propose a hybrid model

that combines a LSTM with various GARCH-type models to fore-

cast the volatility of KOSPI index. A refinement of this model can

be found in Back and Kim (2018) . It should be mentioned that

these models can be generated in both directions: some outputs

of a GARCH model can be used as input of an ANN and vice versa

(Lu et al., 2016). Finally, it should be noted that hybridisation can

not only be made with ANN. Peng, Melo, Camboim de Sá, Akaishi,

and Montenegro (2018) proposed a structure combining traditional

GARCH-models with Support Vector Machine (SVM) (Cortes & Vap-

nik, 1995).

The research carried out along this paper develops a volatil-

ity forecasting model that consists of two different levels which

is based on stacking algorithms methodology (Hastie, Tibshirani,

& Friedman, 2009) and statistical models of the Machine Learn-

ing family. Random Forest (RF) (Breiman, 2001), Gradient Boosting

(GB) with regression trees (Friedman, 20 0 0) and Support Vector

Machine (SVM) (Cortes & Vapnik, 1995) are used in the first level,

while an ANN (Mcculloch & Pitts, 1943) is incorporated within the

second level of the stacked model (Stacked-ANN) in order to gen-

erate the volatility forecasts. A different two-level approach can be

found in Kristjanpoller and Minutolo (2018) . They use an ANN-

GARCH model with a pre-processing based on principal compo-

nents analysis to reduce the number of inputs employed in their

network. In contrast to the hybrid models defined previously, the

proposed model is merging the results arising from other machine

learning algorithms which are free of some theoretical assump-

tions like the use of a predefined distribution for the underlying

asset returns or the constant level of unconditional variance. Be-

cause of this and with the aim to build a more flexible model,

the GARCH-based models are not present in the Stacked-ANN ar-

chitecture. The proposed model relies completely on the predic-

tions made by machine learning algorithms and market data. Ad-

ditionally, in the case of the Stacked-ANN the final forecasts made

by the first level algorithms are directly used as inputs within the

ANN while, in most of the hybrid models discussed in the previ-

ous paragraphs, sections of the GARCH-based models are inserted

separately in the ANN.

The rest of the paper proceeds as follows: Section 2 presents

the set of volatility forecasting models used for comparison pur-

poses. Furthermore, the risk measures and tests used to validate

the results are discussed. In Section 3 the theoretical background

E. Ramos-Pérez, P.J. Alonso-González and J.J. Núñez-Velázquez / Expert Systems With Applications 129 (2019) 1–9 3

and architecture of the volatility forecasting model based on stack-

ing algorithms (Stacked-ANN) are explained. The empirical results

of the different forecasting models are shown in Section 4 , where

the accuracy and the risk measures arising from the proposed

model are compared with results obtained by the methodologies

explained in Section 2 . Finally, Section 5 presents the main conclu-

sions of the results and comparisons carried out along Section 4 .

2. Benchmark models, risk measurements and statistical tests

As stated above, this section is focused on explaining the

benchmark models and the tests used to back-test the risk mea-

surements. Thus, the first paragraphs are dedicated to ANN, ANN-

GARCH, ANN-EGARCH and Heston Model, while the end of this sec-

tion is focused on the risk measurements and tests performed to

validate and compare the results of the benchmark models with

the one proposed in Section 3 .

The first benchmark model is a feed-forward ANN. Following

the notation provided by Bishop (2006) and assuming that the al-

gorithm has two hidden layers, the model would be defined by the

following expression:

ˆ σt+1 = h

(3)

(

T ∑

k =1

w

(3)
p,k

h

(2)

(

M ∑

j=1

w

(2)
k, j

h

(1)

(

D ∑

i =1

w

(1)
j,i

x i + w

(1)
j, 0

)

+ w

(2)
k, 0

)
+ w

(3)
p, 0

)
(1)

Where h (n) is the activation function associated with the layer n ,

w

(n)
z, v is the v th weight associated with the neuron z inside the layer

n and x i refers to the i input variable of database comprised by the

explicative variables selected by the analyst.

The second benchmark model is an ANN-GARCH(p, q). As briefly

introduced in Section 1 , the aim of this hybrid model is to combine

the GARCH(p, q) estimates with other input variables by using an

ANN, which is a more flexible model than GARCH(p, q). Therefore,

before starting with the fitting of the ANN, the parameters of the

GARCH(p, q) model need to be estimated:

ˆ σ 2
t = ω +

q ∑

i =1

αi r
2
t−i +

p ∑

i =1

βi σ
2
t−i / ˆ r t = ˆ σt εt (2)

In this formulation ω, αi and β i are the parameters to be esti-

mated, while r t and σ 2
t refer to the return and volatility respec-

tively. The returns distribution is determined by the distribution

selected for εt . If a standardize normal or standardize Student’s t-

distribution is selected, then the returns generated by the model

follow a conditional normal (CND) or conditional t-distribution

(CTD) respectively (Bauwens et al., 2012). Once the GARCH(p, q) pa-

rameters are estimated,
∑ q

i =1
αi r

2
t−1

and

∑ p
i =1

βi σ
2
t−1

can be com-

puted and used as input (together with the rest of explicative vari-

ables) within the ANN.

The third benchmark model is an ANN-EGARCH. The archi-

tecture of this model and the previous one can be considered

the same with the unique difference that the first step consists

of fitting an EGARCH(p, q) instead of a GARCH(p, q) model. The

EGARCH(p, q) can be defined as follows (Nelson, 1991):

log ˆ σ 2
t = ω +

p ∑

i =1

αi log ˆ σ 2
t−i +

q ∑

i =1

(βi εt−i + γi (| εt−i | −E | εt−i |))
(3)

Once the EGARCH is fitted, the following terms can be calculated

and used as input within the ANN together with the rest of the

explicative variables selected by the analyst:

p ∑

i =1

αi log ˆ σ 2
t−i

q ∑

i =1

βi εt−i

q ∑

i =1

γi (| εt−i | −E | εt−i |) (4)

The last benchmark is the Heston (1993) Model. Even though this

approach belongs to the stochastic family and the proposed one

to the Machine Learning one, this model is going to be used as

benchmark during this paper as this process is the most widely

used within the family of the stochastic volatility models. It as-

sumes that changes in stock prices through the time (dX t) follow a

Brownian diffusion process:

dX t = μX t dt +

√

σ 2
t X t dB t (5)

Where B t ∼ N (0 , σ 2
t t) . Therefore, if volatility follows an Ornstein–

Uhlenbeck process, the changes in this variable are defined by the

following expression:

dσ 2
t = θ

(
υ − σ 2

t

)
d t + δσt d B

∗
t (6)

where υ is the long term volatility, θ is the rate of return to υ, δ
is the volatility of σ 2

t and B ∗t is a Wiener process that has a corre-

lation of ρ with B t .

Once the four benchmark models have been explained, the sec-

tion focuses on the risk measurements. As stated before, volatility

plays a key role in market risk assessment. Therefore, the mod-

els will not be only compared in terms of accuracy, but the risk

measurements arising from every volatility model are going to

be tested. For this purpose, VaR and CVaR have been selected as

risk measures. Even though VaR is probably the most used met-

ric due to its simplicity and easy interpretation, CVaR has been

also included as it is considered to be a coherent risk measure

(Artzner, Delbaen, Eber, & Heath, 1999). Consequently, for every

volatility model the aforementioned risk measures are going to be

computed and validated by means of the following tests:

• Kupiec (1995) introduced a test in order to check if the num-

ber of VaR excesses are align with the level of confidence

selected.
• An extension of the previous test was developed by

Christoffersen et al. (1997) . The aim of this test is to validate

that VaR excesses are independent, identically distributed

and in line with the selected level of confidence.
• Acerbi and Szekely (2014) developed a test (AS1) to assess

the appropriateness of the CVaR based on the assumption

that VaR has been already tested and considered to be cor-

rect from a statistical point of view. The test is inspired by

the following equation:

E

[
r t

CV aR α,t
+ 1

∣∣∣r t + V aR α,t < 0

]
= 0 (7)

As VaR needs to be previously validated, the result of this

test has to be assessed together with the two aforemen-

tioned tests.
• In addition to the previous test, Acerbi and

Szekely (2014) introduced another method (AS2) to val-

idate the CVaR without making any assumption about the

appropriateness of the VaR. To do so, this test tries to check

a CVaR expression that is not conditioned by the correctness

of a previous VaR estimate.

Before beginning with the Stacked-ANN architecture, it is worth

noticing that the two first tests are parametric while the two last

are non-parametric so, for further details about how to compute

the statistics and their distributions please refer to aforementioned

papers.

3. Stacked model

This section has been divided in several sub-sections in order

to explain sequentially the proposed volatility forecasting model.

As the Stacked-ANN model is composed by two different levels,

4 E. Ramos-Pérez, P.J. Alonso-González and J.J. Núñez-Velázquez / Expert Systems With Applications 129 (2019) 1–9

Fig. 1. Stacked-ANN model structure.

the two first sub-sections are dedicated to the input data and the

algorithms within the first level of the Stacked-ANN model, while

the third and forth sub-sections are focused on the data required

to generate the stacking procedure and the details of the ANN fit-

ted with the aforementioned information. (Fig. 1 explains briefly

the process followed to estimate and test the Stacked-ANN model).

3.1. First level: Input data

The first step is concerned with the creation of the database

containing the volatility proxy to be used as a response and the

explanatory variables selected to fit the algorithms. As the aim

of the study is to predict future volatilities, the True Realized

Volatility (hereinafter TRV) is going to be used as response vari-

able (Roh, 2006):

T RV t =

√

1

n

n ∑

i =1

(r t+ i −1 −̂ r t)
2

(8)

Where ̂ r t =

∑ n
i = n (r t+ i −1) /n and n = 5 . The window has been se-

lected to be large enough to compute a stable TRV and small

enough to avoid, as much as possible, mixing different volatility

regimes.

The variables given to the first level algorithms to forecast the

TRV are the last 30 volatilities computed with returns already ob-

served in the market:

V t =

√

1

n

n −1 ∑

i =0

(r t−n + i −̂ r t)
2

(9)

Where ̂ r t =

∑ n −1
i =0 (r t−n + i) /n and n = 5 . Only the last 30 volatili-

ties have been selected because the correlations between previous

volatilities and the TRV are residual and therefore their explana-

tory power is considered to be non-significant. The historical data

to compute all the aforementioned variables is obtained by using

the quantmod (Ryan & Ulrich, 2017) package from the R project

(R Core Team, 2017) and, as suggested by Hastie et al. (2009) , they

will be scaled to the range [0, 1] to improve the training of the

algorithms.

Before beginning with the section related with the algorithms

included within the first level, it is important to mention that the

first 25% of the data is used to fit the first level algorithms, the

next 50% is dedicated to the ANN estimation and the last 25% is

the test set. The comparison of the benchmark models with the

proposed one in terms of accuracy and risk measurement will be

made with a different set of data containing the information of

the following year (e.g. if data from 20 0 0 to 2007 is used to train

and test the Stacked-ANN model, the out of sample data selected

for comparison purposes would be market movements happened

during 2008).

3.2. First level: Individual algorithms

The methods applied to optimize the hyper-parameters of the

algorithms within the first level of the Stacked-ANN architecture

are introduced below:

• Minimization of the Mean Square Error (hereinafter, MMSE)

for the whole database to train the first level algorithms.

E. Ramos-Pérez, P.J. Alonso-González and J.J. Núñez-Velázquez / Expert Systems With Applications 129 (2019) 1–9 5

• Circular Block Bootstrap (CBB). This method (Politis & Ro-

mano, 1991) generates new samples by selecting random

blocks from the original database. The length of these

blocks is fixed and the procedure to calculate it was intro-

duced by Politis and White (2004) and Patton, Politis, and

White (2009) . CBB can only be applied to stationary time

series.
• Stationary Bootstrap (hereinafter, SB) (Politis & Ro-

mano, 1994). Similar to the case of CBB, this method

can only be used with stationary time series. However,

the difference with the former method is that the length

of the blocks instead of being fixed, it is randomly se-

lected with a certain average that can be calculated using

different approaches (see Patton et al. (2009) ; Politis and

White (2004)).
• Maximum Entropy Bootstrap (hereinafter, MEB) (Vinod,

2006; Vinod & de Lacalle, 2009). Unlike the two previous

approaches, stationarity is not required as the new samples

are obtained from the maximum entropy distribution of the

original time series.
• H Cross-Validation (HCV). This method introduced by

Chu and Marron (1991) tries to avoid the effect of the corre-

lation that can exist between the response and the explana-

tory variables while dealing with time series by eliminating

h data points between them. The bandwidth selection is ob-

tained minimizing the absolute autocorrelation between the

response and explanatory variables, with a maximum width

of 100 days.

The optimum hyper-parameters combination of each one of the

five previous methods is obtained by applying grid search. Then,

these combinations are tested against data out of sample (the fol-

lowing 50% of the database) to choose the most accurate option for

fitting the algorithm.

As stated before, the first level of the stacked model archi-

tecture is composed by three algorithms: Random Forest (RF)

(Breiman, 2001), Gradient Boosting with regression trees (GB)

(Friedman, 20 0 0) and Support Vector Machine (SVM) (Cortes &

Vapnik, 1995).

3.3. Second level: Input data

As explained in Section 3.1 , the first 25% percent of data is ded-

icated to fit the first level algorithms while the following 50% and

25% are used for fitting the ANN and testing the results respec-

tively. The explanatory variables given to the ANN are:

• As with the first level algorithms, the last 30 volatilities

(V t , V t−1 , . . . , V t−29) scaled to the range [0, 1].
• The True Realized Volatility forecasts made by the first

level algorithms: Random forest (̂ T RV t,RF), Gradient boosting

(̂ T RV t,GB) and Support Vector Machine (̂ T RV t,SV M

).

The response variable is the TRV t as defined in Section 3.1 .

3.4. Second level: Stacking algorithm

As stated previously, the last step of the Stacked-ANN model is

the fitting of the ANN, which is the algorithm stacking the fore-

casts made by the RF, GB and SVM. Before starting with the details

of the ANN architecture, notice that the methods and procedures

related to the hyper-parameters optimization are the same as the

first level algorithms: Grid search in combination with the meth-

ods explained in Section 3.2 and final hyper-parameters decision

based on the out of sample error (last 25% of the database).

Below, the main characteristics and details of the stacking algo-

rithm are presented:

• The feed-forward ANN has two hidden layers with 20 and

10 neurons respectively. The sigmoid activation function has

been selected for all the neurons within the hidden layers

while the linear activation function has been used in the

output layer, which is comprised by one neuron.
• The optimization algorithm selected is Adaptive Moment

Estimation (ADAM), which was created by Kingma and

Ba (2014) . This method consists in a progressive adaptation

of the initial learning rate, taking into consideration current

and previous gradients. The default calibration proposed by

the authors is applied: β1 = 0 . 9 and β2 = 0 . 999 .
• The number of epochs are 10,0 0 0 and the batch size is equal

to the length of the data used for training the ANN.
• The backward pass calculations are done according to the

selection of root mean squared error as a loss function.
• As indicated in Section 3.1 , the 50% of the information is se-

lected for training the ANN while the following 25% of the

data is the test set. Note that the first 25% of the data is used

to fit the first level algorithms.
• The parameter adjusting the level of L2 regularization (φ)

and the initial learning rate λ used within ADAM are the

hyper-parameters to be optimized during the estimation

process.

Taking into consideration all the above-mentioned details, the

TRV t forecasted by the Stacked-ANN model (S-ANN) is obtained by

means of the following expression: ̂ T RV t,S−ANN =

̂ f
(̂ T RV t,RF ,

̂ T RV t,GB ,
̂ T RV t,SV M

, V t , V t−1 , . . . , V t−29

)
= h

(3)

(

10 ∑

k =1

w

(3)
1 ,k

h

(2)

(

20 ∑

j=1

w

(2)
k, j

h

(1)

(

33 ∑

i =1

w

(1)
j,i

x i + w

(1)
j, 0

)

+ w

(2)
k, 0

)
+ w

(3)
1 , 0

)
(10)

As explained in Section 3.3 , x i are the last 30 volatilities scaled

to the range [0, 1] and the forecasts made by the first level algo-

rithms.

4. Results

During this section, the data used in the empirical analysis, the

fitting process and the final comparison between the Stacked-ANN

and the benchmark models are shown.

4.1. Data

In order to analyse the models under different market condi-

tions, the algorithms have been trained and tested five different

times with the S&P 500 volatilities observed in the following pe-

riods: 20 0 0–20 07, 20 01–20 08, 20 02–20 09, 20 09–2016 and 2010–

2017. As stated in Section 3.1 , during the training and testing of the

models the first 25% of the periods selected is dedicated to fit the

first level algorithms, the next 50% is used to optimize the ANN

while the last 25% is reserved for testing purposes. The year af-

ter the aforementioned periods (20 08, 20 09, 2010, 2017 and 2018

respectively for each period) has been used to compare the out

of sample results of the Stacked-ANN with the benchmark models.

The first three data-sets have been selected in order to analyse the

performance of the models during the years after the financial cri-

sis, when the markets where dominated by a high volatile regime.

Although the years influenced by the financial crisis are valuable to

test the accuracy of the volatility forecasting models, the two last

data-sets have been selected in order to analyse the models per-

formance with the most recent data. Additionally, the lower level

6 E. Ramos-Pérez, P.J. Alonso-González and J.J. Núñez-Velázquez / Expert Systems With Applications 129 (2019) 1–9

Table 1

True realised volatility statistics.

Period Mean STD Skewness Kurtosis

Year 2008 0.022 0.016 1.510 4.519

Year 2009 0.015 0.008 0.853 3.248

Year 2010 0.010 0.006 0.854 3.736

Year 2017 0.004 0.002 0.911 3.369

Year 2018 0.009 0.006 1.406 4.702

Source : own elaboration.

Table 2

Augmented Dickey–Fuller test.

Period ADF statistic: Data for ADF statistic: Data for

training 1st level training 2nd level

(20 0 0–20 07) −6.61 −6.41

(20 0 0–20 08) −6.13 −7.91

(20 0 0–20 09) −5.25 −7.57

(2009–2016) −4.72 −7.27

(2010–2017) −4.58 −8.82

Source : own elaboration.

of volatility during the last periods, especially in 2017, allows to

assess the robustness of the models by analysing them in different

market conditions. In order to support the explanations given dur-

ing this paragraph, Table 1 summarizes the moments of the TRV

during the different periods selected to compare the models:

In addition, the Kolmogorov–Smirnov test has been applied se-

quentially to the TRV in order to assess statistically if the behaviour

of the volatility changes over the different periods. As 2008 is the

year when the most extreme events related with crisis happened

and the market changed from a low to a high volatile regime, the

skewness and mean of that year volatility is higher than the one

related with 2009. Because of that, the aforementioned test re-

veals that the volatility of 2008 and 2009 do not belong to the

same distribution (KS p−v alue = 0 . 001). However, when comparing

the volatility of 2009 with the 2010 one, the test indicates that

they come from the same distribution (KS p−v alue = 0 . 690). Even

though the volatility follows a downward trend, both years are

heavily conditioned by the events occurred during 2008 and there-

fore the test accepts the hypothesis that volatilities belong to the

same distribution. Finally, the pair comprised by the volatilities of

2017 and 2018 shows an upward trend. Nevertheless, this increase

is not big enough to reject the hypothesis that they come from the

same distribution (KS p−v alue = 0 . 167).

The use of some of the methods proposed in Section 3.2 re-

quires the time series to be stationary. Therefore, before using

block bootstrap it has been checked if historical volatility satis-

fies this property by applying the Augmented Dickey–Fuller test

(Dickey & Fuller, 1979) to the different data-sets dedicated to fit

the algorithms within the first and second level. The results are

shown in Table 2 :

As the critical values are −2 . 63 and −3 . 43 with a probability of

5% and 1% respectively, it can be concluded that the data meet the

requirements imposed by CBB and SB methods.

Previously to the fitting of the algorithms, the parameters

needed for the different bootstrap and cross validation meth-

ods are obtained by means of the methodologies presented in

Section 3.2 . As the Stacked-ANN architecture is comprised by two

different levels, the length of blocks for CBB, the average of the

blocks for SB and the distance, h , to be used within the HCV

method are obtained for both, the data-set to fit first level algo-

rithms and the one dedicated to the second level. Table 3 summa-

rizes the former parameters and it shows non-significant changes

over time for the different periods and levels:

Table 3

Calibration of the elements for bootstrap and CV.

Method Period Data for training Data for training

1st level algorithms 2nd level algorithm

CBB Block (20 0 0–20 07) 28 63

CBB Block (20 01–20 08) 36 58

CBB Block (20 02–20 09) 40 56

CBB Block (2009–2016) 39 58

CBB Block (2010–2017) 38 30

SB Block average (20 0 0–20 07) 25 55

SB Block average (20 01–20 08) 32 51

SB Block average (20 02–20 09) 35 49

SB Block average (2009–2016) 34 51

SB Block average (2010–2017) 33 27

HCV length (20 0 0–20 07) 26 31

HCV length (20 01–20 08) 31 51

HCV length (20 02–20 09) 31 40

HCV length (2009–2016) 32 55

HCV length (2010–2017) 35 27

Source : own elaboration.

Table 4

Methods optimizing OOS error.

Period Stacking Gradient Support

Algorithm (ANN) Random Forest Boosting Vector Machine

(20 0 0–20 07) ME SB CBB SB

(20 01–20 08) CBB CBB CBB SB

(20 02–20 09) CBB CBB CBB CBB

(2009–2016) HCV HCV HCV SB

(2010–2017) SB CBB SB SB

Source : own elaboration.

Table 5

Final hyper-parameters.

Period Stacking Gradient Support

Algorithm (ANN) Random Forest Boosting Vector Machine

(20 0 0–20 07) φ = 0 N = 10 B = 1479 γ = 0 . 0 0 01

λ = 0 . 0033 Obs = 24 λ = 0 . 003 ε = 0 . 45

(20 01–20 08) φ = 0 . 01 N = 10 B = 30 0 0 γ = 0 . 0 0 01

λ = 0 . 0059 Obs = 107 λ = 0 . 001 ε = 0 . 55

(20 02–20 09) φ = 0 N = 1 B = 3583 γ = 0 . 0 0 04

λ = 0 . 0136 Obs = 37 λ = 0 . 001 ε = 0 . 17

(2009–2016) φ = 0 . 02 N = 30 B = 10 0 0 γ = 0 . 0 0 02

λ = 0 . 085 Obs = 118 λ = 0 . 009 ε = 0 . 13

(2010–2017) φ = 0 . 01 N = 7 B = 10 0 0 γ = 0 . 0 0 01

λ = 0 . 011 Obs = 175 λ = 0 . 003 ε = 0 . 54

Source : own elaboration.

4.2. Fitting of the Stacked-ANN model

As explained in Section 3.2 , different approaches have been fol-

lowed to find the optimum hyper-parameter combination. Table 4

shows the methods that minimize the out of sample error per each

algorithm and period:

Regardless of the period, the empirical results suggest that CBB

and SB outperform the rest of the methods. These outcomes are

expected as these two methods based on re-sampling blocks from

the original database are specifically prepared to work with sta-

tionary time series. Table 5 summarizes the hyper-parameters sug-

gested by the methods shown in Table 4 :

Where λ is the learning rate of the ANN and GB, φ the parame-

ter adjusting the level of L2 regularization of the ANN, B the num-

ber of iterations performed while fitting the GB, N the number of

variables randomly selected by the RF and Obs the minimum num-

ber of observations to be kept in the terminal nodes of every fitted

tree within the RF architecture. Finally, γ refers to the parameter

included within the radial basis function kernel (the lower the pa-

rameter, the higher the non-linearity) and ε defines the threshold

where the error begins to be penalized by the SVM.

E. Ramos-Pérez, P.J. Alonso-González and J.J. Núñez-Velázquez / Expert Systems With Applications 129 (2019) 1–9 7

Table 6

Accuracy analysis.

Model RMSE: RMSE: RMSE: RMSE: RMSE:

2008 2009 2010 2017 2018

Stacked-ANN 0.01192 0.00534 0.00494 0.00254 0.00544

ANN-EGARCH 0.01332 0.00588 0.00537 0.00276 0.00571

ANN-GARCH 0.01335 0.00584 0.00539 0.00263 0.00575

Heston 0.02066 0.00714 0.00547 0.00359 0.00610

ANN 0.01526 0.00615 0.00541 0.00274 0.00590

Source : own elaboration.

4.3. Comparison against benchmark models

Once the Stacked-ANN is fitted, its performance is compared

with the benchmark models explained in Section 2 (ANN, ANN-

GARCH(1, 1), ANN-EGARCH(1, 1) and Heston Model). Before begin-

ning with the comparisons, the three following remarks about the

benchmark models have to be done:

• Due to the nature of the Heston Model, 20,0 0 0 simulations

per each day have been computed and the daily average of

them has been taken to assess its accuracy.
• The GARCH(1, 1) and EGARCH(1, 1) (included in the ANN-

GARCH(1, 1) and ANN-EGARCH(1, 1) architecture respec-

tively) have been estimated assuming Student-t innovations.
• The fitting procedure and architecture of the ANNs included

within ANN-GARCH(1, 1), ANN-EGARCH(1, 1) and ANN mod-

els are the same as the ones explained for the Stacked-ANN

(see Section 3.4).

Table 6 shows the out of sample error of the different peri-

ods selected to compare the performance and robustness of the

Stacked-ANN with the benchmark models. The results shown in

this table suggest the following conclusions:

• Regardless of the period, the Stacked-ANN outperforms

other hybrid models based on auto-regressive methodologies

like ANN-GARCH and ANN-EGARCH. In relative terms, minor

deviations are observed between the different periods.
• All the hybridized models tend to outperform the pure ANN

model.
• As expected due to the extremely high volatilities observed

during the financial crisis, the results show that, regardless

of the model, 2008 forecasts are less accurate. All the mod-

els minimize their error rate in the year with the lowest

level volatility, 2017.
• The forecasts made by the Heston Model tend to be the less

accurate due to the non-predictive nature of this model.

In addition to the above-mentioned analysis, the risk measures

obtained by using each one of the volatility models are tested. In

order to do so, a returns distribution is selected for each one of the

forecasting volatility methods. As described in Section 2 , Heston

Model requires the changes in stock prices to follow a Brownian

diffusion process. Nevertheless, for the rest of the benchmark

models and the Stacked-ANN (which are free of assumptions

about the returns) a Student t-distribution has been combined

with the different volatility forecasts. This assumption about Stu-

dent t-distribution has been selected when possible as returns

tend to be leptokurtic and heavier-tailed than Normal distribution

(McNeil, Frey, & Embrechts, 2015).

Before analysing the results of the tests presented in Section 2 ,

it is worth mentioning that the level of confidence (99%) and

number of days (10) selected are based on the ones set by Basel

Directive, whose aim is to monitor, amongst others, the market

risk. Table 7 shows the p-value of the tests dedicated to VaR

(Kupiec and Christoffersen) and CVaR (AS1 and AS2). If a 95%

Table 7

P-value of the VaR and CVaR tests.

Model Test Period: Period: Period: Period: Period:

2008 2009 2010 2017 2018

Stacked-ANN Kupiec 0.85 0.84 0.65 0.85 0.85

Christ. 0.01 0.79 0.02 0.01 0.01

AS1 0.66 0.85 0.61 0.90 0.91

AS2 0.56 0.63 0.36 0.67 0.69

ANN-EGARCH Kupiec 0.12 0.12 0.84 0.03 0.03

Christ. 0.00 0.00 0.01 0.03 0.03

AS1 0.52 0.85 0.61 1.00 1.00

AS2 0.07 0.19 0.62 0.91 0.91

ANN-GARCH Kupiec 0.12 0.03 0.01 0.03 0.03

Christ. 0.00 0.03 0.00 0.03 0.03

AS1 0.51 1.00 0.77 1.00 1.00

AS2 0.08 0.92 0.05 0.85 0.89

Heston Model Kupiec 0.00 0.00 0.65 0.03 0.00

Christ. 0.00 0.00 0.59 0.03 0.00

AS1 0.00 0.01 0.83 1.00 0.06

AS2 0.00 0.00 0.36 0.92 0.00

ANN Kupiec 0.65 0.04 0.65 0.30 0.29

Christ. 0.02 0.00 0.00 0.00 0.00

AS1 0.24 0.86 0.59 0.81 0.00

AS2 0.29 0.11 0.35 0.24 0.00

Source : own elaboration.

is set as confidence level, Stacked-ANN in combination with Stu-

dent t-distribution is the only model that produces an appropri-

ate p-value for Kupiec, AS1 and AS2 tests in every period un-

der analysis. All the models show difficulties to produce a p-value

higher or equal than 0.05 for the Christoffersen test because VaR

exceedances tend to happen in a short period of time instead

of spread over the period analysed. It is worth mentioning that

the hybrid models taken as benchmark (ANN-EGARCH and ANN-

GARCH) also fail in producing an appropriate value for the Kupiec

test in several periods while, as stated before, the proposed hybrid

model (Stacked-ANN) pass the test for every period. Finally, Heston

Model tends to produce less appropriate risk measures due to the

distribution constrain mentioned previously.

5. Conclusions

This paper introduces a Stacked-ANN model based only on Ma-

chine Learning techniques with the aim to improve the accuracy

of the volatility forecasts made by other hybrid models based on a

combination of GARCH or EGARCH with ANNs. Its predictive power

and performance has been tested in terms of RMSE, VaR and CVaR.

Two main results have to be pointed out. Firstly, the Stacked-

ANN has been able to generate more accurate volatility fore-

casts than other models in a high volatile regime period like the

one occurred after the Financial Crisis of 20 07–20 08. The mod-

els outperformed by the Stacked-ANN during that time lapse are

other hybrid models like ANN-GARCH and ANN-EGARCH, the most

widely used stochastic volatility theory (Heston Model) and a feed-

forward ANN without any combination with other algorithms or

statistical models. Notwithstanding the Stacked-ANN performance,

it is observed for every model that the higher the volatility the

lower the accuracy. In addition to this analysis, the Stacked-ANN

has been tested with the most recent data (2017 and 2018) in or-

der to check its performance in the current market conditions. As

it occurred with the tests carried out during the financial crisis, the

proposed architecture outperforms the benchmark models in terms

of accuracy. The superior performance shown by the Stacked-ANN

in periods with different levels of volatility are due to the model

flexibility. In contrast with ANN-GARCH or ANN-EGARCH, the in-

puts introduced in the ANN stacked model do not follow any theo-

retical assumption about the returns distribution or volatility. As

explained throughout Section 3 , the architecture proposed uses

8 E. Ramos-Pérez, P.J. Alonso-González and J.J. Núñez-Velázquez / Expert Systems With Applications 129 (2019) 1–9

previous volatilities and forecasts made by a random forest, gradi-

ent boosting with regression trees and support vector machine as

inputs. Before beginning with the second point of the conclusion,

it is worth mentioning that it has been empirically demonstrated

that block bootstrap methods are of special interest when fitting

algorithms to volatility as these procedures are especially prepared

to work with stationary time series.

Secondly, the forecasts made by the volatility models have been

combined with a certain distribution in order to compute the VaR

and CVaR for all the different periods analysed. The distribution se-

lected has been the Student’s t-distribution for every model with

the exception of the Heston Model which requires changes in asset

prices to follow a Brownian diffusion process. The empirical results

demonstrated that only the Stacked-ANN model is able to produce

an appropriate p-value for Kupiec, AS1 and AS2 tests in every pe-

riod under analysis, including those ones related with the financial

crisis.

The aforementioned flexibility and predictive power of the

Stacked-ANN compared with other volatility models suggest to de-

velop further investigations about the implications of using this

model for derivative valuation purposes. As the price of these in-

struments is closely related to the volatility of the underlying as-

sets, further researches should be done in order to compare the

implied volatilities observed in the market with the ones aris-

ing from the proposed model. If the volatility measured by the

Stacked-ANN is more accurate than market expectations, it would

be possible to identify under and overvalued derivatives.

Credit authorship contribution statement

Eduardo Ramos-Pérez: Conceptualization, Methodology, Soft-

ware, Formal Analysis, Writing - Original Draft, Writing - Review

& Editing. Pablo J. Alonso-González: Methodology, Validation, In-

vestigation, Writing - Original Draft, Writing - Review & Editing,

Supervision, Project Administration. José Javier Núñez-Velázquez:

Methodology, Validation, Investigation, Writing - Original Draft,

Writing - Review & Editing, Supervision, Project Administration.

References

Acerbi, C. , & Szekely, B. (2014). Backtesting expected shortfall. Risk , 1–14 .
Aharon, D. , Gavious, I. , & Yosef, R. (2010). Stock markets bubble effects on mergers

and acquisitions. The Quarterly Review of Economics and Finance, 50 (4), 456–470 .
Andersen, T. (2009). Encyclopedia of complexity and system sciences . Springer Verlag .

Andersen, T. , & Sorensen, B. (1999). GMM estimation of a stochastic volatility
model: A Monte Carlo study. Journal of Business and Economic Statistics, 14 ,

329–352 .

Armano, G. , Marchesi, M. , & Murru, A. (2005). A hybrid genetic-neural architecture
for stock indexes forecasting. Information Sciences, 170 (1), 3–83 .

Arneric, J. , & Poklepovic, T. (2016). Nonlinear Extensions of Asymmetric GARCH Model
within Neural Network Framework . AIRCC Publishing Corporation, Chennai, India .

Artzner, P. , Delbaen, F. , Eber, J.-M. , & Heath, D. (1999). Coherent measures of risk.
Mathematical Finance, 9 (3), 203–228 .

Back, Y. , & Kim, H. (2018). ModAugNet: A new forecasting framework for stock mar-

ket index value with an overfitting prevention LSTM module and a prediction
LSTM module. Expert Systems with Applications, 113 , 457–480 .

Bauwens, L. , Hafner, C. , & Laurent, S. (2012). Handbook of Volatility Models and
Their Applications. Wiley Handbooks in Financial E . Wiley .

Bektipratiwi, A., & Irawan, M. (2011). A RBF-EGARCH neural network model for time
series forecasting. (pp. 1–8).

Bildirici, M. , & Ersin, O. (2009). Improving forecasts of GARCH family models with

the artificial neural networks: An applicaiton to the daily returns in Istanbul
Stock Exchange. Expert Systems with Applications, 36 (4), 7355–7362 .

Bildirici, M. , & Ersin, O. (2014). Modelling Markov Switching ARMA-GARCH Neural
Networks Models and an Application to Forecasting Stock Returns. Hindawi Pub-

lishing Corporation: The Scientific World Journal, 2014 .
Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science

and Statistics) . Berlin, Heidelberg: Springer-Verlag .
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Jour-

nal of Econometrics, 31 (3), 307–327 .

Bollerslev, T. (1990). Modeling the coherence in short-run nominal exchange rates:
A Multivariate Generalized ARCH Model. Review of Economics and Statistics, 72 ,

498–505 .
Bollerslev, T. , Engle, R. , & Wooldridge, J. (1988). A Capital Asset Pricing Model with

time-varying covariances. Journal of Political Economy, 96 , 116–131 .

Breiman, L. (2001). Random forests. Machine Learning, 45 (1), 5–32. doi: 10.1023/A:
1010933404324 .

Broto, C. , & Ruiz, E. (2004). Estimation methods for stochastic volatility models: A
survey. Journal of Economic Surveys, 18 , 613–649 .

Chang, E. , Han, C. , & Park, F. (2017). Deep learning networks for stock markets anal-
ysis and prediction: Methodology, data representations and case studies. Expert

System with Applications, 83 , 187–205 .
Christoffersen, P. F. , Bera, A. , Berkowitz, J. , Bollerslev, T. , Diebold, F. , Giorgianni, L. ,

et al. (1997). Evaluating interval forecasts. International Economic Review, 39 ,

841–862 .
Chu, C.-K., & Marron, J. S. (1991). Comparison of two bandwidth selectors

with dependent errors. Annals of Statistics, 19 (4), 1906–1918. doi: 10.1214/aos/
1176348377 .

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20 (3),
273–297. doi: 10.1023/A:1022627411411 .

Danielsson, J. (2004). Stochastic volatility in asset prices: Estimation by simulated

maximum likelihood. Journal of Econometrics, 64 , 375–400 .
Dias, F. , Nogueira, R. , Peixoto, G. , & Moreira, W. (2019). Decision-making for financial

trading: A fusion approach of machine learning and portfolio selection. Expert
Systems with Applications, 115 , 635–655 .

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregres-
sive time series with a unit root. Journal of the American Statistical Association,

74 (366a), 427–431. doi: 10.1080/01621459.1979.10482531 .

Durbin, J. , & Koopman, S. (1997). Monte Carlo maximum likelihood estimation for
non-Gaussian state space models. Biometrika, 84 , 669–684 .

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation. Econometrica, 50 , 987–1007 .

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivari-
ate generalized autoregressive conditional heteroskedasticity models. Journal of

Business and Economic Statistics, 20 , 339–350 .

Engle, R. , Granger, C. , & Kraft, D. (1984). Combining competing forecasts of infla-
tion with a bivariate ARCH model. Journal of Economic Dynamics and Control, 8 ,

151–165 .
Engle, R. , & Kroner, F. (1995). Multivariate simultaneous generalized ARCH. Econo-

metric Theory, 11 , 122–150 .
Engle, R. , & Lee, G. (1999). In R. Engle, & H. White (Eds.), A permanent and tran-

sitory component model of stock return volatility (pp. 475–497)). Oxford: Oxford

University Press .
Engle, R. , Ng, V. , & Rotschild, M. (1990). Asset pricing with a factor-ARCH covari-

ance structure: Empirical estimates for Treasury Bills. Journal of Econometrics,
45 , 213–238 .

de Faria, E. , Albuquerque, M. , González, J. , Cavalcante, J. , & Albuquerque, M. (2009).
Predicting the Brazilian stock market through neural networks and adap-

tive exponential smoothing methods. Expert Systems with Applications, 36 (10),

12506–12509 .
Friedman, J. H. (20 0 0). Greedy function approximation: A gradient boosting ma-

chine. Annals of Statistics, 29 , 1189–1232 .
Gestel, T. , Suykens, J. , Baestens, D. , Lambrechts, A. , & Laneknet, G. (2001). Financial

time series prediction using least squares Support Vector Machines within the
evidence framework. IEEE Transactions on Neural Networks, 12 (4), 8009–8821 .

Glosten, L. , Jagannathan, R. , & Runkle, D. (1993). On the Relation between the Ex-
pected Value and the Volatility of the Nominal Excess Return on Stocks. The

Journal of Finance, 48 (5), 1779–1801 .

Gupta, A., & Dhinga, B. (2012). Stock markets prediction using hidden Markov mod-
els. 2012 Students conference on engineering and systems, (pp. 1–4).

Haas, M. , Mittnik, S. , & Paolella, M. (2004a). Mixed normal conditional het-
eroskedasticity. Journal of Financial Econometrics, 2 , 211–250 .

Haas, M. , Mittnik, S. , & Paolella, M. (2004b). A new approach to Markov-switching
GARCH models. Journal of Financial Econometrics, 2 , 493–530 .

Haas, M. , & Paolella, M. (2012). In L. Bauwens, C. Hafner, & S. Laurent (Eds.), Mixture

and regime-switching GARCH models (pp. 71–102)). John Wiley and Sons .
Hajizadeh, E. , Seifi, A. , Zarandi, F. , & Turksen, I. (2012). A hybrid modeling approach

for forecasting the volatility of S&P 500 index return. Expert Systems with Appli-
cations, 39 (1), 531–536 .

Hamid, S. , & Iqbid, Z. (2002). Using neural networks for forecasting volatility of S&P
500 index futures prices. Journal of Business Research, 57 (10), 1116–1125 .

Hastie, T. , Tibshirani, R. , & Friedman, J. (2009). The elements of statistical learning:

Data mining, inference, and prediction. Springer Series in Statistics (Second Edi-
tion). Springer New York .

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility
with applications to bond and currency options. Review of Financial Studies, 6 ,

327–343 .
Hull, J. (2015). Risk management and financial institutions (4th edition). Wiley and

Sons, London .

Hutchinson, J. , Lo, A. , & Poggio, T. (1994). A nonparametric approach to pricing
and hedgind derivative securities via learning networks. Journal of Finance, 49 ,

851–859 .
Kim, H. , & Won, C. (2018). Forecasting the volatility of stock price index: A hybrid

model integrating lstm with multiple garch-type models. Expert Systems with
Applications, 103 , 25–37 .

Kingma, D. P. , & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR :

abs/1412.6980 .
Kraft, D. , & Engle, R. (1982). Autoregressive conditional heteroskedasticity in multiple

time series . Department of Economics, UCSD .
Kristjanpoller, W. , Fadic, A. , & Minutolo, M. (2014). Volatility forecast using hybrid

neural network models. Expert Systems with Applications, 41 (5), 2437–2442 .

E. Ramos-Pérez, P.J. Alonso-González and J.J. Núñez-Velázquez / Expert Systems With Applications 129 (2019) 1–9 9

Kristjanpoller, W. , & Hernández, E. (2017). Volatility of main metals forecasted by a
hybrid ANN-GARCH model with regressors. Expert Systems with Applications, 84 ,

290–300 .
Kristjanpoller, W. , & Minutolo, M. (2015). Gold price volatility: A forecasting ap-

proach using the Artificial Neural Network-GARCH model. Expert Systems with
Applications, 42 (20), 7245–7251 .

Kristjanpoller, W. , & Minutolo, M. (2016). Forecasting volatility of oil price using an
Artificial Neural Network-GARCH model. Expert Systems with Applications, 65 (15),

233–241 .

Kristjanpoller, W. , & Minutolo, M. (2018). A hybrid volatility forecasting framework
integrating GARCH, artificial neural network, technical analysis and principal

components analysis. Expert Systems with Applications, 109 , 1–11 .
Krollner, B. , Vanstone, B. , & Finnie, G. (2010). Financial time series forecasting with

machine learning techniques: A survey. European symposium on artificial neural
networks: Computational and machine learning .

Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement

models. The Journal of Derivatives, 3 (2), 73–84. doi: 10.3905/jod.1995.407942 .
LeCun, Y. , Bengio, Y. , & Hinton, G. (2015). Deep learning. Nature, 521 (7553),

436–4 4 4 .
Lowenstein, R. (20 0 0). When genius failed: The rise and fall of long-term credit man-

agement . Random House .
Lu, X. , Que, D. , & Cao, G. (2016). Volatility forecast based on the hybrid arti-

ficial neural network and garch-type models. Procedia Computer Science, 91 ,

1044–1049 .
Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of Business,

36 , 394–419 .
Mcculloch, W. , & Pitts, W. (1943). A logical calculus of ideas immanent in nervous

activity. Bulletin of Mathematical Biophysics, 5 , 127–147 .
McNeil, A. J. , Frey, R. , & Embrechts, P. (2015). Quantitative Risk Management: Con-

cepts, Techniques and Tools. Princeton, NJ, USA: Princeton University Press .

Melino, A. , & Turnbull, S. (1990). Pricing foreign currency options with stochastic
volatility. Journal of Econometrics, 45 , 239–265 .

Monfared, S. A. , & Enke, D. (2014). Volatility forecasting using a hybrid gjr-garch
neural network model. Procedia Computer Science, 36 , 246–253 .

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new ap-
proach. Econometrica, 59 (2), 347–370 .

Patel, M. , & Yalamalle, S. (2014). Stock price prediction using artificial neural net-

work. International Journal of Innovative Research in Science, Engineering and
Technology, 3 (June 2014), 13755–13762 .

Patton, A., Politis, D. N., & White, H. (2009). Correction to ǣautomatic block-length
selection for the dependent bootstrap ǥ by d. politis and h. white. Econometric

Reviews, 28 (4), 372–375. doi: 10.1080/07474930802459016 .
Peng, Y. , Melo, P. , Camboim de Sá, J. , Akaishi, A. , & Montenegro, M. (2018). The best

of two worlds: Forecasting high frequency volatility for cryptocurrencies and
traditional currencies with support vector regression. Expert Systems with Appli-

cations, 97 , 177–192 .
Politis, D. , & Romano, J. (1991). A Circular Block-resampling Procedure for Stationary

Data. Purdue University. Department of Statistics .

Politis, D. N., & Romano, J. P. (1994). The stationary bootstrap. Journal of the
American Statistical Association, 89 (428), 1303–1313. doi: 10.1080/01621459.1994.

10476870 .
Politis, D. N., & White, H. (2004). Automatic block-length selection for the depen-

dent bootstrap. Econometric Reviews, 23 (1), 53–70. doi: 10.1081/ETC-120028836 .
Poon, S. , & Granger, C. (2003). Forecasting volatility in financial markets. a review.

Journal of Economic literature, 41 (2), 478–539 .

R Core Team (2017). R: A language and environment for statistical computing . Vienna,
Austria: R Foundation for Statistical Computing .

Rajashree, P. , & Ranjeeeta, B. (2015). A differential harmony search based hybrid
internal type2 fuzzy EGARCH model for stock market volatility prediction. Inter-

national Journal of Approximate Reasoning, 59 , 81–104 .
Roh, T. (2006). Forecasting the volatility of stock price index. Expert Systems with

Applications, 33 (4), 916–922 .

Ryan, J. A., & Ulrich, J. M. (2017). quantmod: Quantitative financial modelling frame-
work. R package version 0.4–12.

Surkan, A. , & Xingren, Y. (2001). Bond rating formulas derived through simplifying a
trained neural network. Proceedings of the IEEE International conference on neural

network, 2 , 1028–1031 .
Taylor, S. (1982). In D. Anderson (Ed.), Financial returns modelled by the prod-

uct of two stochastic processes, a study of daily sugar prices 196179: (vol.1

(pp. 223–226)). North-Holland .
Tse, Y. , & Tsui, K. (2002). A multivariate GARCH model with time-varying correla-

tions. Journal of Business and Economic Statistics, 20 , 351–362 .
Vinod, H. (2006). Maximum entropy ensembles for time series inference in eco-

nomics. Journal of Asian Economics, 17 (6), 955–978 .
Vinod, H. D. , & de Lacalle, J. L. (2009). Maximum entropy bootstrap for time series:

The meboot R package. Journal of Statistical Software, 29 (5), 1–19 .

Zhang, L. , Zhu, K. , & Ling, S. (2018). The ZD-GARCH model: A new way to study
heteroscedasticity. Journal of Econometrics, 202 (1), 1–17 .

8.2 Annex II. Published Paper. Stochastic reserving with a
stacked model based on a hybridized Artificial Neural Network

133

Review

Stochastic reserving with a stacked model based on a hybridized
Artificial Neural Network

Eduardo Ramos-Pérez a, Pablo J. Alonso-González b,⇑, José Javier Núñez-Velázquez b

a Ph.D. Student (Economics and Management Program), Universidad de Alcalá, Spain
b Economics Department, Universidad de Alcalá, Plaza de la Victoria 2, 28802 Alcalá de Henares, Spain

a r t i c l e i n f o

Article history:
Received 18 September 2019
Revised 17 July 2020
Accepted 18 July 2020
Available online 3 August 2020

AMS Subject Classification:
62-07
62P05
65C60
90-08

Keywords:
Stochastic reserving
Reserving risk
Machine learning
General insurance
Run-off prediction

a b s t r a c t

Currently, legal requirements demand that insurance companies increase their emphasis on monitoring
the risks linked to the underwriting and asset management activities. Regarding underwriting risks, the
main uncertainties that insurers must manage are related to the premium sufficiency to cover future
claims and the adequacy of the current reserves to pay outstanding claims. Both risks are calibrated using
stochastic models due to their nature. This paper introduces a reserving model based on a set of machine
learning techniques such as Gradient Boosting, Random Forest and Artificial Neural Networks. These
algorithms and other widely used reserving models are stacked to predict the shape of the runoff. To
compute the deviation around a former prediction, a log-normal approach is combined with the sug-
gested model. The empirical results demonstrate that the proposed methodology can be used to improve
the performance of the traditional reserving techniques based on Bayesian statistics and a Chain Ladder,
leading to a more accurate assessment of the reserving risk.

� 2020 Elsevier Ltd. All rights reserved.

1. Introduction

As with any other company, the survival of an insurance firm
depends on its ability to obtain a sustainable profit over the years.
These entities have to offer their services at an adequate and com-
petitive premium, while the ultimate cost of the claims is subject
to uncertainty. Thus, reserving models were developed in order
to estimate and monitor the expected ultimate cost of outstanding
claims. Although life insurance contracts manifest uncertainty
about the claims cost, reserving takes a special relevance in general
insurance as that uncertainty tends to be higher, at least in the
short term.

Methods of estimating the level of reserves in non-life insur-
ance have evolved from classical and deterministic methods
toward others that take into account the loss reserve uncertainty.
The aim of the first type is to estimate the expected level of
reserves by taking the historical information into consideration.
Chain Ladder is the most frequently used method of this family.

When historical data are not stable enough to use the Chain Ladder
technique, the Bornhuetter and Ferguson (1972) model tends to be
the preferred option to obtain an adequate estimate of the
expected ultimate cost.

The increasing interest of investors in the risk profile of finan-
cial institutions since the Financial Crisis of 2007–2008 and the
implementation of the Solvency II Directive in the European mar-
ket have fostered the use of stochastic reserving models. As in
the case of deterministic approaches, stochastic models based on
the Chain Ladder technique are the most commonly used. One of
the main techniques within this family is the Overdispersed Pois-
son (ODP) model developed by Renshaw and Verrall (1998) and
its bootstrap implementation suggested by England and Verrall
(1999) and England (2002) which assumes that incremental claims
follow an ODP distribution where the variance is proportional to
the mean.

In this model, incremental claims must be positive, but this lim-
itation can be overcome by using the quasi-likelihood approach
introduced by McCullagh and Nelder (1989). In cases where the
ODP assumption does not properly fit the data, Kremer (1982),
Mack (1991) and Verrall (2000) developed other models assuming

https://doi.org/10.1016/j.eswa.2020.113782
0957-4174/� 2020 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: ramos.perez.e@gmail.com (E. Ramos-Pérez), pablo.alonso-

g@uah.es (P.J. Alonso-González), josej.nunez@uah.es (J.J. Núñez-Velázquez).

Expert Systems with Applications 163 (2021) 113782

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

log-normal, gamma and negative binomial distributions respec-
tively. In contrast to the methods within this family, Mack
(1993) developed a free-distribution model by focusing and limit-
ing the claims reserve distribution analysis to the first two
moments.

Thus, the bootstrap implementation of Mack’s model allows the
analyst to obtain a reserve distribution without the necessity of
defining a theoretical distribution for the cumulative or incremen-
tal claim cost. If the bootstrapping procedure is to be avoided,
England and Verrall (2006) introduced a stochastic Bayesian imple-
mentation of the ODP, Negative Binomial and this last free-
distribution model. This approach was recently expanded by
Meyers (2015), who developed some Bayesian Markov Chain
Monte-Carlo (MCMC) models (Levelled Chain-Ladder, Correlated
Chain-Ladder, Levelled Incremental Trend, Correlated Incremental
Trend and Changing Settlement Rate) for incurred and paid data.
Their aim is to improve the performance of ODP and Mack models
by using different approaches such as recognizing the correlation
between accident years, including a skewed distribution to model
negative incremental payments, introducing a trend over the
development years and allowing changes in the claim settlement
rate.

Another set of models is focused on using several triangles
simultaneously in order to take into consideration different charac-
teristics of incurred and paid data. The main models within this
family are the Munich Chain Ladder (MCL) method and Double
Chain Ladder (DCL) model developed by Quarg and Mack (2004)
and Martínez-Miranda, Nielsen, and Verrall (2012), respectively.
By modifying this last method, Margraf, Elpidorou, and Verrall
(2018) addressed the problem of calculating general insurance
reserves when the portfolio is covered by an excess-of-loss reinsur-
ance. In addition to MCL and DCL, Merz andWüthrich (2010) intro-
duced a Bayesian implementation of the paid-incurred chain (PIC)
reserving method (Posthuma, Cator, Veerkamp, & Van Zwet, 2008)
based on using both incurred and paid data. Happ, Merz, and
Wüthrich (2012) and Happ and Wüthrich (2013) also investigated
and developed models related to the PIC method, while Halliwell
(2009) and Venter (2008) introduced regression approaches based
on using both data sources. Pigeon, Antonio, and Denuit (2014),
Antonio and Plat (2014), and Martínez-Miranda, Nielsen, and
Verrall (2013b) also proposed models by taking into consideration
different data sources to estimate the expected ultimate claim cost.

In addition to the different approaches exposed above, it is pos-
sible to find models where the information is not organized in an
aggregated way, as in the classical triangles, but rather in individ-
ual claims data (see Taylor, McGuire, & Sullivan, 2008; Jessen,
Mikosch, & Samorodnitsky, 2011; Pigeon, Antonio, & Denuit,
2013; Antonio & Plat, 2014; Martínez-Miranda, Nielsen, Verrall, &
Wüthrich, 2015; Charpentier & Pigeon, 2016, or Wüthrich, 2018b).

Thanks to the increase in computational power, machine learn-
ing techniques have turned into an adequate tool for reserving pur-
poses. Artificial Neural Networks (Gabrielli & Wüthrich, 2018;
Wüthrich, 2018b), regression trees (Wüthrich, 2018a), Recurrent
Neural Networks (Kuo, 2018) or tree-based algorithms (Lopez,
Milhaud, & Thérond, 2019) have been used to predict claim
reserves. Gabrielli, Richman, and Wüthrich (2018) embedded the
ODP model into a neural network framework, and Baudry and
Robert (2019) introduced a nonparametric reserving model based
on extremely randomized trees (Geurts, Ernst, & Wehenkel,
2006) and individual claims data. In addition to the aforemen-
tioned algorithms, other machine learning techniques were used
by Martínez-Miranda, Nielsen, and Verrall (2013a) for reserving
purposes, and a support vector machine was applied to classify
risks prior to the reserve calculation (Duma, Twala, Marwala, &
Nelwamondo, 2011).

The research carried out in this paper develops a nonparametric
reserving model based on the stacking algorithm methodology.
The proposed architecture consists of two different levels. Random
Forest (RF) (Breiman, 2001), Gradient Boosting (GB) with regres-
sion trees (Friedman, 2000), Artificial Neural Network (ANN)
(McCulloch & Pitts, 1943), Changing Settlement Rate (CSR) reserv-
ing model and the Chain Ladder assumptions are incorporated
within the first level, while an ANN is included in the second level
of the stacked model (Stacked-ANN) architecture in order to gener-
ate the final predictions. Therefore, the aim of this hybrid model is
to improve the performance of the individual components by cre-
ating an architecture that can to learn from the different algo-
rithms and the reserving models included within the first level.

Although the overall methodology is based on that proposed by
Ramos-Pérez, Alonso-González, and Núñez-Velázquez (2019) for
stock volatility forecasting purposes, the model architecture pro-
posed in this study is different. In this research, machine learning
algorithms and reserving models are present in the first level,
while in the architecture developed by Ramos-Pérez et al. (2019),
only machine learning algorithms were included. Therefore, the
most popular models for forecasting volatility such as GARCH or
EGARCH were not integrated within the model architecture, while
in this case, Chain Ladder and CSR are incorporated. It is also worth
mentioning that in contrast to the hybrid model proposed for fore-
casting volatility purposes, in this research, the second level only
receives information already processed by the models within the
first level. In addition to the main differences explained above, it
should be pointed out that the stacking algorithm methodology
has not appeared previously in the actuarial literature related to
the valuation of loss reserves. Apart from that, a log-normal
approach is combined with the suggested reserving model based
on machine learning in order to compute the reserve variability.

As all the different algorithms and reserving models of the first
level are incorporated in the ANN of the second level, some of the
most important research studies carried out in the context of
selecting the optimal ANN architecture will be discussed. There is
a significant amount of literature supporting the use of ANNs with
just one hidden layer because under mild assumptions on the acti-
vation functions, the universal approximation theorem states that
a feedforward ANN with a single hidden layer and a finite number
of neurons can approximate any continuous function on compact
subsets of the Euclidean space.

Based on regularization techniques and using just one hidden
layer network, Poggio and Girosi (1990) developed a theoretical
framework to approximate nonlinear mappings named regulariza-
tion networks. These authors demonstrated that their architecture
can approximate any continuous function on a compact domain if
the number of units is high enough. Cybenko (1989) and Hornik,
Stinchcombe, and White (1989) also proved that one hidden layer
networks with sigmoidal activation functions can approximate
continuous functions on any compact Euclidean space. It was also
shown that, under certain conditions, an arbitrarily small error
between a single hidden layer ANN and any other continuous func-
tion can be obtained by increasing the number of neurons (Barron,
1994; Funahashi, 1989; Hornik, 1993). Nakama (2011) showed
that the range of effective learning rates is wider in the case of
ANN with one hidden layer than in architectures with multiple
hidden layers.

On the other hand, Hornik (1991) and Leshno, Lin, Pinkus, and
Schocken (1993) demonstrated that ANNs have the potential of
being universal approximators not only due to the choice of a
specific activation function but also because of the possibility of
using several hidden layers. Limitations of the approximation
capabilities of one hidden layer networks were demonstrated by
Chui, Li, and Mhaskar (1994) and Chui, Li, and Mhaskar (1996).

2 E. Ramos-Pérez et al. / Expert Systems with Applications 163 (2021) 113782

In recent years, multi-hidden layer architectures have improved
the state of the art in machine learning.

For example, in the context of natural language processing, the
models and architectures created by Devlin, Chang, Lee, and
Toutanova (2018) (BERT), Brown et al. (2020) (GPT3) and
Vaswani et al. (2017) (Transformer) overcome the performance
of other less complex models. In addition, it is worth mentioning
that agents trained with multi-hidden layer ANNs have been able
to overcome the human performance in specific tasks such as play-
ing chess (Silver et al., 2017) or ‘go’ (Silver et al., 2016). With
respect to the optimal number of neurons, Celikoglu (2007) anal-
ysed this issue in the context of solving the dynamic network load-
ing problem, while Sheela and Deepa (2013) proposed a list of
principles to select this number.

Results from recently published papers in the actuarial field
support the idea of applying ANNs with multiple hidden layers.
Indeed, Richman and Wüthrich (2018) and Nigri, Levantesi,
Marino, Scognamiglio, and Perla (2019) applied this structure to
model human mortality, while Castellani et al. (2018) used it for
estimating the economic capital of insurance companies under
the Solvency II framework. Thus, the ANNs included within the
architecture of the Stacked-ANN model have several hidden layers.

The rest of the paper proceeds as follows: Section 2 presents the
set of models used for comparison purposes. Additionally, the error
and risk measures taken to validate the stochastic reserves, pay-
ments and ultimate losses are discussed. In Section 3, the theoret-
ical background and architecture of the reserving model based on
stacking algorithms (Stacked-ANN) are explained. Details about
the log-normal approach proposed for obtaining a stochastic distri-
bution are also given in this section. The empirical results, error
and risk measures of the different reserving models are shown in
Section 4. Finally, Section 5 presents the main conclusions derived
from the results and comparisons presented in Section 4.

2. Benchmark models and validation

As previously stated, this section explains the benchmark mod-
els and the different measures used to assess their performance.
Thus, the first paragraphs are dedicated to ODP, Mack’s model,
CSR and a nonparametric approach based on ANNs, while the
end of this section presents the indicators used to compare and
validate the reserve distribution functions estimated by the bench-
mark models with those simulated by the model presented in
Section 3.

The first benchmark model is ODP (Renshaw & Verrall, 1998;
England & Verrall, 1999). Denoting the origin year as i and the
development year as j, this reserving model based on the Chain
Ladder technique assumes that incremental payments, Cij, follow
an overdispersed Poisson distribution with a variance proportional
to the mean:

E Cij
� � ¼ lij Var Cij

� � ¼ /lij ð1Þ

where / is the parameter that determines the level of overdisper-
sion. Even though this model assumes Cij to be a positive integer,
the quasi-likelihood (McCullagh & Nelder, 1989) approach allows
fits the model to non-integer data, which can be either positive or
negative. The bootstrapping procedure used in this study to com-
pute a reserve distribution function with the ODP model was intro-
duced by England and Verrall (1999) and England (2002).

Mack (1993) model, which is also based on the Chain Ladder
technique, is the second benchmark. The main characteristic of this
reserving model is the lack of assumptions about the underlying
distribution of the payments. This is achieved by using only the
first two moments:

E Dij
� � ¼ kjDi;j�1 Var Dij

� � ¼ r2
j Di;j�1 ð2Þ

where kj and r2
j refer to the parameters to be estimated, and Dij is

the cumulative payment. As with the ODP model, a bootstrapping
procedure is used to calculate the reserve distribution function with
Mack’s model.

The third benchmark model is CSR, a Bayesian approach intro-
duced by Meyers (2015). The default calibration and prior distribu-
tions suggested by this author will be used in this study:

� ai � N ln Pi þ logelr;
ffiffiffiffiffiffi
10

p� �
, where logelr � U �1; 0:5ð Þ and Pi are

the premiums by accident year.
� bj � U �5;5ð Þ for j ¼ 1; . . . ; J � 1. In the last development year,
bJ ¼ 0.

� li;j ¼ ai þ bj 1� cð Þi�1, where c � N 0;0:025ð Þ.
� Each rj ¼

PJ
i¼jai, where ai � U 0;1ð Þ.

Taking into consideration the aforementioned distributions and
parameters, the cumulative payments simulated by the CSR model

follow a log-normal distribution, Di;j � LN li;j;rj

� �
, subject to the

constraint r1 > r2 > � � � > rJ .
To analyse the improvement in the performance due to the

stacking procedure that is presented in Section 3, the last bench-
mark model to be introduced is an individual ANN. The inputs
and characteristics (hidden layers, activation functions, etc.) of this
algorithm will be the same as those used for the ANN included
within the first level of the Stacked-ANN. Additionally, the log-
normal procedure to obtain the reserve variability is the same as
that for the Stacked-ANN model. To avoid repeating content, refer
to Section 3 for further details about the characteristics of the ANN
used as a benchmark.

Once the four benchmark models are explained, the different
measures selected to compare the performance of the Stacked-
ANN with the aforementioned reserving models are presented.
Insurance regulations such as the Solvency II Directive and Swiss
Solvency Test ask the general insurance companies to evaluate
their expected reserves and potential deviations from these central
scenarios. Thus, the error of the estimated reserves will be com-
puted in order to compare the performance of the different models.
As several triangles with different levels of payments are used dur-
ing this study, the measure for evaluating the reserves is

%RMSE Rt� � ¼
ffiPK

k¼1 R̂t
k;l � Rt

k

� �2
=K

r
PK

k¼1R
t
k

� 100 ¼ RMSE Rt� �PK
k¼1R

t
k

� 100 ð3Þ

where K is the total number of triangles, t is the calendar year when

the reserves are evaluated, R̂t
k;l is the reserve predicted by the

reserving model using the triangle k and Rt
k the reserves that were

actually observed for that triangle. As it can be derived from the for-
mer expression, the aim of this error measure is the evaluation of
the weight of the root mean squared error over the total reserves.
To understand the model’s performance, this error measure will

also be calculated for the next year’s payments (%RMSE Ptþ1
� �

)

and the ultimate loss cost (%RMSE Ut� �
).

In addition to the aforementioned error measures, the reserving
risk (RR) per unit of reserve derived from the use of the different
stochastic reserving models will be analysed. As previously stated,
the models are going to be fitted to several triangles, so the average
of the former ratio is taken as a risk measure:

Ratio RRt
1�a

� � ¼PK
k¼1 R̂t

k;1�a � R̂t
k;l

� �
=R̂t

k;l

K
¼
PK

k¼1RR
t
1�a=R̂

t
k;l

K
ð4Þ

E. Ramos-Pérez et al. / Expert Systems with Applications 163 (2021) 113782 3

where R̂t
k;l is the mean and R̂t

k;1�a is the percentile 1� a of the esti-
mated reserve distribution function of the company k. A deeper
evaluation of the variation estimated by the different stochastic
models is carried out by calculating the standard deviation per unit
of reserve:

Ratio rð Þ ¼
PK

k¼1r R̂t
k

� �
=R̂t

k;l

K
ð5Þ

Finally, in order to check the adequacy of the reserving risk cal-
culated for the different companies, the Kupiec (1995) test is
applied in order to verify if the number of excesses is aligned with
the selected confidence level. The empirical results of the test and
measures are collected in Section 4.

3. Stochastic reserving model based on the stacking algorithm
approach

This section is divided into several subsections in order to
sequentially explain the proposed reserving model. In addition,
Fig. 1 presents the model architecture in order to support the
explanation.

3.1. Model inputs

Before estimating the different reserving models within the first
level of the Stacked-ANN model, the database used, as well as the
response and explicative variables for fitting the algorithms within
this level, need to be defined.

The lower and upper triangles needed to fit and validate the
models are obtained from Schedule P of the NAIC Annual State-
ment. This database (available on the CAS website) was collected
from property and casualty insurers that underwrite business in
the US, and it contains both paid and incurred losses (net of rein-

surance) of the accident years from 1988 to 1997. Ten develop-
ment years are available for every accident year. In addition to
loss data, gross and net premiums by accident year are also
reported in the database.

In this paper, the different reserving models will be fitted to 200
loss triangles from NAIC Schedule P, 50 from each of the following
lines of business: Commercial Auto (CA), Private Passenger Auto
Liability (PA), Workers’ Compensation (WC) and Other Liability
(OL). As pointed out by Meyers (2015), selecting triangles from
insurers who made significant changes in business operations is
one of the main mistakes that could be made with NAIC Schedule
P data. The coefficient of variation of the net premiums and the
net/gross premium ratio should be appropriate indicators of
changes in business operations, so this author selected insurers
that minimize the aforementioned metrics. The triangles selected
by Meyers (2015) are used in this research in order to avoid the
former issue and ensure comparability with other studies.

With regard to the explanatory variables, as with other non-
parametric reserving models based on Generalized Additive Mod-
els (Hastie & Tibshirani, 1986; England & Verrall, 2002) or RNN
(Kuo, 2018), accident i and development j years were selected to
be the inputs of the first-level algorithms. Both were initialized
as one and then scaled to range 0;1½ � (hereinafter AY�

i and DY�
j)

in order to facilitate the fitting of the algorithms (Hastie &
Tibshirani, 2009).

The response variable of these algorithms is the scaled cumula-
tive payments D�

ij. Depending on the data availability and the char-
acteristics of the portfolio to be modelled, different exposure
measures can be selected to scale Dij. In this paper, net premiums
Pi play the role of exposure measure, as this is the most relevant
option between the variables available in the database.

Loss triangles are a representation of payments over time by
accident or underwriting year. Thus, the training and optimization
of the deep learning algorithms within the Stacked-ANN model

Fig. 1. Stacked-ANN model structure.

4 E. Ramos-Pérez et al. / Expert Systems with Applications 163 (2021) 113782

architecture need to take into consideration that loss triangles are
composed of temporal series. Accordingly, the last diagonal is
selected as a test set because it contains the most updated infor-
mation, while the rest of the triangle is used for fitting the algo-
rithms (see Fig. 2).

During the optimization process, different configurations of the
algorithms are fitted with the training data. To obtain the best con-
figuration, the test set is predicted, and the root mean squared
error of every option is computed. Finally, the configuration that
minimizes the former test error is selected.

3.2. First level: Individual models

The first level of the Stacked-ANN model consists of a Chain
Ladder, CSR, and three algorithms whose inputs were described
in Section 3.1. It is worth mentioning that as ODP and Mack’s
model are based on the Chain Ladder technique, the Stacked ANN
model incorporates the core rationale behind these stochastic
reserving models. The machine learning algorithms (RF, GB and
ANN) fitted at this step are explained in the following paragraphs
and will be optimized by applying a grid search to some hyperpa-
rameters and by measuring the test error. Additionally, at the end
of this subsection, the Chain Ladder and CSR hypothesis are inte-
grated within the Stacked-ANN model architecture.

The Random Forest (RF) algorithm introduced by Breiman
(2001) averages B different regression trees. In every fitted tree,
the explanatory variables and data points used during the training
are randomly selected. Therefore, the formal expression to predict
the scaled cumulative payments is:

D̂�RF
ij ¼ D̂RF

ij

Pi
¼
PB

b¼1Tb Xð Þ
B

ð6Þ

Tb represents the b-th regression tree fitted and X the selected
subset of AY�

i and DY�
j to fit Tb. During the estimation process,

the hyper-parameters optimized are the number of variables ran-
domly selected, N, and the minimum number of observations to
be kept in the terminal nodes of every fitted tree, ObsRF .

The second algorithm within the first level is Gradient Boosting
(GB) with regression trees (Friedman, 2000). In this case, the gradi-
ent is minimized by sequentially fitting B regression trees. The sub-
set of data to be used during the estimation process of every tree is
also randomly selected. The expression to obtain the predicted
scaled cumulative payments is

D̂�GB
ij ¼ D̂GB

ij

Pi
¼ f̂ B�1 Xð Þ þ dGBTB Xð Þ ð7Þ

f̂ B�1 Xð Þ represents the function obtained after adding sequen-
tially B� 1 regression tree models and, dGB is the learning rate.
The hyperparameter selected to be optimized during the training
process is the minimum number of observations to be kept in
the terminal nodes of every fitted tree, ObsGB. Regarding the hyper-
parameters, it is worth mentioning that the learning rate, dGB, is set
to 0.01.

The last algorithm of the first layer is an Artificial Neural Net-
work (ANN) (McCulloch & Pitts, 1943). Following the notation pro-

vided by Bishop (2006) and taking into consideration that the feed-
forward ANN used in this paper is composed of 2 hidden layers
with 5 neurons each, the formal expression to obtain the predic-
tions can be defined as follows:

D̂�ANN
ij ¼ D̂ANN

ij =Pi

¼ h 3ð Þ X5
k¼1

w 3ð Þ
1;kh

2ð Þ X5
j¼1

w 2ð Þ
k;j h

1ð Þ X2
i¼1

w 1ð Þ
j;i xi þw 1ð Þ

j;0

 !
þw 2ð Þ

k;0

 !
þw 3ð Þ

1;0

 !
ð8Þ

where h nð Þ is the activation function associated with layer n;w nð Þ
z;v is

the v-th weight associated with the neuron z inside layer n, and xi
refers to the i-th input variable of the database composed of two
explanatory variables, the scaled accident (AY�

i) and development
year (DY�

j). The percentage of dropout regularization h is the hyper-
parameter to be optimized by applying a grid search and measuring
the test error. As with the other algorithms, upper triangle predic-
tions will be used as input within the second level of the
architecture.

In addition to the three aforementioned algorithms, Chain Lad-
der assumptions are incorporated in the model architecture. To do
so, the development factors of the Chain Ladder technique are used
as an input in the second level of the Stacked-ANN model:

bk�CL
j ¼

Pn�j�1
i¼1 D�

ijPn�j�1
i¼1 D�

ij�1

ð9Þ

where bk�CL
j : j ¼ 2;3; . . . ; Jð Þ

n o
. Although the Chain Ladder method-

ology does not produce any parameters for j ¼ 1, the second-level
algorithm needs a value for j ¼ 1. Thus, within the Stacked-ANN

methodology, it is assumed that bk�CL
1 ¼ 1.

Finally, CSR methodology (Meyers, 2015) is integrated. To
achieve this, 10,000 MCMC simulations are produced within the
first level of the Stacked-ANN model. Then, the expected scaled
cumulative payments of the upper triangle arising from the afore-
mentioned simulations are used as input in the algorithm within
the second level of the Stacked-ANN model:

D̂�CSR
ij ¼

P10;000
k¼1 D̂CSR

ijk =Pi

10;000
ð10Þ

3.3. Second level: Stacking algorithm

As previously stated, the inputs of this level are the scaled
cumulative payments predicted by the algorithms named in Sec-
tion 3.2 (RF, GB and ANN), the development factors based on the
Chain Ladder technique and the expected scaled cumulative pay-
ments simulated by the CSR model. On the other hand, the output
of the ANN within the second level and the Stacked-ANN are the

cumulative payments D̂�S�ANN
ij by accident and development year.

Similar to the first-level algorithms, the training and optimiza-
tion processes of the ANN within this level need to recognize that
loss triangles are composed of a set of time series. The most recent
information of the loss triangles is the last diagonal; thus, the

Fig. 2. Train and test sets.

E. Ramos-Pérez et al. / Expert Systems with Applications 163 (2021) 113782 5

explicative and response variables of this diagonal are selected as a
test set, while the rest of the upper triangle data is used as a train-
ing set.

Once the test and training sets are defined, the optimum config-
uration of the ANN needs to be obtained. To do so, the training data
are used to fit ANNs with different levels of dropout regularization
h. Then, the root mean squared error is computed by taking into
consideration the predictions made by every ANN configuration.
The h that minimizes the test error is selected.

Due to the Stacked-ANN architecture, two substeps need to be
carried out in order to make the final predictions. First, the lower
triangle of the first-level models need to be predicted. Second,
the data predicted in the previous step are used as input of the
ANN within the second layer to make the final predictions. Thus,
the Stacked-ANN model tries to obtain more accurate predictions
by combining different reserving models and algorithms.

Fig. 1 shows the overall Stacked-ANN architecture, and Fig. 3
provides a detailed summary of the process defined in the previous
paragraphs. Technical details about the feedforward ANN fitted
within this level of the Stacked-ANN model are presented below:

� It contains two hidden layers with 5 neurons each. The sigmoid
activation function was selected for all neurons within the hid-
den layers while the linear activation function was used in the
output layer, which is composed of one neuron.

� The selected optimization algorithm is Adaptive Moment Esti-
mation (ADAM), which was created by Kingma and Ba (2014).
This method consists of a progressive adaptation of the initial
learning rate, taking into consideration current and previous
gradients. The default calibration proposed by the authors for
the ADAM parameters is applied as b1 ¼ 0:9 and b2 ¼ 0:999.
Thus, the ANN parameters are updated as follows:

xt ¼ xt�1 � dANN
m̂tffiffiffiffiffi
v̂ t

p
þ �

ð11Þ

m̂t ¼ b1mt�1 þ 1� b1ð Þgt

1� bt
1

ð12Þ

v̂ t ¼ b2v t�1 þ 1� b2ð Þg2
t

1� bt
2

ð13Þ

where x is the parameter to be updated and gt the gradient in
the epoch t. The initial learning rate is set to dANN ¼ 0:01.

� The number of epochs is 10,000, and the batch size is equal to
the length of the data used for training the ANN.

� The backward pass calculations are done according to the selec-
tion of the root mean squared error as a loss function.

� As previously stated, the percentage of dropout regularization h
is the hyperparameter to be optimized by applying a grid search
and measuring the test error.

Taking the abovementioned details into consideration, the
scaled cumulative payments predicted by the Stacked-ANN model
are obtained by means of the following expression:

D̂�S�ANN
ij ¼ D̂�S�ANN

ij

Pi
¼ bf D̂�RF

ij ; D̂�GB
ij ; D̂�ANN

ij ; bk�CL
j ; D̂�CSR

ij

� �
¼ h 3ð Þ X5

k¼1

w 3ð Þ
1;kh

2ð Þ X5
j¼1

w 2ð Þ
k;j h

1ð Þ X5
i¼1

w 1ð Þ
j;i xi þw 1ð Þ

j;0

 !
þw 2ð Þ

k;0

 !
þw 3ð Þ

1;0

 !
ð14Þ

3.4. Log-normal simulation

To compute the Kupiec test and the measures related to reserve
variability (Section 2), the deviation around the central scenario
predicted by the Stacked-ANN model needs to be obtained. Due
to its right skewness and long tail, log-normal distribution is
widely used within reserving models to derive the variability of
the claims cost. Many papers used the lognormal distribution to
compute this variability (see, among others, Kremer (1982),
Antonio, Beirlant, Holdemakers, & Verlaak (2006), Rehman &
Klugman (2009), Weke & Ratemo (2013), Meyers (2015) or more
recently, Omari, Nyambura, & Wairimu (2018)).

In this study, a log-normal distribution is used to compute the
reserve variability around the central scenario predicted by the
Stacked-ANN. To do so, the parameters of this distribution are
obtained using the aforementioned predictions and the moments
method. Therefore, regardless of the distribution selected, the cen-
tral scenario is that predicted by the Stacked-ANN, and thus,
changing the distribution has no effect on the error measures
described in Section 2. Nevertheless, changes to the log-normal
hypothesis will modify the variability and, consequently, the risk
measures (Ratio RRt

1�a
� �

and Ratio rð Þ) and the results of the Kupiec
test. Below, the steps of the procedure are described:

Fig. 3. Second-level structure.

6 E. Ramos-Pérez et al. / Expert Systems with Applications 163 (2021) 113782

1. Starting with the scaled cumulative payments predicted by the

Stacked-ANN (D̂�S�ANN
ij), the variance by development year is

computed as follows:

Var D̂�S�ANN
j

h i
¼
Pn

i¼1 D̂�S�ANN
ij � E D̂�S�ANN

j

h i� �2
n� 1

ð15Þ

where n refers to the total number of accident years and

E D̂�S�ANN
j

h i
is the mean of the scaled cumulative payments by

development year.
2. By using the method of the moments and values calculated in

the previous step, the parameters of the log-normal distribution
are obtained:

blij D̂�S�ANN
h i

¼ ln
E D̂�S�ANN

j

h i2
ffi
Var D̂�S�ANN

j

h i
þ E D̂�S�ANN

j

h i2r
0BB@

1CCA ð16Þ

br2
j D̂�S�ANN
h i

¼ ln 1þ
Var D̂�S�ANN

j

h i
E D̂�S�ANN

j

h i
0@ 1A ð17Þ

3. For t ¼ 1;2; . . . ; Tð Þ:
(a) A triangle is generated by sampling random values from the

following distribution function:bC �S�ANN;k
ij � LN blij D̂�S�ANN

h i
; br2

j D̂�S�ANN
h i� �

.

(b) The final simulated values, bCS�ANN;k
ij , are obtained by remov-

ing the scaling. Hence, the scaled payments obtained in the
previous step are multiplied by Pi.

4. Results

In this section, the data used, the fitting process and a final com-
parison between the Stacked-ANN and the benchmark models are
shown.

4.1. Data and fitting of the Stacked-ANN

As stated in Section 3.1, the upper and lower triangles required
to fit and validate the models are obtained from Schedule P of the
NAIC Annual Statement. This database contains the losses, reserves
and premiums from 1988 until 1997 of different property and
casualty insurers that underwrite business in the United States.

Meyers (2015) indicated that one of the main mistakes with the
NAIC Schedule P data is selecting triangles from insurers that made
significant changes in their businesses. Meyers used the coefficient
of variation of the net premiums and the net-on-gross ratio to
select 50 triangles of each of the following lines of business: Com-
mercial Auto (CA), Private Passenger Auto Liability (PA), Workers’
Compensation (WC) and Other Liability (OL). This triangle selection
was also used in this paper in order to ensure comparability with
other studies that take as a reference the selection made by

Meyers (2015). For further details about the data used to fit the
Stacked-ANN, refer to Section 3.1.

Once the data have been presented, the subsection focuses on
the fitting of the Stacked-ANN. The first level of the proposed
model is composed of three individual algorithms (RF, GB and
ANN), the CSR reserving model and the development factors
derived from the use of the Chain Ladder technique. The second
level is composed of an ANN. As pointed out in Sections 3.2 and
3.3, the optimum hyperparameters of the algorithms within the
first and second levels are obtained for each triangle using a grid
search. Table 1 lists the minor differences across the lines of busi-
ness in the means of the 50 optimum hyperparameters obtained
for each algorithm.

As previously stated, the development factors (bk�CL
j) obtained by

applying the Chain Ladder technique to D�
ij are used as input for the

ANN included within the second level of the Stacked-ANN model.
These values are calculated for each triangle. Table 2 presents the
means of the development factors by line of business.

With regard to the three algorithms of the first layer and the
Chain Ladder technique, the CSR model is also incorporated in

the Stacked-ANN architecture by means of inputting D̂�CSR
ij in the

second-level algorithm. This Bayesian reserving model is fitted to
every single triangle. Tables 3 and 4 list the means of the CSR
parameters by line of business.

Table 3, which is focused on the parameters needed to calculate
the mean of the cumulative payments, presents positive c and neg-
ative bj for every line of business with the unique exception of CA,
where b6; b7; b8 and b9 are positive. According to the model defi-
nition, the claims settlement speed increases when bj < 0 and
c > 0. This common trend across the different lines of business
about the claim settlement rate of the NAIC Schedule P data was
already observed by Meyers (2015).

The comparison of the CSR deviation by development year pre-
sented in Table 4 reveals that OL is the most volatile portfolio,
while PA has the most stable reserves. For CA and WC, the reserve
variability estimated by this Bayesian reserving model is quite

Table 1
Mean of the optimum hyperparameters by line of business.

Line of business RF first level GB first level ANN first level ANN second level

CA ObsRF ¼ 2:04;N ¼ 1:94 ObsGB ¼ 4:38 h ¼ 0:10 h ¼ 0:09
PA ObsRF ¼ 2:66;N ¼ 1:86 ObsGB ¼ 4:22 h ¼ 0:07 h ¼ 0:06
WC ObsRF ¼ 1:78;N ¼ 1:68 ObsGB ¼ 3:66 h ¼ 0:13 h ¼ 0:12
OL ObsRF ¼ 1:50;N ¼ 1:82 ObsGB ¼ 4:24 h ¼ 0:12 h ¼ 0:12

Source: own elaboration.

Table 2
Mean of the development factors by line of business.

Development factors CA PA WC OL

bk�CL1
1.89 1.77 2.21 6.66bk�CL2
1.35 1.22 1.29 1.90bk�CL3
1.16 1.10 1.13 1.33bk�CL4
1.08 1.06 1.07 1.18bk�CL5
1.04 1.03 1.04 1.10bk�CL6
1.02 1.01 1.02 1.04bk�CL7
1.00 1.01 1.02 1.02bk�CL8
1.01 1.00 1.01 1.02bk�CL9
1.00 1.00 1.01 1.01bk�CL10
1.00 1.00 1.00 1.00

Source: own elaboration.

E. Ramos-Pérez et al. / Expert Systems with Applications 163 (2021) 113782 7

similar, and it is located at an intermediate point between the OL
and PA lines of business.

4.2. Comparison against benchmark models

Once the Stacked-ANN reserving model is fitted, its perfor-
mance is compared with the benchmark models explained in Sec-
tion 2 (ODP, Mack, CSR and an individual ANN).

Table 5 lists the %RMSEs associated with reserves Rt , next year
payments Ptþ1 and ultimate losses Ut by line of business and
reserving model. For further details about the measures presented
in the table, refer to Section 2.

The results obtained by using the different reserving models are
summarized as follows:

� The Stacked-ANN model outperforms the individual ANN. The
proposed architecture is empirically more accurate because it
can learn from the reserving models (Chain Ladder and CSR)

and machine learning algorithms (RF, GB and ANN) included
within the first level of the Stacked-ANN, while the individual
ANN must base its training only on the origin data (AY�

i and
DY�

j) without taking advantage of other models that are able
to capture different patterns and characteristics.

� As they are based on Chain Ladder assumptions, the mean of the
distributions generated by ODP and Mack’s model should con-
verge to the values obtained by applying the deterministic
approach of the Chain Ladder technique. Consequently, the
error measures observed in Table 5 for these two stochastic
reserving models are almost the same. The table also reveals
that ODP and Mack are less accurate than the Stacked-ANN

model in most cases. %RMSE Ptþ1
� �

of CA is a unique category

in which the benchmark models based on the Chain Ladder
technique are more accurate than the proposed methodology.

� Regarding the comparison between Stacked-ANN and CSR, Rt

and Ut of PA, WC and OL estimated by the proposed model
are significantly more accurate than those obtained when using

the Bayesian model. Additionally, %RMSE Ptþ1
� �

of the Stacked-

ANN model is lower in WC and OL. Thus, in the majority of
cases, the CSR model is outperformed by the proposed
methodology.

To enhance the analysis of the results presented in Table 5,
Fig. 4 shows the %RMSE Rt� �

by line of business and volume of
reserves. First, the companies were classified in four different
groups taking into consideration the volume of reserves and the
quartiles associated with the distribution. Then, the error rate of
each reserving model was computed by line of business. The for-
mer calculation was carried out without making any distinction
between lines of business.

Table 3
CSR parameters by line of business: Di;j mean.

CSR parameter CA PA WC OL CSR parameter CA PA WC OL

a1 7.094 8.959 8.423 6.162 b1 �1.235 �0.987 �1.447 �2.446
a2 7.166 9.047 8.612 6.269 b2 �0.514 �0.400 �0.626 �1.332
a3 7.171 9.148 8.779 6.330 b3 �0.229 �0.198 �0.322 �0.709
a4 7.280 9.143 8.666 6.309 b4 �0.085 �0.097 �0.178 �0.363
a5 7.348 9.201 8.644 6.334 b5 �0.003 �0.042 �0.089 �0.173
a6 7.347 9.282 8.537 6.515 b6 0.039 �0.017 �0.057 �0.079
a7 7.554 9.374 8.595 6.480 b7 0.060 �0.008 �0.041 �0.045
a8 7.540 9.389 8.514 6.327 b8 0.028 �0.001 �0.029 �0.030
a9 7.494 9.464 8.543 6.543 b9 0.012 �0.001 �0.013 �0.014
a10 7.556 9.492 8.500 6.327 c 0.021 0.008 0.016 0.028

Source: own elaboration.

Table 4
CSR parameters by line of business: Di;j STD.

CSR Parameter CA PA WC OL

r1 0.303 0.028 0.236 0.771
r2 0.176 0.011 0.164 0.488
r3 0.109 0.007 0.117 0.327
r4 0.079 0.004 0.090 0.229
r5 0.063 0.003 0.069 0.164
r6 0.052 0.002 0.052 0.120
r7 0.043 0.002 0.037 0.087
r8 0.035 0.001 0.025 0.061
r9 0.026 0.001 0.016 0.038
r10 0.014 0.001 0.008 0.019

Source: own elaboration.

Table 5
%RMSE by line of business and reserving model.

Error measure Line of business ODP Mack’s model CSR ANN Stacked ANN

%RMSE Rt� �
CA 0.896% 0.896% 0.534% 1.768% 0.739%

%RMSE Ptþ1
� �

CA 0.668% 0.669% 0.573% 1.775% 0.876%

%RMSE Ut� �
CA 0.170% 0.171% 0.102% 0.337% 0.141%

%RMSE Rt� �
PA 1.012% 1.004% 0.823% 5.006% 0.254%

%RMSE Ptþ1
� �

PA 1.290% 1.286% 0.258% 1.900% 0.320%

%RMSE Ut� �
PA 0.131% 0.131% 0.107% 0.651% 0.033%

%RMSE Rt� �
WC 1.295% 1.286% 1.751% 1.943% 1.058%

%RMSE Ptþ1
� �

WC 0.887% 0.880% 1.531% 1.525% 0.676%

%RMSE Ut� �
WC 0.222% 0.221% 0.301% 0.333% 0.182%

%RMSE Rt� �
OL 5.274% 5.086% 3.153% 5.725% 0.722%

%RMSE Ptþ1
� �

OL 2.216% 2.102% 5.528% 0.268% 1.095%

%RMSE Ut� �
OL 1.760% 1.709% 1.056% 1.918% 0.242%

Source: own elaboration.

8 E. Ramos-Pérez et al. / Expert Systems with Applications 163 (2021) 113782

The results of the aforementioned figure reveal that when no
distinction between lines of business is made, the Stacked-ANN
architecture outperforms the rest of the reserving models regard-
less of the company size. This difference is especially relevant for
those companies with a higher level of reserves, whose results
are collected in the graph labelled ‘Percentile: 75%–100%’. As
expected, some fluctuations in the performance of the models are
observed when the results are analysed by line of business and vol-
ume of reserves. Nonetheless, the error rate of the Stacked-ANN
tends to be lower than the rest of the benchmark models.

In accordance with the reasons explained within the former
paragraphs, it can be concluded that the Stacked-ANN model takes
advantage of the different characteristics of several reserving mod-
els and machine learning algorithms, leading to a more flexible and
precise architecture in most of the cases.

In addition to the error analysis, the risk measures (Ratio RRt
1�a

� �
and Ratio rð Þ) and the p-values of the Kupiec test obtained by using
each reserving model are compared. Before examining the results,
it is important to point out that Mack’s model does not make any
assumptions about the payment distribution, ODP assumes that

incremental payments follow an overdispersed Poisson distribu-
tion, and CSR, ANN and Stacked-ANN presume that cumulative
payments are log-normally distributed. The hypothesis taken
regarding the payments impact the distribution shape and conse-
quently the risk measures. Therefore, in this case, ODP and Mack’s
model are not going to converge like they did in the central
scenario.

The Ratio RRt
1�a

� �
and the p-values collected in Table 6 evaluate

the 99:5 percentile (a ¼ 0:005) of the reserve distribution function,
which is the confidence level set up by Solvency II to calculate the
risk of the insurance companies. The results of this table are sum-
marized below:

� According to the results of the Kupiec test, the Stacked-ANN
generates an adequate risk assessment for every line of busi-
ness. It is worth mentioning that when compared with the indi-
vidual ANN, the empirical results show that the stacking
process not only improves the error rate but also allows for
the generation of more appropriate distribution functions using
the same simulation approach (presented in Section 3.4). With

Fig. 4. %RMSE Rt� �
by line of business and volume of reserves.

Table 6
Risk measures by line of business and reserving model.

Risk measures Line of business ODP Mack’s model model CSR ANN Stacked ANN

Ratio RRt
0:995

� �
CA 1.936 1.460 2.776 1.387 1.884

Ratio rð Þ CA 2.561 0.461 0.681 0.456 0.642
Kupiec p-value CA P 0:05 P 0:05 P 0:05 < 0:05 P 0:05
Ratio RRt

0:995

� �
PA 0.544 0.373 0.918 0.783 0.888

Ratio rð Þ PA 0.277 0.135 0.270 0.279 0.332
Kupiec p-value PA P 0:05 P 0:05 P 0:05 P 0:05 P 0:05
Ratio RRt

0:995

� �
WC 2.525 0.691 1.797 2.194 2.149

Ratio rð Þ WC 1.273 0.245 0.474 0.682 0.717
Kupiec p-value WC < 0:05 < 0:05 < 0:05 < 0:05 P 0:05
Ratio RRt

0:995

� �
OL 7.506 3.287 4.843 2.315 3.522

Ratio rð Þ OL 6.275 1.217 1.119 0.690 1.099
Kupiec p-value OL P 0:05 P 0:05 P 0:05 P 0:05 P 0:05

Source: own elaboration.

E. Ramos-Pérez et al. / Expert Systems with Applications 163 (2021) 113782 9

regard to the comparison between the Stacked-ANN and the
rest of benchmark models, the Kupiec test reveals that CSR,
ODP and Mack’s model do not produce appropriate risk mea-
sures for WC, while the proposed methodology passes the test.

� Intuitively, the duration of the liabilities should have a close
relation with Ratio RRt

0:995

� �
and Ratio rð Þ: the longer the dura-

tion, the higher is the uncertainty around each economic unit
of reserve. The development factors based on the Chain Ladder
technique measure the claim settlement speed. Therefore, they
can be considered a good indicator of the duration of liabilities.
A development factor at year t; kt , means that the t þ 1 cumula-
tive payment is kt times the cumulative claims settled at t. Con-
sequently, high development factors indicate a long duration,
while low values reflect a high settlement speed. According to
Table 2, OL is the line of business with the highest duration,
while PA has the lowest. CA and WC, whose durations are in a
similar range, are located at an intermediate point between
PA and OL. As can be observed in Table 6, this intuition about
the relation between the duration and reserve uncertainty is
followed by the Stacked-ANN and benchmark models.

� In general, the Ratio RRt
0:995

� �
and Ratio rð Þ by line of business are

similar across the different reserving models. The two main
exceptions are the risk measures of ODP for OL and Mack for
WC. The high values observed in the ODP estimations for OL

are due to two companies whose RRt
1�a=R̂

t
k;l ratios are higher

than 60, while in the second case, Mack’s model systematically
underestimates the variability of the payments, leading to
lower values compared with the rest of the models and an inad-
equate risk assessment according to the results of the Kupiec
test. The Ratio RRt

0:995

� �
and Ratio rð Þ of the Stacked-ANN are in

line with the majority of the benchmark models, and no extre-
mely high/low risk measures are observed in Table 6.

4.3. Sensitivity analysis of the number of hidden layers

As explained in Section 3, the ANNs included within the pro-
posed Stacked-ANN architecture are composed of two hidden lay-
ers, each with five neurons. To analyse the impact of the ANN
complexity (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991;
Leshno et al., 1993, among others, introduced the theoretical
framework to analyse the approximation capabilities of neural net-
works) on the predictive power of the Stacked-ANN model, a sen-
sitivity analysis of the number of hidden layers was carried out.
Thus, Table 7 compares the configuration selected for the
Stacked-ANN model in this paper with two alternative configura-
tions: ANNs composed of one and three hidden layers with five
neurons each.

Two main conclusions can be drawn from the results obtained.
First, the high level of error of the one hidden layer model demon-
strates that more complexity is needed in order to properly predict
general insurance reserves. The structure proposed during this
study for the Stacked-ANN model (two hidden layers) performs
significantly better than this first alternative in every single line
of business.

Second, the performance of the three hidden layers alternative
is similar to that of the suggested architecture. As no significant
differences are observed, the two hidden layer structure is consid-
ered more appropriate because the three hidden layer structure
adds complexity to the model without a significant improvement
in the error rate.

5. Conclusions

This paper introduced a stochastic reserving model based on
stacking different machine learning algorithms (RF, GB and ANN)
and reserving models (Chain Ladder and CSR). The predictive
power and reserve volatility of the proposed approach, named
Stacked-ANN, were compared with stochastic reserving models
based on the Chain Ladder technique (ODP and Mack’s model),
an individual ANN and CSR, which is a Bayesian loss reserving
model.

Three main conclusions were drawn. First, a comparison of the
Stacked-ANN with the individual ANN revealed that the predic-
tions of the reserves Rt , next year payments Ptþ1 and ultimate
losses Ut made by machine learning algorithms were improved
by applying the proposed stacking procedure. The hybrid architec-
ture learns patterns and characteristics from several algorithms
and reserving models, resulting in a more flexible and accurate
model than an individual ANN, whose inputs for training are lim-
ited to the original data.

Second, the empirical results indicated that the Stacked-ANN
model is more precise than CSR and the most widely used stochas-
tic reserving models based on the Chain Ladder technique (ODP
and Mack’s model). In particular, the Rt and Ut predictions made
by the Stacked-ANN were more precise than those of ODP and
Mack’s model in all the lines of business analysed, while the Baye-
sian model (CSR) was outperformed by the proposed architecture
in three out of four lines of business. It is important to remark that
in Other Liability (OL), which is a line of business with a longer
duration and therefore a portfolio where the importance of an
accurate reserves estimation is especially relevant, the error of
the models based on Chain Ladder or Bayesian statistics was more
than four times the error of the Stacked-ANN. Therefore, it can be
concluded that machine or deep learning techniques can be used to
improve the performance of the traditional reserving techniques
based on Bayesian statistics or the Chain Ladder.

Table 7
Sensitivity analysis of the number of hidden layers.

Hidden layers Line of business %RMSE Rt� �
%RMSE Ptþ1

� �
%RMSE Ut� �

1 CA 0.840% 0.766% 0.160%
2 CA 0.739% 0.876% 0.141%
3 CA 0.780% 0.643% 0.149%
1 PA 2.512% 3.507% 0.326%
2 PA 0.254% 0.320% 0.033%
3 PA 0.231% 0.115% 0.030%
1 WC 1.398% 1.296% 0.240%
2 WC 1.058% 0.676% 0.182%
3 WC 1.140% 1.030% 0.196%
1 OL 1.419% 1.145% 0.475%
2 OL 0.722% 1.095% 0.242%
3 OL 0.613% 0.794% 0.205%

Source: own elaboration.

10 E. Ramos-Pérez et al. / Expert Systems with Applications 163 (2021) 113782

With regard to accuracy, it is worth mentioning that the pro-
posed structure of the ANNs (two hidden layers) within the
Stacked-ANN model seems to be the optimal configuration accord-
ing to the empirical results. On the one hand, the error increased
significantly when the number of hidden layers is reduced to
one. On the other hand, the results demonstrated that increasing
the number of hidden layers does not have an impact on the accu-
racy. Thus, increasing the complexity of the ANNs by up to three
hidden layers will extend the training phase without making any
significant improvement in the error.

Third, the results of a Kupiec test revealed that the risk estima-
tion made by the Stacked-ANN can be considered as appropriate in
all lines of business analysed, while the rest of the benchmark
models failed the test at least once. In particular, CSR, ODP and
Mack’s model were unable to produce an appropriate p-value for
the Kupiec test in the Workers’ Compensation (WC) business,
while the individual ANN failed the test in Commercial Auto (CA)
and, as with the previous models, in Workers’ Compensation. Tak-
ing into consideration that the same log-normal approach was
used to obtain the reserves variability of the individual ANN and
the Stacked-ANN, it must be mentioned that the stacking proce-
dure not only increases the accuracy but also allows for the simu-
lation of more adequate distribution functions.

The aforementioned robustness and predictive power of the
Stacked-ANN compared with other reserving models suggest that
further investigation should be conducted about the possible appli-
cation of this model within the actuary in the box approach. The
generation of outliers is one of the main problems when using
the former methodology with Chain Ladder models. Therefore,
the robustness of the Stacked-ANN can be exploited in order to
improve the actuary in the box methodology, which is widely used
to assess the fact that reserves can be insufficient to cover their
runoff over a 12-month time horizon.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Antonio, K., Beirlant, J., Holdemakers, T., & Verlaak, R. (2006). Log-normal mixed
models for reported claims reserves. North American Actuarial Journal, 7,
1223–1237.

Antonio, K., & Plat, R. (2014). Micro-level stochastic loss reserving in general
insurance. Scandinavian Actuarial Journal, 2014, 649–669.

Barron, A. (1994). Approximation and estimation bounds for artificial neural
networks. Machine Learning, 115–133.

Baudry, M., & Robert, C. (2019). A Machine Learning approach for individual claims
reserving in insurance. Applied Stochastic Models in Business and Industry, 1–29.

Bishop, C. M. (2006). Pattern recognition and machine learning (Information science
and statistics). Berlin, Heidelberg: Springer-Verlag.

Bornhuetter, R. L., & Ferguson, R. E. (1972). The actuary and IBNR. In Proceedings of
the Casualty Actuarial Society (pp. 181–195).

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., et al. (2020).

Language models are few-shot learners..
Castellani, G., Fiore, U., Marino, Z., Passalacqua, L., Perla, F., Scognamiglio, S., &

Zanetti, P. (2018). An investigation of machine learning approaches in the Solvency
II valuation framework. Available at SSRN:https://ssrn.com/abstract=3303296..

Celikoglu, H. (2007). A dynamic network loading process with explicit delay
modelling. Transportation Research Part C: Emerging Technologies, 15, 279–299..

Charpentier, A., & Pigeon, M. (2016). Macro vs micro methods in non-life claims
reserving: An econometric perspective. Risks, 4, 12.

Chui, C., Li, X., & Mhaskar, H. (1994). Neural networks for localized approximation.
Mathematics of Computation..

Chui, C., Li, X., & Mhaskar, H. (1996). Limitations of the approximation capabilities of
neural networks with one hidden layer. Advances in Computational Mathematics.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals and Systems, 2, 303–314.

Devlin, J., Chang, M., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep
bidirectional transformers for language understanding. CoRR abs/1810.04805..

Duma, M., Twala, B., Marwala, T., Nelwamondo, F. (2011). Improving the
performance of the support vector machine in insurance risk classification: A
comparative study. In Proceedings of the international conference on neural
computation theory and applications (NCTA-2011) (pp. 340–346)..

England, P. D. (2002). Addendum to analytic and bootstrap estimates of prediction
errors in claims reserving. Insurance: Mathematics and Economics, 31.

England, P. D., & Verrall, R. J. (1999). Analytic and bootstrap estimates of prediction
errors in claims reserving. Insurance: Mathematics and Economics, 25(3),
281–293.

England, P. D., & Verrall, R. J. (2002). Stochastic claims reserving in general
insurance. British Actuarial Journal, 8, 443–544.

England, P. D., & Verrall, R. J. (2006). Predictive distributions of outstanding
liabilities in general insurance. Annals of Actuarial Science, 221–270.

Friedman, J. H. (2000). Greedy function approximation: A gradient boosting
machine. Annals of Statistics, 29, 1189–1232.

Funahashi, K. (1989). On the approximate realization of continuous mappings by
neural networks. Neural Networks, 2.

Gabrielli, A., Richman, R., & Wüthrich, M. (2018). Neural network embedding of the
over-dispersed poisson reserving model. Available at SSRN,https://ssrn.com/
abstract=3288454..

Gabrielli, A., & Wüthrich, M. (2018). An individual claims history simulation
machine. Risks, 6, 29.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine
Learning, 63, 3–42.

Halliwell, L. (2009). Modeling paid and incurred losses together. CAS E-Forum,
(Spring), 1–40..

Happ, S., Merz, M., & Wüthrich, M. (2012). Claims development result in the paid-
incurred chain reserving method. Insurance: Mathematics and Economics, 51,
66–72.

Happ, S., & Wüthrich, M. (2013). Paid-incurred chain reserving method with
dependence modeling. ASTIN Bulletin, 43, 1–20.

Hastie, T., & Tibshirani, R. (1986). Generalized additive models. Statistical Science, 1
(3), 297–310..

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning:
Data mining, inference, and prediction (2nd ed.). Springer series in statistics. New
York: Springer.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural Networks, 4, 251–257.

Hornik, K. (1993). Some new results on neural network approximation. Neural
Networks, 6, 1069–1072.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5), 359–366.

Jessen, A., Mikosch, T., & Samorodnitsky, G. (2011). Prediction of outstanding
payments in a Poisson cluster model. Scandinavian Actuarial Journal, 2011(3),
214–237.

Kingma, D. P., Ba, J. (2014). Adam: A method for stochastic optimization. CoRR..
Kremer, E. (1982). IBNR claims and the two-way model of ANOVA. Scandinavian

Actuarial Journal, 1982..
Kuo, K. (2018). DeepTriangle: A deep learning approach to loss reserving. CoRR abs/

1804.09253..
Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement

models.The Journal of Derivatives, 3(2), 73–84..
Leshno, M., Lin, V., Pinkus, A., & Schocken, S. (1993). Multilayer feedforward

networks with a nonpolynomial activation function can approximate any
function. Neural Networks, 6, 861–867.

Lopez, O., Milhaud, X., & Thérond, P. (2019). A Tree-Based algorithm adapted to
microlevel reserving and long development claims. ASTIN Bulletin.

Mack, T. (1991). A simple parametric model for rating automobile insurance or
estimating IBNR claims reserves. ASTIN Bulletin, 21(1), 93–109.

Mack, T. (1993). Distribution-free calculation of the standard error of chain ladder
reserve estimates. ASTIN Bulletin: The Journal of the International Actuarial
Association, 23(02), 213–225.

Margraf, C., Elpidorou, V., & Verrall, R. (2018). Claims reserving in the presence of
excess-of-loss reinsurance using micro models based on aggregate data.
Insurance: Mathematics and Economics, 80, 54–65.

Martínez-Miranda, M., Nielsen, B., & Verrall, R. (2012). Double Chain Ladder. ASTIN
Bulletin, 42(1), 59–76.

Martínez-Miranda, M., Nielsen, B., & Verrall, R. (2013a). Continuous Chain Ladder:
Reformulating and generalizing a classical insurance problem. Expert Systems
with Applications, 40, 5588–5603.

Martínez-Miranda, M., Nielsen, B., & Verrall, R. (2013b). Double Chain Ladder and
Bornhuetter-Ferguson. North American Actuarial Journal, 17, 101–113.

Martínez-Miranda, M., Nielsen, B., Verrall, R., & Wüthrich (2015). The link between
classical reserving and granular reserving through double chain ladder and its
extensions. Scandinavian Actuarial Journal, 2015, 383–405.

McCullagh, P., & Nelder, J. (1989). Generalized linear models (2nd ed.). Chapman and
Hall/CRC monographs on statistics and applied probability series. Chapman & Hall.

McCulloch, W., & Pitts, W. (1943). A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5, 127–147.

E. Ramos-Pérez et al. / Expert Systems with Applications 163 (2021) 113782 11

Merz, M., & Wüthrich, M. V. (2010). Paid-incurred chain claims reserving method.
Insurance: Mathematics and Economics, 46, 568–579.

Meyers, G. (2015). Stochastic loss reserving using Bayesian MCMC models. CAS
Monograph Series, number 1. Casualty Actuarial Society..

Nakama, T. (2011). Comparisons of single and multiple hidden layer neural networks
(pp. 270–279)..

Nigri, A., Levantesi, S., Marino, S., Scognamiglio, M., & Perla, F. (2019). A deep
learning integrated lee–carter model. Risk, 7, 33.

Omari, C., Nyambura, S., & Wairimu, J. (2018). Modeling the frequency and severity
of auto insurance claims using statistical distributions. Journal of Mathematical
Finance, 8, 137–160.

Pigeon, M., Antonio, K., & Denuit, M. (2013). Individual loss reserving with the
multivariate skew normal framework. ASTIN Bulletin, 43, 399–428.

Pigeon, M., Antonio, K., & Denuit, M. (2014). Individual loss reserving using paid-
incurred data. Insurance: Mathematics and Economics, 58, 121–131.

Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings
of the IEEE, 78, 1481–1497.

Posthuma, B., Cator, E., Veerkamp, W., & Van Zwet, E. (2008). Combined analysis of
paid and incurred losses. CAS E-Forum Fall, 272–293..

Quarg, G., & Mack, T. (2004). Munich Chain Ladder. Blätter der Deutschen
Gesellschaft für Versicherungs und Finanzmathematik XXVI, 597–630..

Ramos-Pérez, E., Alonso-González, P., & Núñez-Velázquez, J. (2019). Forecasting
volatility with a stacked model based on a hybridized Artificial Neural Network.
Expert Systems with Applications, 129, 1–9.

Rehman, Z., & Klugman, S. (2009). Quantifying uncertainty in reserve estimates.
Variance Journal, 4, 30–46.

Renshaw, A. E., & Verrall, R. J. (1998). A stochastic model underlying the chain-
ladder technique. British Actuarial Journal.

Richman, R., & Wüthrich, M. (2018). A neural network extension of the Lee-Carter
model to multiple populations. SSRN. Available at SSRN, https://ssrn.com/
abstract=3270877..

Sheela, D., & Deepa, S. (2013). Review on methods to fix number of hidden neurons
in neural networks. Mathematical Problems in Engineering, 1–11.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., et al. (2017).
Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. CoRR abs/1712.01815..

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., et al. (2016).
Mastering the game of go with deep neural networks and tree search. Nature,
529, 484–489.

Taylor, G., McGuire, G., & Sullivan, J. (2008). Individual claim loss reserving
conditioned by case estimates. Annals of Actuarial Science, 3(1–2), 215–256.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017).
Attention is all you need. CoRR abs/1706.03762..

Venter, G. (2008). Distribution and value of reserves using paid and incurred
triangles. CAS E-Forum, (Fall), 348–375..

Verrall, R. J. (2000). An investigation into stochastic claims reserving models and the
chain-ladder technique. Insurance: Mathematics and Economics, 26(1), 91–99.

Weke, P., & Ratemo, C. (2013). Estimating IBNR claims reserves for general
insurance using archimedean copulas. Applied Mathematical Sciences, 7,
1223–1237.

Wüthrich, M. (2018a). Machine learning in individual claims reserving.
Scandinavian Actuarial Journal, 2018, 465–480.

Wüthrich, M. (2018b). Neural networks applied to chain-ladder reserving. European
Actuarial Journal, 8, 407–436.

12 E. Ramos-Pérez et al. / Expert Systems with Applications 163 (2021) 113782

8.3 Annex III. Published Paper. Multi-Transformer: A new neural
network-based architecture for forecasting S&P volatility

146

mathematics

Article

Multi-Transformer: A New Neural Network-Based Architecture
for Forecasting S&P Volatility

Eduardo Ramos-Pérez 1 , Pablo J. Alonso-González 2,* and José Javier Núñez-Velázquez 2

����������
�������

Citation: Ramos-Pérez, E.;

Alonso-González, P.J.;

Núñez-Velázquez, J.J.

Multi-Transformer: A New Neural

Network-Based Architecture for

Forecasting S&P Volatility.

Mathematics 2021, 9, 1794. https://

doi.org/10.3390/math9151794

Academic Editor: Vicente

Coll-Serrano

Received: 26 June 2021

Accepted: 26 July 2021

Published: 28 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Economics, Universidad de Alcalá, Plaza de la Victoria 2, 28802 Alcalá de Henares, Madrid, Spain;
ramos.perez.e@gmail.com

2 Economics Department, Universidad de Alcalá, Plaza de la Victoria 2,
28802 Alcalá de Henares, Madrid, Spain; josej.nunez@uah.es

* Correspondence: pablo.alonsog@uah.es

Abstract: Events such as the Financial Crisis of 2007–2008 or the COVID-19 pandemic caused
significant losses to banks and insurance entities. They also demonstrated the importance of using
accurate equity risk models and having a risk management function able to implement effective
hedging strategies. Stock volatility forecasts play a key role in the estimation of equity risk and,
thus, in the management actions carried out by financial institutions. Therefore, this paper has the
aim of proposing more accurate stock volatility models based on novel machine and deep learning
techniques. This paper introduces a neural network-based architecture, called Multi-Transformer.
Multi-Transformer is a variant of Transformer models, which have already been successfully applied
in the field of natural language processing. Indeed, this paper also adapts traditional Transformer
layers in order to be used in volatility forecasting models. The empirical results obtained in this paper
suggest that the hybrid models based on Multi-Transformer and Transformer layers are more accurate
and, hence, they lead to more appropriate risk measures than other autoregressive algorithms or
hybrid models based on feed forward layers or long short term memory cells.

Keywords: deep learning; neural networks; risk management; stock volatility; transformer

1. Introduction

Since the Financial Crisis of 2007–2008, financial institutions have enhanced their
risk management framework in order to meet the new regulatory requirements set by
Solvency II or Basel III. These regulations have the aim of measuring the risk profile of
financial institutions and minimizing losses from unexpected events such as the European
sovereign debt crisis or COVID-19 pandemic. Even though banks and insurance entities
have reduced their losses thanks to the efforts made in the last years, unexpected events
still cause remarkable losses to financial institutions. Thus, efforts are still required to
further enhance market and equity risk models in which stock volatility forecasts play
a fundamental role. Volatility, understood as a measure of an asset uncertainty [1,2], is
not directly observed in stock markets. Thus, taking into consideration the stock market
movements, a statistical model is applied in order to compute the volatility of a security.

GARCH-based models [3,4] are widely used for volatility forecasting purposes. This
family of models is especially relevant because it takes into consideration the volatility
clustering observed by [5]. Nevertheless, as the persistence of conditional variance tends
to be close to zero, Refs. [6–9] developed more flexible variations of the traditional GARCH
models. In addition, the models introduced by [10] (EGARCH) and [11] (GJR-GARCH) take
into consideration that stocks volatility behaves differently depending on the market trend,
bearish or bullish. Multivariate GARCH models were developed by [12,13]. Bollerslev
et al. [14] applied the previous model to financial time series, while [15] introduced a time-
varying multivariate GARCH. Dynamic conditional correlation GARCH, BEKK-GARCH
and Factor-GARCH were other variants of this family that were developed by [16–18],

Mathematics 2021, 9, 1794. https://doi.org/10.3390/math9151794 https://www.mdpi.com/journal/mathematics

Mathematics 2021, 9, 1794 2 of 18

respectively. Finally, it is worth mentioning that, in contrast to classical GARCH, the first-
order zero-drift GARCH model (ZD-GARCH) proposed by [19] is non-stationary regardless
of the sign of Lyapunov exponent and, thus, it can be used for studying heteroscedasticity
and conditional heteroscedasticity together.

Another relevant family is composed by stochastic volatility models. As they as-
sume that volatility follows its own stochastic process, these models are widely used in
combination with Black–Scholes formula to assess derivatives price. The most popular
process of this family is the [20] model which assumes that volatility follows an Cox-
Ingersoll-Ross [21] process and stock returns a Brownian motion. The main challenge of
the Heston model is the estimation of its parameters. Refs. [22,23] proposed a generalized
method of moments to obtain the parameters of the stochastic process, while [24–27] used
a simulation approach to estimate them. Other relevant stochastic volatility processes are
Hull–White [28] and SABR [29] models.

The last relevant family is composed of those models based on machine and deep
learning techniques. Even though GARCH models are considered part of the machine
learning tool-kit, these models are considered another different family due to the signif-
icant importance that they have in the field of stock volatility. Thus, this family takes
into consideration the models based on the rest of the machine and deep learning algo-
rithms such as artificial neural networks [30], gradient boosting with regression trees [31],
random forests [32] or support vector machines [33]. Refs. [34–36] applied machine learn-
ing techniques such as Support Vector Machines or hidded Markov models to forecast
financial time series. Hamid and Iqbid [37] applied Artificial Neural Networks (ANNs) to
demonstrate that the implied volatility forecasted by this algorithm is more accurate than
Barone–Adesi and Whaley models.

ANNs have been also combined with other statistical models with the aim of improv-
ing the forecasting power of individual ANNs. The most common approach applied in the
field of stocks volatility is merging GARCH-based models with ANNs. Refs. [38–44] devel-
oped different architectures based in the previous approach for stock volatility forecasting
purposes. All these authors demonstrated that hybrid models overcome the performance
of traditional GARCH models in the field of stock volatility forecasting. It is also worth
mentioning the contribution of [45], who combined different GARCH models with ANNs
in order to compare their predictive power. ANN-GARCH models have been also applied
to forecast other financial time series such as metals [46,47] or oil [48,49] volatility. Apart
from the combination with GARCH-based models, ANNs have been merged with other
models for volatility forecasting purposes. Ramos-Pérez et al. [50] merged ANNs, random
forests, support vector machines (SVM) and gradient boosting with regression trees in
order to forecast S&P500 volatility. This model overcame the performance of a hybrid
model based on feed forward layers and GARCH. Vidal and Kristjanpoller [51] proposed an
architecture based on convolutional neural networks (CNNs) and long-short term memory
(LSTM) units to forecast gold volatility. LSTMs were also used by [52] to forecast currency
exchange rates volatility. It is also worth mentioning that GARCH models have not been
only merged with ANNs, Peng et al. [53] combined SVM with GARCH-based models in
order to predict cryptocurrencies volatility.

The aim of this paper is to introduce a more accurate stock volatility model based
on an innovative machine and deep learning technique. For this purpose, hybrid models
based on merging Transformer and Multi-Transformer layers with other approaches such as
GARCH-based algorithms or LSTM units are introduced by this paper. Multi-Transformer
layers, which are also introduced in this paper, are based on the Transformer architecture
developed by [54]. Transformer layers have been successfully implemented in the field of
natural language processing (NLP). Indeed, the models developed by [55,56] demonstrated
that Transformer layers are able to overcome the performance of traditional NLP models.
Thus, this recently developed architecture is currently considered the state-of-the-art in
the field of NLP. In contrast to LSTM, Transformer layers do not incorporate recurrence
in their structure. This novel structure relies on a multi-head attention mechanism and

Mathematics 2021, 9, 1794 3 of 18

positional embeddings in order to forecast time series. As [54] developed Transformer for
NLP purposes, positional embeddings are used in combination with word embeddings.
The problem faced in this paper is the forecasting of stock volatility and, thus, the word
embedding is not needed and the positional embedding has been modified as it is explained
in Section 2.4.

In contrast to Transformer, Multi-Transformer randomly selects different subsets of
training data and merges several multi-head attention mechanisms to produce the final
output. Following the intuition of bagging, the aim of this architecture is to improve the
stability and accurateness of the attention mechanism. It is worth mentioning that the
GARCH-based algorithms used in combination with Transformer and Multi-Transformer
layers are GARCH, EGARCH, GJR-GARCH, TrGARCH, FIGARCH and AVGARCH.

Therefore, three main contributions are provided by this study. First, Transformer
layers are adapted in order to forecast stocks volatility. In addition, an extension of the
previous structure is presented (Multi-Transformer). Second, this paper demonstrates
that merging Transformer and Multi-Transformer layers with other models lead to more
accurate volatility forecasting models. Third, the proposed stock volatility models generate
appropriate risk measures in low and high volatility regimes. The Python implementation
of the volatility models proposed in this paper is available in this repository.

As it is shown by the extensive literature included in this section, stock volatility
forecasting has been a relevant topic not only for financial institutions and regulators
but also for the academia. As financial markets can suffer drastic sudden drops, it is
highly desirable to use models that can adequately forecast volatility. It is also useful
to have indicators that can accurately measure risk.This paper makes use of recent deep
and machine learning techniques to create more accurate stock volatility models and
appropriate equity risk measures.

The rest of the paper is organized as follows: Section 2 describes the dataset, the mea-
sures used for validating the volatility forecasts and provides a look at the volatility models
used as benchmark. Then, this section presents the volatility forecasting models proposed
in this paper, which are based on Transformer and Multi-Transformer layers. As NLP
Transformers need to be adapted in order to be used for volatility forecasting purposes and
Multi-Transformer layers are introduced by this paper, explanations about the theoretical
background of these structures are also given. The analysis of empirical results is presented
in Section 3. Finally, the results are discussed in Section 4, followed by concluding remarks
in Section 5.

2. Materials and Methods

This section is divided in five different subsections. The first one (Section 2.1) describes
the data for fitting the models. The measures for validating the accuracy and value at
risk (VaR) of each stock volatility model are explained in Section 2.2. Section 2.3 presents
the stock volatility models and algorithms used for benchmarking purposes. Section 2.4
explains the adaptation of Transformer layers in order to be used for volatility forecasting
purposes and, finally, the Multi-Transformer layers and the models based on them are
presented in Section 2.5.

2.1. Data and Model Inputs

The proposed architectures and benchmark models are fitted using the rolling window
approach (see Figure 1). This widely used methodology has been applied in finance,
among others, by [57–60]. Rolling window uses a fixed sample length for fitting the model
and, then, the following step is forecasted. As in this paper the window size is set to
650 and the forecast horizon to 1, the proposed and benchmark models are fitted using the
last 650 S&P trading days and, then, the next day volatility is forecasted. This process is
repeated until the whole period under analysis is forecasted. The periods used as training
and testing set will be defined at the end of this subsection.

Mathematics 2021, 9, 1794 4 of 18

Figure 1. Rolling window methodology.

The input variables of the models proposed are the daily logarithmic returns (rt−i)
and the standard deviation of the last five daily logarithmic returns:

σt−1 =

√
∑n

i=1
(
rt−i − E[r]

)2

n− 1
(1)

As Multi-Transformer, Transformer and LSTM layers are able to manage time series,
a lag of the last 10 observations of the previous variables are taken into consideration for
fitting these layers. Thus, the input variables are:

X1 = (σt−1, σt−2, . . . , σt−10) (2)

X2 = (rt−1, rt−2, . . . , rt−10) (3)

In accordance with other studies such as [38] or [50], the realized volatility is used as
response variable for the models based on ANNs;

Y = σ̂i,t =

√
∑i−1

n=0 (rt+n − E[r f])2

i− 1
(4)

where E[r f] = ∑i−1
n=0 rt+n/i and i = 5. As shown in the previous formula, the realized

volatility can be defined as the standard deviation of future logarithmic returns.
The dataset for fitting and evaluating the volatility forecasting models contains market

data of S&P from 1 January 2008 to 31 December 2020. The optimum configuration
of the models is obtained by applying the rolling window approach and selecting the
configuration which minimizes the error (RMSE) in the period going from 1 January 2008
to 31 December 2015. The optimum configuration in combination with the rolling window
methodology is applied in order to forecast the volatility contained in the testing set (from
1 January 2016 to 31 December 2020). The empirical results presented in Section 3.2 are
based on the forecasts of the testing set.

2.2. Models Validation

This subsection presents the measures selected for validating and comparing the
performance of the benchmark models with the algorithms proposed in this paper.

The mean absolute value (MAE) and the root mean squared error (RMSE) have been
selected for validating the forecasting power of the different stock volatility models:

MAE =
N

∑
t=1

| σi,t − σ̂i,t |
N

/ RMSE =
N

∑
t=1

(σi,t − σ̂i,t)
2

N
(5)

Mathematics 2021, 9, 1794 5 of 18

where N is the total number of observations.
The validation carried out by this study is not only interested on the accuracy, but also

on the appropriateness of the risk measures generated by the different stock volatility fore-
casting models. In accordance with Solvency II Directive, 99.5% VaR has been selected as
risk measure. Although Solvency II has the aim of obtaining the yearly VaR, the calculations
carried out in this paper will be based on a daily VaR in order to have more data points and,
thus, more robust conclusions on the performance of the different models. The parametric
approach developed by [61] is used for validating the different VaR estimations. The aim
of this test is accepting (or rejecting) the hypothesis that the number of VaR exceedances
are aligned with the confidence level selected for calculating the risk measure. In addition
to the previous test, the approach suggested by [62] is also applied in order to validate the
appropriateness of VaR.

2.3. Benchmark Models

This subsection introduces the benchmark models used in this paper: GARCH,
EGARCH, AVGARCH, GJR-GARCH, TrARCH, FIGARCH and two architectures that com-
bine GARCH-based algorithms with ANN and LSTM, respectively. The GARCH-based
algorithms will be fitted assuming that innovations, εt, follow a Student’s t-distribution.
Thus, the returns generated by these models follow a conditional t-distribution [63].

The generalized autoregressive conditional heteroskedasticity (GARCH) model devel-
oped by [4] has been widely used for stock volatility forecasting purposes. GARCH(p,q)
has the following expression:

σ̂2
t = ω +

q

∑
i=1

αir2
t−i +

p

∑
i=1

βiσ
2
t−i / r̂t = σ̂tεt (6)

where ωi, αi and βi are the parameters to be estimated, rt−i the previous returns and σ2
t−i the

last observed volatility. As previously stated, innovations (εt) follow a Student’s t-distribution.
The absolute value GARCH [64], AVGARCH(p,q), is similar to the traditional GARCH

model. In this case, the absolute value of previous return and volatility is taken into
consideration to forecast volatility:

σ̂t = ω +
q

∑
i=1

αi | rt−i |+
p

∑
i=1

βiσt−i (7)

As volatility behaves differently depending on the market tendency, models such
as EGARCH, GJR-GARCH or TrGARCH were developed. EGARCH(p,q) [10] has the
following expression for the logarithm of stocks volatility:

log σ̂2
t = ω +

p

∑
i=1

αi log σ̂2
t−i +

q

∑
i=1

(βiet−i + γi(| et−i | −E(| et−i |))) (8)

where ωi, αi, βi and γi are the parameters to be estimated and et = rt/σt. The GJR-
GARCH(p,o,q) developed by [11] has the following expression:

σ̂2
t = ω +

q

∑
i=1

αir2
t−i +

o

∑
i=1

γir2
t−i I[rt−1<0] +

p

∑
i=1

βiσ
2
t−i (9)

As with EGARCH model, ωi, αi, βi and γi are the parameters to be estimated. I[rt−1<0]
takes the value of 1 when the subscript condition is met. Otherwise I[rt−1<0] = 0. The volatil-
ity of the Threshold GARCH(p,o,q) (TrGARCH) model is obtained as follows:

σ̂t = ω +
q

∑
i=1

αi | rt−i |+
o

∑
i=1

γi | rt−i | I[rt−i<0] +
p

∑
i=1

βiσt−i (10)

Mathematics 2021, 9, 1794 6 of 18

As with the previous two architectures, ωi, αi, βi and γi are the model parameters.
The last GARCH-based algorithm used in this paper is the fractionally integrated GARCH
(FIGARCH) model developed by [65]. The conditional variance dynamic is

σ̂t = ω +
[
1− βL− φL(1− L)d

]
ε2

t + σht−1 (11)

where L is the lag operator and d the fractional differencing parameter.
In addition to the previous approaches, two other hybrid models based on merging

autoregressive algorithms with ANNs and LSTMs are also used as benchmark. Figure 2
shows the architecture of ANN-GARCH and LSTM-GARCH. The inputs of the algorithms
are the following:

• The last daily logarithmic return, rt−1, for the ANN-GARCH and the last ten in the
case of the LSTM-GARCH (as explained in Section 2.1).

• The standard deviation of the last five daily logarithmic returns:

σt−1 =

√
∑n

i=1 (rt−i − E[r])2

n− 1
(12)

where E[r] = ∑n
i=1 rt−i/n and n = 5. As with the previous input variable, the last

standard deviation is considered in the ANN-GARCH, whereas the last ten are taken
into consideration by the LSTM-GARCH architecture.

The GARCH-based algorithms included within the ANN-GARCH and LSTM-GARCH
models are the six algorithms previously presented in this same subsection (GARCH,
EGARCH, AVGARCH, GJR-GARCH, TrARCH, FIGARCH).

Figure 2. ANN-GARCH and LSTM-GARCH architectures.

As explained in Section 2.1, the true implied volatility, σi,t, is used as response variable
to train the models. This variable is the standard deviation of the future logarithmic returns:

σ̂i,t =

√
∑i−1

n=0 (rt+n − E[r f])2

i− 1
(13)

where E[r f] = ∑i−1
n=0 rt+n/i. In this paper, i = 5.

As it is shown in Figure 2, the input of the ANN-GARCH model is processed by two
feed forward layers with dropout regularization. These layers have 16 and 8 neurons,
respectively. The final output is produced by a feed forward layer with one neuron. In the
case of the LSTM-GARCH, inputs are processed by a LSTM layer with 32 units and two feed
forward layers with 8 and 1 neurons, respectively, in order to produce the final forecast.

Mathematics 2021, 9, 1794 7 of 18

2.4. Transformer-Based Models

Before explaining the volatility models based on Transformer layers (see Figure 3),
all the modifications applied to their architecture are presented in this subsection. As pre-
viously stated, Transformer layers [54] were developed for NLP purposes. Thus, some
modifications are needed in order to apply this layer for volatility forecasting purposes.

Figure 3. Transformer and Multi-Head attention mechanism.

In contrast to LSTM, recurrence is not present in the architecture of Transformer
layers. The two main components used by these layers in order to deal with time series are
the following:

• Positional encoder. As previously stated, Transformer layers have no recurrence
structure. Thus, the information about the relative position of the observations within
the time series needs to be included in the model. To do so, a positional encoding
is added to the input data. In the context of NLP, Vaswani et al. [54] suggested the
following wave functions as positional encoders:

PE(pos,2i)
= sin(pos/10002i/dim) (14)

PE(pos,2i+1)
= cos(pos/10002i/dim) (15)

where dim is the total number of explanatory variables (or word embedding dimension
in NLP) used as input in the model, pos is the position of the observation within the
time series and i = (1, 2, . . . , dim− 1). This positional encoder modifies the input
data depending on the lag of the time series and the embedding dimension used for
the words.
As volatility models do not use words as inputs, the positional encoder is modified
in order to avoid any variation of the inputs depending on the number of time
series used as input. Thus, the positional encoder suggested in this paper changes
depending on the lag, but it remains the same across the different explanatory variables
introduced in the model. As in the previous case, a wave function plays the role of
positional encoder:

PEpos = cos
(

π
pos

Npos − 1

)
= sin

(
π

2
+ π

pos
Npos − 1

)
(16)

where pos = (0, 1, . . . , Npos − 1) is the position of the observation within the time
series and Npos maximum lag.

• Multi-Head attention. It can be considered the key component of the Transformer
layers proposed by [54]. As shown in Figure 3, Multi-Head attention is composed

Mathematics 2021, 9, 1794 8 of 18

of several scaled dot-product attention units running in parallel. Scaled dot-product
attention is computed as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (17)

where Q, K and V are input matrices and dk the number of input variables taken into
consideration within the dot-product attention mechanism. Multi-Head attention
splits the explicative variables in different groups or ‘heads’ in order to run the
different scaled dot-product attention units in parallel. Once the different heads are
calculated, the outputs are concatenated (Concat operator) and connected to a feed
forward layer with linear activation. Thus, the Multi-Head attention mechanism has
the following expression:

MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (18)

headi = Attention(QWQ
i , KWK

i , VWV
i) (19)

where h is the number of heads. It is also worth mentioning that all the matrices
of parameters (WQ

i , WK
i , WV

i and WO) are trained using feed forward layers with
linear activations.

In addition to the scaled dot-product and the Multi-Head attention mechanisms,
Figure 3 shows the Transformer layers used in this paper. As suggested by [54], the Multi-
Head attention is followed by a normalization, a feed forward layer with ReLU activation
and, again, a normalization layer. Transformer layers also include two residual connec-
tions [66]. Thanks to these connections, the model will decide by itself if the training of
some layers needs to be skipped during some phases of the fitting process.

The modified version of Transformer layers explained in the previous paragraphs are
used in the volatility models presented in Figure 4. The T-GARCH architecture proposed
in this paper merges the six GARCH algorithms presented in Section 2.3 with Transformer
and feed forward layers in order to forecast σ̂i,t. In addition to the previous algorithms
and layers, TL-GARCH includes a LSTM with 32 units. In this last model, the temporal
structure of the data is recognized and modelled by the LSTM layer and, thus, no positional
encoder is needed in the Transformer layer. Both models have the following characteristics:

Figure 4. T-GARCH and TL-GARCH volatility models.

• Adaptative Moment Estimator (ADAM) is the algorithm used for updating the weights
of the feed forward, LSTM and Transformer layers. This algorithm takes into consider-
ation current and previous gradients in order to implement a progressive adaptation

Mathematics 2021, 9, 1794 9 of 18

of the initial learning rate. The values suggested by [67] for the ADAM parameters
are used in this paper and the initial learning rate is set to δ = 0.01.

• The feed forward layers with dropout present in both models have 8 neurons, while
the output layer has just one.

• The level of dropout regularization θ [68] is optimized with the training set mentioned
in Section 2.1.

• The loss function used for weights optimization and back propagation purposes is the
mean squared error.

• Batch size is equal to 64 and the models are trained during 5000 epochs in order to
obtain the final weights.

2.5. Multi-Transformer-Based Models

This subsection presents the Multi-Transformer layers and the volatility models based
on them. The Multi-Transformer architecture proposed in this paper is a variant of the
Transformer layers proposed by [54]. The main differences between both architectures are
the following:

• As shown in Figure 5, Multi-Transformer layers generate T different random samples
of the input data. In the volatility models proposed in this paper, 90% of the observa-
tions of the database are randomly selected in order to compute the different samples.

• Multi-Transformer architecture is composed of T Multi-Head attention units (in this
paper T = 5), one per each random sample of the input data. Then, the average of
the different units is computed in order to obtain the final attention matrix. Thus,
the Average Multi-Head (AMH) mechanism present in Multi-Transformer can be
defined as follows:

AMH(Q, K, V) =
∑T

t=1 Concat(head1,t, . . . , headh,t)WO
t

T
(20)

headi,t = Attention(QtW
Q
i,t , KtWK

i,t, VtWV
i,t) (21)

As with the Transformer architecture applied in this paper, the positional encoder
used is PEpos instead of PE(pos,2i)

and PE(pos,2i+1)
.

Figure 5. Multi-Transformer architecture.

Mathematics 2021, 9, 1794 10 of 18

The aim of the Multi-Transformer layers introduced in the paper is to improve the
stability and accuracy by applying bagging [69] to the attention mechanism. This technique
is usually applied to algorithms such as linear regression, neural networks or decision trees.
Instead of applying the procedure on all the data that are input into the model, the proposed
methodology uses bagging only to the attention mechanism of the layer architecture.

The computational power required by bagging is one of the main limitations of this
technique. As Multi-Transformer applies bagging to the attention mechanisms, their
weights are trained several times in each epoch. Nevertheless, bagging is not applied to
the rest of the layer weights and, thus, this offsets partially the previous limitation. It is
also worth mentioning that bagging preserves the bias and this may result in underfitting.

On the other hand, this technique should bring two main advantages to the Multi-
Transformer layer. First, bagging reduces significantly the error variance. Second, the ag-
gregation of learners using this technique leads to a higher accuracy and reduces the risk
of overfitting.

The structure of the volatility models based on Multi-Transformer layers (Figure 6)
is similar to the architectures presented in Section 2.4. The MT-GARCH merges Multi-
Transformer and feed forward layers with the six GARCH models presented in Section 2.3.
In addition to the previous algorithms and layers, MTL-GARCH adds a LSTM with 32 units.
The rest of the characteristics such as the optimizer, the number of neurons of the feed
forward layers or the level of dropout regularization are the same than those presented in
the previous section for T-GARCH and TL-GARCH.

Figure 6. MT-GARCH and MTL-GARCH volatility models.

The risk measures of ANN-GARCH, LSTM-GARCH and all the models introduced by
this paper (Sections 2.4 and 2.5) are calculated assuming that daily log-returns follow a non-
standardize Student’s t-distribution with standard deviation equal to the forecasts made
by the volatility models. It is worth mentioning that Student’s t-distribution generates
more appropriate risk measures than normal distribution due to the shape of its tail [70,71].
In addition, this assumption is in line with the GARCH-based models used as benchmark
and the inputs of the hybrid models presented in this paper.

3. Results

In this section, the forecasts and the risk measures of the volatility models presented in
previous sections are compared with the ones obtained from the benchmark models. In ad-
dition, the following subsection shows the optimum hyperparameters of the benchmark
and proposed hybrid volatility models.

Mathematics 2021, 9, 1794 11 of 18

3.1. Fitting of Models Based on Neural Networks

As explained in Section 2.1, rolling window approach ([57–60] among others) is
applied for fitting the algorithms. The training set used for optimizing the level of dropout
regularization contains S&P returns and observed volatilities from 1 January 2008 to 31
December 2015. Table 1 presents the error by model and level of θ.

Table 1. RMSE by level of θ.

Model θ = 0 θ = 0.05 θ = 0.10 θ = 0.15

ANN-GARCH 0.0351 0.0092 0.0085 0.0082
LSTM-GARCH 0.0065 0.0057 0.0056 0.0054

T-GARCH 0.0089 0.0076 0.0072 0.0074
TL-GARCH 0.0050 0.0045 0.0044 0.0045
MT-GARCH 0.0068 0.0062 0.0064 0.0064

MTL-GARCH 0.0047 0.0045 0.0042 0.0044
Source: own elaboration.

The results of the optimization process reveals that θ = 0 generates higher error rates
than the rest of the possible values regardless of the model. This means that models based
on architectures such as Transformer, LSTM or feed forward layers need an appropriate
level of regularization in order to avoid overfitting. According to the results, this is
especially relevant for ANN-GARCH, where the error strongly depends on the level of
regularization. The dropout level that minimizes the error of each model is selected.

3.2. Comparison against Benchmark Models

Once the optimum dropout level of each of the proposed volatility forecasting models
based on Transformer and Multi-Transformer is selected, their performance is compared
with the benchmark models (traditional GARCH processes, ANN-GARCH and LSTM-
GARCH) presented in Section 2.3.

Tables 2 and 3 present the validation error (RMSE and MAE) by year and model.
The column ‘Total’ shows the error of the whole test period (from 1 January 2016 to
31 December 2020). The main conclusions drawn from the these tables are the following:

• Traditional GARCH processes are outperformed by models based on merging artificial
neural network architectures such as feed forward, LSTM or Transformer layers with
the outcomes of autoregressive algorithms (also named hybrid models).

• The comparison between ANN-GARCH and the rest of the volatility forecasting
models based on artificial neural networks (LSTM-GARCH, T-GARCH, TL-GARCH,
MT-GARCH and MTL-GARCH) reveals that feed forward layers lead to less accurate
forecasts than other architectures. Multi-Transformer, Transformer and LSTM were
specially created to forecast time series and, thus, the volatility models based on these
layers are more accurate than ANN-GARCH.

• Merging Multi-Transformer and Transformer layers with LSTMs leads to more ac-
curate predictions than traditional LSTM-based architectures. Indeed, TL-GARCH
achieves better results than LSTM-GARCH, even though the number of weights of TL-
GARCH is significantly lower. Thus, the novel Transformer and Multi-Transformer lay-
ers introduced for NLPs purposes can be adapted as described in Sections 2.4 and 2.5
in order to generate more accurate volatility forecasting models. It is also worth
mentioning that Multi-Transformer layers, which were also introduced in this paper,
lead to more accurate forecasts thanks to their ability to average several attention
mechanisms. In fact, the model that achieves the lower MAE and RMSE is a mixture
of Multi-Transformer and LSTM layers (MTL-GARCH).

Mathematics 2021, 9, 1794 12 of 18

Table 2. RMSE by volatility model and year.

Model 2016 2017 2018 2019 2020 Total

GARCH(1,1) 0.0058 0.0026 0.0095 0.0073 0.1026 0.0464
AVGARCH(1,1) 0.0053 0.0027 0.0076 0.0056 0.0847 0.0383
EGARCH(1,1) 0.0056 0.0028 0.0093 0.0078 0.0880 0.0399

GJR-GARCH(1,1,1) 0.0090 0.0028 0.0126 0.0068 0.1248 0.0565
TrGARCH(1,1,1) 0.0074 0.0027 0.0115 0.0058 0.1153 0.0521
FIGARCH(1,1) 0.0062 0.0029 0.0095 0.0066 0.1011 0.0457
ANN-GARCH 0.0042 0.0023 0.0060 0.0044 0.0171 0.0086
LSTM-GARCH 0.0032 0.0021 0.0043 0.0030 0.0101 0.0054

T-GARCH 0.0048 0.0029 0.0058 0.0044 0.0117 0.0067
TL-GARCH 0.0030 0.0019 0.0033 0.0026 0.0070 0.0040
MT-GARCH 0.0036 0.0021 0.0046 0.0033 0.0096 0.0054

MTL-GARCH 0.0030 0.0016 0.0033 0.0026 0.0066 0.0038
Source: own elaboration.

Table 3. MAE by volatility model and year.

Model 2016 2017 2018 2019 2020 Total

GARCH(1,1) 0.0037 0.0019 0.0058 0.0044 0.0363 0.0105
AVGARCH(1,1) 0.0034 0.0019 0.0049 0.0037 0.0296 0.0087
EGARCH(1,1) 0.0035 0.0020 0.0060 0.0048 0.0333 0.0100

GJR-GARCH(1,1,1) 0.0048 0.0020 0.0074 0.0042 0.0404 0.0118
TrGARCH(1,1,1) 0.0042 0.0020 0.0069 0.0038 0.0365 0.0107
FIGARCH(1,1) 0.0038 0.0021 0.0055 0.0041 0.0361 0.0104
ANN-GARCH 0.0029 0.0019 0.0038 0.0029 0.0095 0.0042
LSTM-GARCH 0.0022 0.0015 0.0027 0.0021 0.0060 0.0029

T-GARCH 0.0035 0.0021 0.0041 0.0031 0.0070 0.0040
TL-GARCH 0.0020 0.0014 0.0021 0.0018 0.0044 0.0023
MT-GARCH 0.0024 0.0016 0.0031 0.0023 0.0057 0.0030

MTL-GARCH 0.0019 0.0012 0.0021 0.0018 0.0041 0.0022
Source: own elaboration.

To enhance the analysis of the results shown in Tables 2 and 3, Figure 7 collects the
RMSE and the observed volatility by year. Notice that only the most accurate GARCH-
based model is shown in order to improve the visualization of the graph. The black dashed
line shows that the observed volatility of 2020 was significantly higher than the rest of
the years due to the turmoil caused by COVID-19 outbreak. As expected, the error of
every model is also higher in 2020 because the market volatility was more unpredictable
than the rest of the years. Nevertheless, it has to be mentioned that the 2020 forecasts of
traditional autoregressive algorithms are significantly less accurate than hybrid models
based on architectures such as LSTM, Transformer or Multi-Transformer layers.

Although the observed volatility is lower in years before 2020, autoregressive models
are also outperformed by hybrid models. Nevertheless, the difference between both sets of
models is remarkably lower.

The p-values of the Kupiec and Christoffersen tests by volatility model and year are
shown in Tables 4 and 5, respectively. In contrast to the approach suggested by Kupiec,
Christoffersen test is not only focused on the total number of exceedances, but it also takes
into consideration the number of consecutive VaR exceedances. As stated in Section 2.2,
the risk measure and confidence level (99.5% VaR) selected are in line with Solvency II
Directive. This regulation sets the principles for calculating the capital requirements and
assessing the risk profile of the insurance companies based in the European Union. This
law covers not only the underwriting risks but also financial risks such as the potential
losses due to variations on the interest rate curves or the equity prices.

The column ‘Total’ of Tables 4 and 5 reveal that only TL-GARCH, MT-GARCH and
MTL-GARCH produce appropriate risk measures (p-value higher than 0.05 in both tests)

Mathematics 2021, 9, 1794 13 of 18

for the period 2016–2020. The rest of the models fail both tests and, thus, their risk measures
can not be considered to be appropriate for that period.

Figure 7. Observed volatility and RMSE by year.

As with any other statistical test, the higher the number of data points the more
relevant are the outcomes obtained from the test. That is the reason why the previous
paragraph focuses on the ‘Total’ column and not on the specific results obtained by year.
The results by year show that most of the models fail the test in 2020 due to the high level
of volatility produced by COVID-19 pandemic.

According to these results, the stock volatility models introduced in this paper (T-
GARCH, TL-GARCH, MT-GARCH and MTL-GARCH) produce more accurate estimations
and appropriate risk measures in most of the cases. Regarding the models accuracy, it is
specially remarkable the difference observed in 2020, where COVID-19 caused a significant
turmoil in the stock market. Concerning the appropriateness of equity risk measures,
three out of four models based on Transformer and Multi-Transformer pass Kupiec and
Christofferesen test for the period 2016–2020, while all the benchmark models fail at
least one of them. Notice that the proposed models are compared with other approaches
belonging to its own family (ANN-GARCH and LSTM-GARCH) and autoregressive models
belonging to the GARCH family.

Table 4. Kupiec test (p-values) by volatility model and year.

Model 2016 2017 2018 2019 2020 Total

GARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008
AVGARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008
EGARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008

GJR-GARCH(1,1,1) 0.543 0.540 0.011 0.543 0.190 0.008
TrGARCH(1,1,1) 0.543 0.540 0.051 0.810 0.190 0.042
FIGARCH(1,1) 0.543 0.540 0.051 0.543 0.052 0.008
ANN-GARCH 0.543 0.540 0.001 0.002 0.012 0.001
LSTM-GARCH 0.810 0.186 0.540 0.188 0.190 0.042

T-GARCH 0.188 0.540 0.002 0.543 0.052 0.001
TL-GARCH 0.543 0.540 0.813 0.810 0.810 0.782
MT-GARCH 0.112 0.540 0.540 0.188 0.052 0.089

MTL-GARCH 0.543 0.113 0.113 0.810 0.190 0.910
Source: own elaboration.

Mathematics 2021, 9, 1794 14 of 18

Table 5. Christoffersen test (p-values) by volatility model and year.

Model 2016 2017 2018 2019 2020 Total

GARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002
AVGARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002
EGARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002

GJR-GARCH(1,1,1) 0.522 0.520 0.002 0.523 0.179 0.002
TrGARCH(1,1,1) 0.522 0.520 0.004 0.800 0.179 0.009
FIGARCH(1,1) 0.522 0.520 0.004 0.523 0.048 0.002
ANN-GARCH 0.522 0.520 0.001 0.002 0.002 0.001
LSTM-GARCH 0.800 0.180 0.520 0.177 0.179 0.037

T-GARCH 0.176 0.520 0.001 0.523 0.048 0.001
TL-GARCH 0.522 0.520 0.803 0.800 0.797 0.693
MT-GARCH 0.113 0.520 0.520 0.177 0.048 0.079

MTL-GARCH 0.522 0.113 0.113 0.800 0.179 0.790
Source: own elaboration.

4. Discussion

This paper introduced a set of volatility forecasting models based on Transformer and
Multi-Transformer layers. As Transformer layers were developed for NLP purposes [54],
their architecture is adapted in order to generate stock volatility forecasting models. Multi-
Transformer layers, which are introduced by this paper, have the aim of improving the
stability and accuracy of Transformer layers by applying bagging to the attention mech-
anism. The predictive power and risk measures generated by the proposed volatility
forecasting models (T-GARCH, TL-GARCH, MT-GARCH and MTL-GARCH) are com-
pared with traditional GARCH processes and other hybrid models based on LSTM and
feed forward layers.

Three main outcomes were drawn from the empirical results. First, hybrid models
based on LSTM, Transformer or Multi-Transformer layers outperform traditional autore-
gressive algorithms and hybrid models based on feed forward layers. The validation error
by year shows that this difference is more relevant in 2020, when the volatility of S&P500
was significantly higher than in the previous years due to COVID-19 pandemic. Volatility
forecasting models are mainly used for pricing derivatives and assessing the risk profile
of financial institutions. As the more relevant shocks on the solvency position of financial
institutions and derivatives prices are observed in high volatility regimes, the accurateness
of these models is particularly important in years such as 2020.

The higher performance of hybrid models have also been demonstrated by [38–44].
These papers merged traditional GARCH models with feed forward layers to predict
stock market volatility. This type of models have shown also a superior performance in
other financial fields such as oil market volatility [48,49] and metals price volatility [46,47].
Notice that this paper does not only present a comparison with traditional autoregressive
models, but it also shows that Transformer and Multi-Transformer can lead to more accurate
volatility estimations than other hybrid models.

Second, Multi-Transformer layers lead to more accurate volatility forecasting models
than Transformer layers. As expected, applying bagging to the attention mechanism has
a positive impact on the performance of the models presented in this paper. It is also
remarkable that empirical results demonstrate that merging LSTM with Transformer or
Multi-Transformer layers has also a positive impact on the models performance. On one
hand, the volatility forecasting model based on Multi-Transformer and LSTM (named MTL-
GARCH) achieves the best results in the period 2016–2020. On the other hand, the merging
of Transfomer with LSTM (TL-GARCH) leads to a lower error rate than the hybrid model
based only on LSTM layers (LSTM-GARCH) even though the number of weights of the
first model is significantly lower. Thus, the use of Transfomer layers can lead to simpler
and more accurate volatility forecasting models. Notice that Transformer layers are already
considered the state of art thanks to BERT [55] and GPT-3 [56]. These models have been

Mathematics 2021, 9, 1794 15 of 18

successfully used for sentence prediction, conversational response generation, sentiment
classification, coding and writing fiction, among others.

Third, the results of Kupiec and Christoffersen tests revealed that only the risk es-
timations made by MTL-GARCH, TL-GARCH and MT-GARCH can be considered as
appropriate for the period 2016–2020, whereas traditional autoregressive algorithms and
hybrid models based on feed forward and LSTM layers failed, at least, one of the tests.
As previously stated, volatility does not play only a key role in risk management but also
in derivative valuation models. Thus, using a volatility model that generates appropriate
risk measures can lead to more accurate derivatives valuation.

5. Conclusions

Transformer layers are the state of the art in natural language processing. Indeed,
the performance of this layer have overcome the performance of any other previous
model in this field [56]. As Transformer layers were specially created for natural language
processing, they need to be modified in order to be used for other purposes. Probably,
this is one of the main reasons why this layer have not been already extended to other
fields. This paper provides the modifications needed to apply this layer for stock volatility
forecasting purposes. The results shown in this paper demonstrates that Transformer layers
can overcome also the performance of the main stock volatility models.

Following the intuition of bagging [69], this paper introduces Multi-Transformer
layers. This novel architecture has the aim of improving the stability and accuracy of the
attention mechanism, which is the core of Transformer layers. According to the results,
it can be concluded that this procedure improves the accuracy of stock volatility models
based on Transformer layers.

Leaving aside the comparisons between Transformer and Multi-Transformer layers,
the hybrid models based on them have overcome the performance of autoregressive
algorithms and other models based on feed forward layers and LSTMs. The architecture of
these hybrid models (T-GARCH, TL-GARCH, MT-GARCH and MTL-GARCH) based on
Transformer and Multi-Transformer layers is also provided in this paper.

According to the results, it is also worth noticing that the risk estimations based on
the previous models are specially appropriate. The VaR of most of these models can be
considered accurate even in years such as 2020, when the COVID-19 pandemic caused a
remarkable turmoil in the stock market.

Consequently, the empirical results obtained with the hybrid models based on Trans-
fomer and Multi-Transformer layers suggest that further investigation should be conducted
about the possible application of them for derivative valuation purposes. Notice that volatil-
ity plays a key role in the financial derivatives valuation. In addition, the models can be
extended by merging Transformer or Multi-Transformer layers with other algorithms (such
as gradient boosting with trees or random forest) or modifying some key assumptions of
the attention mechanism.

Author Contributions: Conceptualization, E.R.-P.; methodology, E.R.-P., P.J.A.-G. and J.J.N.-V.; soft-
ware, E.R.-P.; validation, P.J.A.-G. and J.J.N.-V.; formal analysis, E.R.-P.; investigation, E.R.-P., P.J.A.-G.
and J.J.N.-V.; writing—both original draft preparation, review and editing, E.R.-P., P.J.A.-G. and
J.J.N.-V.; supervision, P.J.A.-G. and J.J.N.-V.; project administration, P.J.A.-G. and J.J.N.-V.; funding
acquisition, P.J.A.-G. and J.J.N.-V. All authors have read and agreed to the published version of
the manuscript.

Funding: The APC was funded by Economics Department of Universidad de Alcalá.

Data Availability Statement: The Python implementation of the volatility models proposed in
this paper is available in https://github.com/EduardoRamosP/MultiTransformer (accessed on
26 June 2021).

Conflicts of Interest: The authors declare that they have no conflict of interest regarding the publica-
tion of the research article.

Mathematics 2021, 9, 1794 16 of 18

References
1. Hull, J. Risk Management and Financial Institutions, 4th ed.; Wiley and Sons: London, UK, 2015.
2. Rajashree, P.; Ranjeeeta, B. A differential harmony search based hybrid internal type2 fuzzy EGARCH model for stock market

volatility prediction. Int. J. Approx. Reason. 2015, 59, 81–104.
3. Engle, R. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica

1982, 50, 987–1007. [CrossRef]
4. Bollerslev, T. Generalized autoregressive conditional heteroskedasticity. J. Econom. 1986, 31, 307–327. [CrossRef]
5. Mandelbrot, B. The variation of certain speculative prices. J. Bus. 1963, 36, 394–419. [CrossRef]
6. Engle, R.; Lee, G. A permanent and transitory component model of stock return volatility. In Cointegration, Causality, and

Forecasting: A Festschrift in Honor of Clive W. J. Granger; Engle, R., White, H., Eds.; Oxford University Press: Oxford, UK, 1999;
pp. 475–497.

7. Haas, M.; Mittnik, S.; Paolella, M. Mixed normal conditional heteroskedasticity. J. Financ. Econom. 2004, 2, 211–250. [CrossRef]
8. Haas, M.; Mittnik, S.; Paolella, M. A new approach to Markov-switching GARCH models. J. Financ. Econom. 2004, 2, 493–530.

[CrossRef]
9. Haas, M.; Paolella, M. Mixture and regime-switching GARCH models. In Handbook of Volatility Models and Their Applications;

Bauwens, L., Hafner, C., Laurent, S., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2012; pp. 71–102.
10. Nelson, D.B. Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica 1991, 59, 347–70. [CrossRef]
11. Glosten, L.; Jagannathan, R.; Runkle, D. On the Relation between the Expected Value and the Volatility of the Nominal Excess

Return on Stocks. J. Financ. 1993, 48, 1779–1801. [CrossRef]
12. Kraft, D.; Engle, R. Autoregressive Conditional Heteroskedasticity in Multiple Time Series; Department of Economics, UCSD: San

Diego, CA, USA, 1982.
13. Engle, R.; Granger, C.; Kraft, D. Combining competing forecasts of inflation with a bivariate ARCH model. J. Econ. Dyn. Control.

1984, 8, 151–165. [CrossRef]
14. Bollerslev, T.; Engle, R.; Wooldridge, J. A Capital Asset Pricing Model with time-varying covariances. J. Political Econ. 1988,

96, 116–131. [CrossRef]
15. Tse, Y.; Tsui, K. A multivariate GARCH model with time-varying correlations. J. Bus. Econ. Stat. 2002, 20, 351–362. [CrossRef]
16. Engle, R. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedastic-

ity models. J. Bus. Econ. Stat. 2002, 20, 339–350. [CrossRef]
17. Engle, R.; Kroner, F. Multivariate simultaneous generalized ARCH. Econom. Theory 1995, 11, 122–150. [CrossRef]
18. Engle, R.; Ng, V.; Rotschild, M. Asset pricing with a factor-ARCH covariance structure: Empirical estimates for Treasury Bills.

J. Econom. 1990, 45, 213–238. [CrossRef]
19. Zhang, L.; Zhu, K.; Ling, S. The ZD-GARCH model: A new way to study heteroscedasticity. J. Econom. 2018, 202, 1–17. [CrossRef]
20. Heston, S.L. A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev.

Financ. Stud. 1993, 6, 327–343. [CrossRef]
21. Cox, J.; Ingersoll, J.; Ross, S. A Theory of the Term Structure of Interest Rates. Econometrica 1985, 53, 385–407. [CrossRef]
22. Melino, A.; Turnbull, S. Pricing foreign currency options with stochastic volatility. J. Econom. 1990, 45, 239–265. [CrossRef]
23. Andersen, T.; Sorensen, B. GMM estimation of a stochastic volatility model: A Monte Carlo study. J. Bus. Econ. Stat. 1999,

14, 329–352.
24. Durbin, J.; Koopman, S. Monte Carlo maximum likelihood estimation for non-Gaussian state space models. Biometrika 1997,

84, 669–684. [CrossRef]
25. Broto, C.; Ruiz, E. Estimation methods for stochastic volatility models: A survey. J. Econ. Surv. 2004, 18, 613–649. [CrossRef]
26. Danielsson, J. Stochastic volatility in asset prices: Estimation by simulated maximum likelihood. J. Econom. 2004, 64, 375–400.

[CrossRef]
27. Andersen, T. Encyclopedia of Complexity and System Sciences; Chapter Stochastic Volatility; Springer: Berlin/Heidelberg, Ger-

many, 2009.
28. Hull, J.C.; White, A. The Pricing of Options on Assets with Stochastic Volatilities. J. Financ. 1987, 42, 281–300. [CrossRef]
29. Hagan, P.; Kumar, D.; Lesniewski, A.; Woodward, D. Managing Smile Risk. Wilmott Mag. 2002, 1, 84–108.
30. Mcculloch, W.; Pitts, W. A Logical Calculus of Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 127–147. [CrossRef]
31. Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2000, 29, 1189–1232.
32. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
33. Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
34. Gestel, T.; Suykens, J.; Baestens, D.; Lambrechts, A.; Laneknet, G. Financial time series prediction using least squares Support

Vector Machines within the evidence framework. IEEE Trans. Neural Netw. 2001, 12, 8009–821. [CrossRef] [PubMed]
35. Gupta, A.; Dhinga, B. Stock markets prediction using hidden Markov models. In Proceedings of the 2012 Students Conference on

Engineering and Systems, Allahabad, India, 16–18 March 2012; pp. 1–4.
36. Dias, F.; Nogueira, R.; Peixoto, G.; Moreira, W. Decision-making for financial trading: A fusion approach of Machine Learning

and Portfolio Selection. Expert Syst. Appl. 2019, 115, 635–655.
37. Hamid, S.; Iqbid, Z. Using neural networks for forecasting volatility of S&P 500 Index futures prices. J. Bus. Res. 2002,

57, 1116–1125.

Mathematics 2021, 9, 1794 17 of 18

38. Roh, T. Forecasting the Volatility of Stock Price Index. Expert Syst. Appl. 2006, 33, 916–922.
39. Hajizadeh, E.; Seifi, A.; Zarandi, F.; Turksen, I. A hybrid modeling approach for forecasting the volatility of S&P 500 Index return.

Expert Syst. Appl. 2012, 39, 531–536.
40. Kristjanpoller, W.; Fadic, A.; Minutolo, M. Volatility forecast using hybrid neural network models. Expert Syst. Appl. 2014,

41, 2437–2442. [CrossRef]
41. Monfared, S.A.; Enke, D. Volatility Forecasting Using a Hybrid GJR-GARCH Neural Network Model. Procedia Comput. Sci. 2014,

36, 246–253. [CrossRef]
42. Lu, X.; Que, D.; Cao, G. Volatility Forecast Based on the Hybrid Artificial Neural Network and GARCH-type Models. Procedia

Comput. Sci. 2016, 91, 1044–1049. [CrossRef]
43. Kim, H.; Won, C. Forecasting the volatility of stock price index: A hybrid model integrating LSTM with multiple GARCH-type

models. Expert Syst. Appl. 2018, 103, 25–37. [CrossRef]
44. Back, Y.; Kim, H. ModAugNet: A new forecasting framework for stock market index value with an overfitting prevention LSTM

module and a prediction LSTM module. Expert Syst. Appl. 2018, 113, 457–480. [CrossRef]
45. Bildirici, M.; Ersin, O. Improving forecasts of GARCH family models with the artificial neural networks: An applicaiton to the

daily returns in Istanbul Stock Exchange. Expert Syst. Appl. 2009, 36, 7355–7362. [CrossRef]
46. Kristjanpoller, W.; Minutolo, M. Gold price volatility: A Forecasting approach using the Artificial Neural Network-GARCH

model. Expert Syst. Appl. 2015, 42, 7245–7251. [CrossRef]
47. Kristjanpoller, W.; Hernández, E. Volatility of main metals forecasted by a hybrid ANN-GARCH model with regressors. Expert

Syst. Appl. 2017, 84, 290–300. [CrossRef]
48. Kristjanpoller, W.; Minutolo, M. Forecasting volatility of oil price using an Artificial Neural Network-GARCH model. Expert Syst.

Appl. 2016, 65, 233–241. [CrossRef]
49. Verma, S. Forecasting volatility of crude oil futures using a GARCH–RNN hybrid approach. Intell. Syst. Accounting, Financ.

Manag. 2021. [CrossRef]
50. Ramos-Pérez, E.; Alonso-González, P.; Núñez-Velázquez, J. Forecasting volatility with a stacked model based on a hybridized

Artificial Neural Network. Expert Syst. Appl. 2019, 129, 1–9. [CrossRef]
51. Vidal, A.; Kristjanpoller, W. Gold volatility prediction using a CNN-LSTM approach. Expert Syst. Appl. 2020, 157. [CrossRef]
52. Jung, G.; Choi, S.Y. Forecasting Foreign Exchange Volatility Using Deep Learning Autoencoder-LSTM Techniques. Complexity

2021, 2021, 1–16. [CrossRef]
53. Peng, Y.; Melo, P.; Camboim de Sá, J.; Akaishi, A.; Montenegro, M. The best of two worlds: Forecasting high frequency volatility

for cryptocurrencies and traditional currencies with Support Vector Regression. Expert Syst. Appl. 2018, 97, 177–192. [CrossRef]
54. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

Adv. Neural Inf. Process. Syst. 2017, 2017, 5998–6008.
55. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.

arXiv 2018, arXiv:1810.04805.
56. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al.

Language Models are Few-Shot Learners. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: New York, NY, USA, 2020; Volume 33, pp. 1877–1901.

57. Swanson, N.R. Money and output viewed through a rolling window. J. Monet. Econ. 1998, 41, 455–474. [CrossRef]
58. Goyal, A.; Welch, I. Predicting the Equity Premium With Dividend Ratios; NBER Working Papers 8788; National Bureau of Economic

Research, Inc.: Cambridge, MA, USA, 2002.
59. Zivot, E.; Wang, J. Modeling Financial Time Series with S-PLUS®; Springer: Berlin/Heidelberg, Germany, 2006.
60. Molodtsova, T.; Papell, D. Taylor Rule Exchange Rate Forecasting during the Financial Crisis. NBER Int. Semin. Macroecon. 2012,

9, 55–97. [CrossRef]
61. Kupiec, P.H. Techniques for Verifying the Accuracy of Risk Measurement Models. J. Deriv. 1995, 3, 73–84. [CrossRef]
62. Christoffersen, P.F.; Bera, A.; Berkowitz, J.; Bollerslev, T.; Diebold, F.; Giorgianni, L.; Hahn, J.; Lopez, J.; Mariano, R. Evaluating

Interval Forecasts. Int. Econ. Rev. 1997, 39, 841–862. [CrossRef]
63. Bauwens, L.; Hafner, C.; Laurent, S. Handbook of Volatility Models and Their Applications; Wiley Handbooks in Financial E; Wiley:

Hoboken, NJ, USA, 2012.
64. Taylor, S.J. Modelling Financial Time Series; Wiley: Hoboken, NJ, USA, 1986.
65. Baillie, R.T.; Bollerslev, T.; Mikkelsen, H.O. Fractionally integrated generalized autoregressive conditional heteroskedasticity.

J. Econom. 1996, 74, 3–30. [CrossRef]
66. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
67. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980.
68. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks

from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
69. Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]

Mathematics 2021, 9, 1794 18 of 18

70. Jeremic, Z.; Terzić, I. Empirical estimation and comparison of Normal and Student T linear VaR on the Belgrade Stock Exchange.
In Proceedings of the Sinteza 2014—Impact of the Internet on Business Activities in Serbia and Worldwide, Belgrade, Serbia,
25–26 April 2014; pp. 298–302. [CrossRef]

71. McNeil, A.J.; Frey, R.; Embrechts, P. Quantitative Risk Management: Concepts, Techniques and Tools; Princeton University Press:
Princeton, NJ, USA, 2015.

8.4 Annex IV. Published Paper. Mack-Net model: Blending
Mack’s model with Recurrent Neural Networks

165

Expert Systems With Applications 201 (2022) 117146

Available online 6 April 2022
0957-4174/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Mack-Net model: Blending Mack’s model with Recurrent Neural Networks
Eduardo Ramos-Pérez a, Pablo J. Alonso-González b,∗, José Javier Núñez-Velázquez b

a Faculty of Economics. Universidad de Alcalá, Plaza de la Victoria 2, 28802 Alcalá de Henares, Spain
b Economics Department. Universidad de Alcalá, Plaza de la Victoria 2, 28802 Alcalá de Henares, Spain

A R T I C L E I N F O

MSC:
62-07
62P05
65C60
90-08

Keywords:
Deep learning
Mack’s model
Recurrent Neural Networks
Reserving risk
Stochastic reserving

A B S T R A C T

In general insurance companies, a correct estimation of liabilities plays a key role due to its impact on
management and investing decisions. Since the Financial Crisis of 2007–2008 and the strengthening of
regulation, the focus is not only on the total reserve but also on its variability, which is an indicator of
the risk assumed by the company. Thus, measures that relate profitability with risk are crucial in order to
understand the financial position of insurance firms. Taking advantage of the increasing computational power,
this paper introduces a stochastic reserving model whose aim is to improve the performance of the traditional
Mack’s reserving model by applying an ensemble of Recurrent Neural Networks. The results demonstrate that
blending traditional reserving models with deep and machine learning techniques leads to a more accurate
assessment of general insurance liabilities.

1. Introduction

As an accurate estimation of future payments and its volatility
allows the management to take correct underwriting and reinsurance
decisions, reserving, understood as the calculation of the amount of
required reserves for insurance policies, plays a fundamental role in
general insurance firms. The interest of investors and regulators in
analysing the volatility of financial institutions has increased signifi-
cantly since the 2007–2008 Financial Crisis. Regulatory requirements
have been enhanced with laws such as Solvency II Directive and
Solvency Swiss Test in order to assess the risk profile of insurance
companies. Since then, investors are not only focused on the profit but
also on the level of risk assumed by the insurance firm to obtain it.
Thus, indicators that relate profitability with risk such as the Return
on Risk Adjusted Capital (Braun, Schmeiser, & Schreiber, 2018) have
increased remarkably their influence on the stock prices of financial
institutions.

Taking into consideration the historical information, the first reserv-
ing methods for estimating the ultimate cost in non-life insurance were
only focused on obtaining the most likely scenario. Therefore, these de-
terministic models were unable to estimate the loss reserve uncertainty.
Chain Ladder is the most widely used methodology within this family
of reserving models. Nevertheless, Bornhuetter and Ferguson (1972)
model tends to perform better when historical information is not stable
enough to apply the Chain Ladder methodology.

∗ Corresponding author.
E-mail addresses: eduardo.ramos@edu.uah.es (E. Ramos-Pérez), pablo.alonsog@uah.es (P.J. Alonso-González), josej.nunez@uah.es (J.J. Núñez-Velázquez).

As stated previously, general insurance firms are not only interested
in the expected ultimate cost but also in its volatility. Consequently, dif-
ferent stochastic methodologies linked to the Chain Ladder procedure
were developed. One of the most popular models for estimating the loss
reserve variability was introduced by Mack (1993). This methodology,
commonly known as Mack’s model in the literature, derives the reserve
variability by focusing on the first two moments. England and Verrall
(2006) developed a bootstrap method that allows the analyst to obtain
a complete reserve distribution by applying the free-distribution model
of Mack.

Another widely used method to calculate reserve variability is the
Overdispersed Poisson (ODP) model, which was developed by Renshaw
and Verrall (1998). This method assumes that incremental payments
follow an ODP distribution, where their variance is proportional to
their mean. In this model, incremental payments must be positive, but
this limitation can be overcome by using the quasi-likelihood approach
developed by McCullagh and Nelder (1989). As in the case of Mack’s
model, a complete reserve distribution can be obtained by applying
the bootstrap procedure suggested by England (2002) and England and
Verrall (1999).

For those cases where data does not follow an ODP distribution,
there are other methods based on Chain Ladder such as the log-normal
model of Kremer (1982), the gamma procedure of Mack (1991) and
the negative binomial methodology developed by Verrall (2000). The
distribution function of some of the former models can be obtained

https://doi.org/10.1016/j.eswa.2022.117146
Received 21 September 2020; Received in revised form 8 January 2022; Accepted 29 March 2022

Expert Systems With Applications 201 (2022) 117146

2

E. Ramos-Pérez et al.

by using Bayesian inference. England and Verrall (2006) introduced
the procedure for implementing a Bayesian ODP, Mack and Negative
Binomial models. The computation of the loss reserve distribution
by means of Bayesian inference was recently expanded by Meyers
(2015), who introduced several Bayesian Markov Chain Monte-Carlo
(MCMC) models for incurred and paid data. These models (Levelled
Chain-Ladder, Correlated Chain-Ladder, Levelled Incremental Trend,
Correlated Incremental Trend and Changing Settlement Rate) have the
aim of improving the performance of the traditional models based on
Chain Ladder. This is achieved by including effects such as recognizing
the correlation between accident years, applying a skewed distribution
to negative incremental payments, introducing a trend over the differ-
ent development years and implementing the possibility of applying
changes in the claim settlement rate.

As incurred and paid data can have different patterns and character-
istics, there is a set of loss reserving models, based on the Chain Ladder
methodology, which were developed in order to take into consideration
both data sources. The most relevant methods within this family are
Munich Chain Ladder (Quarg & Mack, 2004), Double Chain Ladder
(Martínez-Miranda, Nielsen, & Verrall, 2012) and Paid-Incurred Chain
(Posthuma, Cator, Veerkamp, & Van Zwet, 2008). With regard to this
last model, it is worth mentioning that Merz and Wüthrich (2010)
developed a Bayesian implementation of it, while Happ, Merz, and
Wüthrich (2012) and Happ and Wüthrich (2013) introduced methods
strongly related to this approach. Finally, Halliwell (2009) and Venter
(2008) used incurred and paid data to develop regression-based reserv-
ing models, while Antonio and Plat (2014), Martínez-Miranda, Nielsen,
and Verrall (2013) and Pigeon, Antonio, and Denuit (2014) used both
sources of information to estimate the expected ultimate cost.

The increase of the computational power and the success of machine
and deep learning in many fields (Brown et al., 2020; LeCun, Bengio,
& Hinton, 2015; Ramos-Pérez, Alonso-González, & Núñez Velázquez,
2021a; Silver et al., 2016, 2017) have facilitated the formation of a
new family of reserving models based on these techniques. Gabrielli
and Wüthrich (2018) and Wüthrich (2018b) applied Artificial Neural
Networks (ANN) to predict claim reserves, while Baudry and Robert
(2019), Lopez, Milhaud, and Thérond (2019) and Wüthrich (2018a)
used a tree-based algorithm, extremely randomized trees (Geurts, Ernst,
& Wehenkel, 2006) and regression trees respectively for that purpose.
Gabrielli (2019) and Gabrielli, Richman, and Wüthrich (2018) demon-
strated that it is possible to embed traditional Chain Ladder techniques
(ODP model) into a neural network framework. This algorithm was
also used by Kuo (2018) in order to predict the expected future pay-
ments. Ramos-Pérez, Alonso-González, and Núñez Velázquez (2021b)
combined ANNs with Random Forests (Breiman, 2001) and Gradient
Boosting with regression trees (Friedman, 2000) in order to predict
general insurance reserves. In addition to the previous reserving mod-
els, Duma, Twala, Marwala, and Nelwamondo (2011) applied support
vector machines to classify data in homogeneous groups of risks before
the reserve calculation.

The stochastic reserving model presented in this paper (Mack-Net)
combines Recurrent Neural Networks (Rumelhart, Hinton, & Williams,
1986) with Mack’s model in order to produce more accurate reserve
predictions and risk measures. For each individual triangle, an ensem-
ble of Recurrent Neural Networks (RNNs) is fitted in order to forecast
both the future payments and the Mack’s model parameters. In a second
stage, a bootstrap method based on Mack’s model is combined with
the former predictions in order to compute a full reserve distribution.
Consequently, the proposed model has the aim of improving the per-
formance of Mack’s model by applying RNNs, which can learn more
features than the Chain Ladder technique. Mack-Net model differs
from other methods in many ways but the two main differences are
explained. First of all, most of the existing reserving models based
on machine and deep learning does not produce an estimate of the
reserves variability. The few of them that can produce this estimation
need to assume a pre-defined theoretical distribution for the payments

or incurred cost. Nevertheless, the suggested methodology produces a
full reserve distribution without considering any assumption about the
payments or incurred cost distribution. Second, information from the
same portfolios of several entities tend to be used for fitting reserving
models based deep or machine learning techniques. As suggested by
regulations like Solvency II Directive, actuaries must aggregate data
in homogeneous risk groups, leading to a situation where individual
companies do not have available several triangles with similar char-
acteristics to fit the former models. Besides regulatory requirements,
if individual companies split triangles with similar characteristics into
different pieces, the resulting triangles will not be enough robust in
most of the cases. As only one triangle is needed to fit the Mack-
Net model, this problem is not present in the suggested methodology.
The implementation of the MackNet model in R, the database used for
fitting the models and code examples are available in https://github.
com/EduardoRamosP/MackNet

The proposed model has the aim of producing a more appropriate
risk estimation and reserve distribution than other stochastic reserving
approaches. Regulations such as Solvency II, Swiss Solvency Test or
IFRS promote the use of stochastic models. For example, Risk Adjust-
ment of IFRS 17 has to be based on a certain percentile of the reserve
distribution and Reserving Risk of Solvency II Directive can be derived
from an stochastic reserving model. Therefore, the calculation of an
accurate reserve distribution can lead to lower solvency requirements
and less liabilities (Risk Adjustment). It is also worth mentioning that
an accurate estimation of the risk profile can lead to a more efficient
risk strategy, better portfolio management actions and, therefore, an
optimization of the profit-risk indicators. Since the Financial Crisis of
2007–2008, the valuation of financial institutions is not only based
on the future profit but also on its volatility or uncertainty. Nowa-
days, profit-risk indicators are particularly relevant for the valuation
of financial institutions.

The rest of the paper proceeds as follows: Section 2 defines the
validations metrics and models used as benchmark to assess the per-
formance of the suggested method. In Section 3, the theoretical back-
ground and architecture of the Mack-Net model are explained. Em-
pirical results of the benchmark and proposed model are shown in
Section 4. Finally, Section 5 presents the main conclusions drawn from
the results shown in Section 4.

2. Benchmark model and validation metrics

2.1. Benchmark model

This paper presents an extension, based on RNNs, of the traditional
Mack’s model. Thus, this approach (Mack, 1993) and its bootstrap
implementation (England & Verrall, 2006) will be used as benchmark
for validating the proposed model.

The main characteristic of this model compared to others based on
Chain Ladder is the lack of assumptions about the underlying distribu-
tion of the payments. Mack’s model assumes that cumulative payments,
𝐷𝑖𝑗 , or incurred cost have the following variance and expected value:

𝐸[𝐷𝑖𝑗] = 𝑓𝑗𝐷𝑖,𝑗−1 𝑉 𝑎𝑟[𝐷𝑖𝑗] = 𝜎̂2𝑗𝐷𝑖,𝑗−1 (1)

where 𝑖 = (1, 2,… , 𝐼) indicates the accident or underwriting year and
𝑗 = (1, 2,… , 𝐼) the development year. As explained by Mack (1993),
the parameters of the previous expressions are calculated as follows:

𝑓𝑗 =
∑𝐼−𝑗+1

𝑖=1 𝐷𝑖𝑗
∑𝐼−𝑗+1

𝑖=1 𝐷𝑖,𝑗−1

𝜎̂2𝑗 = 1
𝐼 − 𝑗 − 1

𝐼−𝑗+1
∑

𝑖=1
𝐷𝑖,𝑗−1

(𝐷𝑖𝑗

𝐷𝑖,𝑗−1
− 𝑓𝑗

)2
(2)

where {𝑓𝑗 ∶ 𝑗 = (2, 3,… , 𝐼)} and {𝜎̂2𝑗 ∶ 𝑗 = (2, 3,… , 𝐼)}. The
residuals needed for the bootstrap method (England & Verrall, 2006)
are calculated as defined below:

𝑟̂𝑖𝑗 =

√

𝐷𝑖,𝑗−1 ∗
(

𝐷𝑖𝑗
𝐷𝑖,𝑗−1

− 𝑓𝑗

)

𝜎̂𝑗
(3)

Expert Systems With Applications 201 (2022) 117146

3

E. Ramos-Pérez et al.

To obtain the final residuals, the bias adjustment is added accordingly
to the expression suggested by (England & Verrall, 2006):

𝑟̂𝑖𝑗 =
√

𝑁
𝑁 − 𝑝

∗

√

𝐷𝑖,𝑗−1 ∗
(

𝐷𝑖𝑗
𝐷𝑖,𝑗−1

− 𝑓𝑗

)

𝜎̂𝑗
(4)

where 𝑁 is the total number of residuals and 𝑝 the number of pa-
rameters. Hence, the resampled link ratios are obtained as follows:

𝑓𝐵
𝑖𝑗 = 𝑓𝑗 + 𝑟𝐵𝑖𝑗

𝜎̂𝑗
√

𝐷𝑖,𝑗−1
(5)

where 𝐵 refers to the number of upper triangles to be simulated and
𝑟𝐵𝑖𝑗 to the residual resampled in the position (𝑖, 𝑗) of the 𝐵th triangle.
Taking into consideration 𝐷𝑖,𝑗 and the resampled link ratios, a new
set of development factors, 𝑓𝐵

𝑗 , is computed. Typically, a zero mean
adjustment is applied to the residuals in order to ensure that the mean
of the stochastic process is the same as the deterministic Chain Ladder
method, which is fully dependent on 𝑓𝑗 .

The lower triangle (𝐷𝑖,𝑗 where 𝑖+𝑗 > 𝐼+1) is predicted by combining
𝑓𝐵
𝑗 and the upper triangle (𝐷𝑖,𝑗 where 𝑖 + 𝑗 ≤ 𝐼 + 1). Then, the process

variance is incorporated to the lower triangle by adding the following
expression: 𝜎̂𝑗𝑟𝐵𝑖𝑗

√

𝐷𝑖,𝑗−1. In case further details about the bootstrap
method are needed, refer to England and Verrall (2006) and Joseph Lo
(2011).

Although the methodology proposed in this paper merges RNNs
with Mack’s model, other two approaches have been selected as bench-
mark: Stacked-ANN (Ramos-Pérez et al., 2021b) and Changing Set-
tlement Rate. The first model combines ANNs with Random Forests
and Gradient Boosting with regression trees (Friedman, 2000) to pre-
dict general insurance reserves. The stochastic procedure of Stacked-
ANN assumes that payments follow a log-normal distribution. On the
other hand, Changing Settlement Rate (CSR) is a Bayesian Markov
Chain Monte-Carlo model. The prior distributions and the simulation
approach are proposed by Meyers (2015).

2.2. Validation metrics

General insurance companies are asked by insurance regulations
like Solvency II Directive and Solvency Swiss Test to evaluate their
reserve variability. Thus, the accuracy and variability of Mack-Net
model (Section 3) will be validated and compared with the benchmark
model defined in Section 2.1.

To assess the accuracy of the reserve predicted by the models, the
following error measure will be computed for every line of business:

%𝑅𝑀𝑆𝐸(𝑈 𝑡) =

√

√

√

√

√

1
𝐾

𝐾
∑

𝑛=1

(

𝑈̂ 𝑡
𝑛 − 𝑈 𝑡

𝑛
𝑈 𝑡
𝑛

)2

∗ 100 (6)

%𝑀𝐴𝐸(𝑈 𝑡) = 100
𝐾

𝐾
∑

𝑛=1

|

|

|

|

|

𝑈̂ 𝑡
𝑛 − 𝑈 𝑡

𝑛
𝑈 𝑡
𝑛

|

|

|

|

|

(7)

where 𝐾 is the total number of companies analysed, 𝑈̂ 𝑡
𝑛 the ultimate

cost predicted by the reserving model for the 𝑛th company and 𝑈 𝑡
𝑛 the

ultimate cost that was actually observed. The Model Confidence Test
(Hansen, Lunde, & Nason, 2011) will be also applied to produce a more
robust comparison of models accuracy. This procedure consists on a
sequence of tests which permit the identification of the best models at
a certain confidence level.

In addition to the previous error measures, the reserve variability
produced by the different stochastic reserving models will be assessed
by applying the statistical test introduced by Kupiec (1995). The aim
of this test is to validate the Value-at-Risk (VaR) by comparing the
number of VaR breaches with the percentile selected for calculating the
VaR. In this paper, the percentile selected for evaluating the reserve
variability is 𝛼 = 0.995, which is the level set up by Solvency II to
calculate the risk of insurance companies. The empirical results of the
test and %𝑅𝑀𝑆𝐸(𝑅𝑡) are collected in Section 4.2.

3. Data and Mack-Net architecture

The aim of this section is to explain the architecture of the Mack-
Net model. To do so, this section has been divided into three different
subsections. The inputs of the model are described in the first one,
the ensemble of RNNs is explained in the second subsection and, in
the last one, the bootstrap method to obtain a reserve distribution is
presented. To support the explanation, Fig. 1 shows the architecture of
the proposed stochastic reserving model.

3.1. Data source and model inputs

The starting point of the Mack-Net model is the definition of inputs
used within the ensemble of RNNs. Hence, the goal of this subsection
is to define the database used, as well as the response and explicative
variables for fitting the RNNs ensemble.

The database of Schedule P of the NAIC Annual Statement (available
on CAS website) is selected for fitting and validating the Mack-Net
model. The paid data, incurred cost and premiums available in the
previous database were collected from general insurance companies
from the US. The range of accident years contained in the Schedule P
database is 1988–1997. As the upper and lower triangles are included,
ten development years are available for each accident year.

The benchmark and the proposed model will be fitted to the 200
loss triangles selected by Meyers (2015) from the Schedule P database.
This author pointed out that one of the main mistakes that could be
made with NAIC Schedule P data is selecting triangles from insurance
companies that have experienced significant changes in business oper-
ations. Therefore, the net-on-gross premiums ratio and the coefficient
of variation of the net premiums were used by Meyers to identify
those companies that made changes in their business operations or rein-
surance structure. Taking into consideration these indicators, Meyers
selected 50 loss triangles from each of the following lines of businesses:
Commercial Auto (CA), Private Passenger Auto Liability (PA), Work-
ers’ Compensation (WC) and Other Liability (OL). The codes of the
companies selected can be found in Meyers (2015).

It is worth mentioning that loss triangles are considered the primary
method to organize the observed incurred cost or payments for general
insurance reserving purposes. Loss triangles show the total losses of
different underwriting or accident years at various valuation dates.
This data shows the claim settlement speed, ultimate cost and policy-
holders’ behaviour. Thus, this data is normally not available because
insurance entities do not make public this information. Schedule P
database is used in the academic field by several authors (such as Kuo,
2018; Leong, Wang, & Chen, 2014; Meyers, 2015, or Ramos-Pérez
et al., 2021b) because it offers the possibility of testing triangles from
numerous companies and different lines of business.

Before starting with the definition of the explanatory and response
variables, it is worth mentioning that the last diagonal of the triangle is
selected as a test set for fitting the ensemble of RNNs. Thus, the remain-
ing triangle (9 development years) is used to train the algorithms. The
sequences used as explanatory variables, 𝑋𝑖, and the response variable,
𝑌 , are the following:

𝑌 = 𝐶∗
𝑖𝑗 =

𝐶𝑖𝑗

𝑃𝑖
(8)

𝑋1 =
(

𝐶∗
𝑖𝑗−1, 𝐶

∗
𝑖𝑗−2,… , 𝐶∗

𝑖𝑗−8

)

=
(𝐶𝑖𝑗−1

𝑃𝑖
,
𝐶𝑖𝑗−2

𝑃𝑖
,… ,

𝐶𝑖𝑗−8

𝑃𝑖

)

(9)

𝑋2 =
(

𝐷𝑌 ∗
𝑗−1, 𝐷𝑌 ∗

𝑗−2,… , 𝐷𝑌 ∗
𝑗−8

)

=
(𝐷𝑌𝑗−1

𝐼
,
𝐷𝑌𝑗−2

𝐼
,… ,

𝐷𝑌𝑗−8
𝐼

)

(10)

𝑋3 =
(

𝑅∗
𝑗−1,… , 𝑅∗

𝑗−8

)

=
⎛

⎜

⎜

⎝

∑𝐼−𝑗+2
𝑖=1 𝐷∗

𝑖𝑗−1
∑𝐼−𝑗+2

𝑖=1
𝐼𝐶𝑖𝑗−1

𝑃𝑖

,… ,

∑𝐼−𝑗+9
𝑖=1 𝐷∗

𝑖𝑗−8
∑𝐼−𝑗+9

𝑖=1
𝐼𝐶𝑖𝑗−8

𝑃𝑖

⎞

⎟

⎟

⎠

(11)

where 𝑃𝑖 is the premium, 𝐶𝑖𝑗 is the incremental payment, 𝐷∗
𝑖𝑗 is equal

to 𝐷𝑖𝑗∕𝑃𝑖, 𝐼 the total number of accident years and 𝐼𝐶𝑖𝑗 represents the

Expert Systems With Applications 201 (2022) 117146

4

E. Ramos-Pérez et al.

Fig. 1. Mack-Net model architecture.

incurred cost of the accident year 𝑖 and development 𝑗. 𝑅∗
𝑗 is the scaled

cumulative payments between the scaled incurred cost. Thus, 𝑋1, 𝑋2
and 𝑋3 are the time series used as input in the RNNs to predict the
next year payment. Two remarks about the variables need to be made:

1. Payments and development years were scaled. 𝐷𝑌𝑗 were initial-
ized as one and then scaled to the range [0, 1]. To do so, 𝐷𝑌𝑗
were divided between the total number of accident years, 𝐼 . In
the case of payments, premiums (𝑃𝑖) play the role of exposure
measure. The use of exposure measures is widely used in reserv-
ing models, otherwise the changes in the claims settlement speed
will be mixed with variations in the business volume.

2. As it can be observed in the formal definition of the explanatory
variables, the last 8 observations of each variable are selected.
This number was chosen due to the size of the triangles. Ten
development years are available but only 9 of them are used
during the training of the RNNs. The other development year is
used as a test set. Thus, as the aim of the RNNs is to predict the
value in 𝑡, the maximum lag available for training the algorithms
is 𝑡 − 8. Each RNN forecasts the next payment by taking into
consideration the information available in the last 8 periods.

Before concluding this subsection it is worth mentioning that the
model can be applied to predict the incurred cost. To do so, 𝑋1 and 𝑌
should be substituted by the following expressions:

𝑌 ′ = 𝑖∗𝑖𝑗 =
𝑖𝑖𝑗
𝑃𝑖

(12)

𝑋′
1 =

(

𝐼𝐶∗
𝑖𝑗−1, 𝐼𝐶

∗
𝑖𝑗−1,… , 𝐼𝐶∗

𝑖𝑗−8

)

=
(𝐼𝐶𝑖𝑗−1

𝑃𝑖
,
𝐼𝐶𝑖𝑗−2

𝑃𝑖
,… ,

𝐼𝐶𝑖𝑗−8

𝑃𝑖

)

(13)

where 𝑖𝑖𝑗 is the incremental incurred cost. The method and calculations
that will be explained in Sections 3.2 and 3.3 are the same regardless
of the variable to be predicted (payments or incurred cost).

3.2. Ensemble of RNNs

As shown in Fig. 1, once the model inputs are prepared, 20 Recur-
rent Neural Networks composed of several Fully Connected (FC) and
Long–Short Term Memory (LSTM) layers (Fig. 2) are fitted. The number
of Recurrent Neural Networks fitted is high enough to obtain the
average model prediction regardless their initial weights. This strategy
was also applied by Kuo (2018).

It has to be pointed out that a skip connection between ‘FC Layer 1’
and ‘FC Layer 5’ has been included. This type of connection, introduced

Fig. 2. Recurrent neural network architecture.

by He, Zhang, Ren, and Sun (2016) in the field of image recognition
with Convolutional Neural Networks, gives the possibility to skip the
training of a part of the Neural Network architecture. During the
learning process, the RNN will decide by itself if ‘FC Layer 3’ and/or
‘FC Layer 4’ send information to ‘FC Layer 5’. Apart from giving to the
network the possibility to simplify the structure by skipping layers, this
kind of connection helps to avoid the problem of vanishing gradients
by using the activation of a previous layer until the skipped one learns
its weights.

To take temporal dependencies into consideration, the first layer of
every RNN is a LSTM cell. This structure was introduced by Hochreiter
and Schmidhuber (1997) for managing time series. Fig. 3 and the
following expressions define the LSTM architecture:

𝑓𝑡 = 𝜎
(

𝑊𝑓 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓
)

(14)

𝑖𝑡 = 𝜎
(

𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖
)

(15)

𝐶̃𝑡 = tanh
(

𝑊𝑐 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐
)

(16)

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + 𝑖𝑡𝐶̃𝑡 (17)

𝑜𝑡 = 𝜎
(

𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜
)

(18)

ℎ𝑡 = 𝑜𝑡 tanh(𝐶𝑡) (19)

Expert Systems With Applications 201 (2022) 117146

5

E. Ramos-Pérez et al.

Fig. 3. LSTM structure.

where 𝑊𝑓 , 𝑊𝑖, 𝑊𝑐 , 𝑊𝑜, 𝑏𝑓 , 𝑏𝑖, 𝑏𝑐 and 𝑏𝑜 represent the weights and bias
of the RNNs and 𝜎(𝑥) the logistic sigmoid function.

The main characteristics of the RNNs are defined below:

• The algorithm used to optimize the weights is Adaptative Moment
Estimation (ADAM), which was developed by Kingma and Ba
(2014). Considering current and previous gradients, this proce-
dure allows to implement a progressive adaptation of the initial
learning rate. These authors suggested the following default val-
ues for the ADAM parameters: 𝛽1 = 0.9 and 𝛽2 = 0.999. In this
paper, the initial learning rate is set to 𝛿 = 0.01 and the default
ADAM parameters are used during the training process.

• The batch size is equal to the number of observations of the
training set

• The backward pass calculations are done taking the mean squared
error as loss function.

• Each individual algorithm within the ensemble is randomly ini-
tialized. Glorot initializer (Glorot & Bengio, 2010) is used for
the LSTM weights responsible of transforming linearly the inputs,
while the LSTM weights for the linear transformations within
the recurrent states are initialized with the orthogonal approach
suggested by Saxe, McClelland, and Ganguli (2013).

• In order to avoid overfitting, the level of dropout regularization
𝜃 (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov,
2014) is set to 5%.

The training of the RNNs has been implemented using the Keras (Chol-
let et al., 2015) and Tensorflow (Abadi et al., 2015). As previously
stated, the initial weights of the RNNs are randomly initialized. Thus,
the lower triangle predicted by every single algorithm is going to
be different. Once the lower triangles are predicted with each RNN,
the Mack-Net parameters are computed with the predicted cumulative
payments or incurred cost as follows:

𝑓 𝑝
𝑗 =

∑𝐼
𝑖=𝐼−𝑗+2 𝐷̄𝑖𝑗

∑𝐼
𝑖=𝐼−𝑗+2 𝐷̄𝑖,𝑗−1

(20)

𝜎̂2,𝑝𝑗 = 1
𝐼 − 𝑗 − 1

𝐼
∑

𝑖=1
𝐷̄𝑖,𝑗−1

(

𝐷̄𝑖𝑗

𝐷̄𝑖,𝑗−1
− 𝑓𝑗

)2

(21)

where 𝑓𝑗 is equal to ∑𝐼
𝑖=1 𝐷̄𝑖𝑗∕

∑𝐼
𝑖=1 𝐷̄𝑖,𝑗−1 and 𝐷̄𝑖𝑗 =

∑𝐾
𝑘=1 𝐷̄

𝑘
𝑖𝑗∕𝐾. In

addition, 𝐷̄𝑘
𝑖𝑗 represents the cumulative payments of the lower triangle

(𝑖 + 𝑗 > 𝐼 + 1) predicted by 𝑘th RNN and the observed values of the
upper triangle (𝑖 + 𝑗 ≤ 𝐼 + 1). 𝐾 is the number of RNNs included in
the ensemble. Similar to the notation used in Section 2.1, {𝑓 𝑝

𝑗 ∶ 𝑗 =
(2, 3,… , 𝐼)} and {𝜎̂2,𝑝𝑗 ∶ 𝑗 = (2, 3,… , 𝐼)}.

As it can be derived from the model definition, rather than using the
traditional Mack parameters described in Section 2.1, Mack-Net model
parameters are estimated by taking into consideration the predictions
made by the ensemble of RNNs. Therefore, the central scenario of the
stochastic Mack-Net model is equal to the reserve predicted by the
ensemble of RNNs, while the mean of the traditional Mack’s model
converge to the reserve estimated with the deterministic Chain Ladder
method. As any other general insurance reserving methodology such
as Mack’s model, CSR or Stacked-ANN, the approach suggested by this
paper is valid until a new diagonal of the loss triangle is available.

3.3. Stochastic procedure

As previously stated, the bootstrap method of Mack-Net is based on
the traditional Mack’s model. This last methodology has been selected
as reference for producing the full reserve distribution due to the
two following reasons. First, Mack’s model derives the distribution by
focusing on the two first moments. In contrast to most of the stochastic
reserving models, this approach does not make any assumption about
the theoretical distribution followed by incurred cost or cumulative
payments. Changes in policyholders’ behaviour, reinsurance structures,
regulation and number of policy holders can modify significantly the
payments or incurred cost collected by loss triangles. Therefore, a free-
distribution model is especially appropriate for insurance companies
and regulators because the previous portfolio changes happen quite of-
ten in the sector. Second, Mack’s model is already applied by insurance
companies to comply with regulations such as Solvency II Directive,
Swiss Solvency Test or IFRS. Thus, the bootstrap method of Mack-Net is
familiar and aligned with the procedures already used by the insurance
market.

As no assumption about the underlying distribution of cumulative
payments or incurred cost is taken, the expected value and variance of
Mack-Net model is defined as follows:

𝐸[𝐷𝑖𝑗] = 𝑓 𝑝
𝑗 𝐷̄𝑖,𝑗−1 𝑉 𝑎𝑟[𝐷𝑖𝑗] = 𝜎̂2,𝑝𝑗 𝐷̄𝑖,𝑗−1 (22)

The Mack-Net model uses the predictions made by the ensemble of
RNNs to determine the mean and variance of the reserve distribution.
By doing so, the forecasting power of deep and machine learning
techniques are taken into consideration. The calculation of residuals
needed for the bootstrap method is based on the expression provided
by England and Verrall (2006) for Mack’s model:

𝑟̂𝑝𝑖𝑗 =

√

𝐷̄𝑖,𝑗−1 ∗
(

𝐷̄𝑖𝑗
𝐷̄𝑖,𝑗−1

− 𝑓𝑗

)

𝜎̂𝑝𝑗
(23)

where {𝑟̂𝑝𝑖𝑗 ∶ 𝑗 = (2,… , 𝐼); 𝑖 = (1,… , 𝐼)}. As in Mack’s model, Mack-
Net model is bias adjusted in accordance with the procedure suggested
by (England & Verrall, 2006):

𝑟̂𝑝𝑖𝑗 =
√

𝑁
𝑁 − 𝑝

√

𝐷̄𝑖,𝑗−1 ∗
(

𝐷̄𝑖𝑗
𝐷̄𝑖,𝑗−1

− 𝑓𝑗

)

𝜎̂𝑝𝑗
(24)

As with Mack’s model, 𝑝 is equal to the number of development factors.
Once the set of residuals has been calculated, the resampled upper
triangles of link ratios are calculated as follows:

𝑓𝐵,𝑝
𝑖𝑗 = 𝑓 𝑝

𝑗 + 𝑟𝐵,𝑝𝑖𝑗

𝜎̂𝑝𝑗
√

𝐷̄𝑖,𝑗−1

(25)

where 𝐵 refers to the number of upper triangles to be simulated
and 𝑟𝐵,𝑝𝑖𝑗 to the residual resampled in the position (𝑖, 𝑗) of the 𝑏th
triangle. Similar to the Mack’s model presented in Section 2.1, a zero
mean adjustment should be applied to the residuals in order to avoid

Expert Systems With Applications 201 (2022) 117146

6

E. Ramos-Pérez et al.

Table 1
Average 𝑓 𝑝

𝑗 and 𝑓𝑗 by line of business (Paid data).
Source: Own elaboration.

Dev year CA PA WC OL

Mack Mack Mack Mack Mack Mack Mack Mack
Net Net Net Net

1 1.90 1.88 1.77 1.75 2.21 2.59 3.12 3.10
2 1.35 1.35 1.22 1.22 1.29 1.38 1.72 1.67
3 1.16 1.15 1.10 1.10 1.13 1.15 1.34 1.30
4 1.08 1.06 1.06 1.05 1.07 1.08 1.18 1.16
5 1.04 1.03 1.03 1.02 1.04 1.04 1.11 1.07
6 1.02 1.01 1.01 1.01 1.02 1.02 1.04 1.03
7 1.00 1.01 1.01 1.00 1.02 1.02 1.02 1.01
8 1.01 1.00 1.00 1.00 1.01 1.01 1.02 1.01
9 1.00 1.00 1.00 1.00 1.01 1.01 1.01 1.00

deviations between the simulated and theoretical mean. The resampled
development factors (𝑓𝐵,𝑝

𝑗) are

𝑓𝐵,𝑝
𝑗 =

∑𝐼−𝑗+1
𝑖=1 𝐷̄𝑖,𝑗−1𝑓

𝐵,𝑝
𝑖𝑗

∑𝐼−𝑗+1
𝑖=1 𝐷̄𝑖,𝑗−1

(26)

It is worth mentioning that the previous calculation is carried out with
the upper triangle (𝑖 + 𝑗 ≤ 𝐼 + 1). Then, 𝐷̄𝑖,𝑗−1 can be substituted by
𝐷𝑖,𝑗−1. The resampled development factors, 𝑓𝐵,𝑝

𝑗 , are used to calculate
the lower triangle (𝑖 + 𝑗 > 𝐼 + 1) by applying the Chain Ladder
methodology:

𝐷̂𝑖𝑗 = 𝐷̄𝑖,𝑗−1𝑓
𝐵,𝑝
𝑗 (27)

Then, as well as in the case of Mack’s model, the process variance is
included in the Mack-Net model in order to take into consideration the
randomness in future outcomes:

𝐷̂𝑖𝑗 = 𝐷̂𝑖𝑗 + 𝜎̂𝑝𝑗 𝑟
𝐵,𝑝
𝑖𝑗

√

𝐷̄𝑖,𝑗−1 (28)

Notice that, as the procedure is applied recursively, 𝐷̄𝑖,𝑗−1 is used in the
previous equation only when the simulation refers to year after the last
diagonal observed. In the rest of the cases, the recurrence is applied
and, thus, 𝐷̄𝑖,𝑗−1 substituted by 𝐷̂𝑖𝑗−1. As explained in Section 2.1 for
Mack’s model, this procedure (England & Verrall, 2006) allows the
recognition of the process variance, which is the variability in the
forecasts of future payments.

4. Model fitting and results

In this section, Mack-Net parameters by line of business and the
comparison between the performance of the benchmark and the Mack-
Net model are presented.

4.1. Fitting of Mack-Net model

This subsection presents Mack-Net parameters by line of business.
As stated before, the model has been fitted individually to each of the
200 triangles selected by Meyers (2015) from the Schedule P of the
NAIC Annual Statement. For further details about the database refer
to Section 3.1.

As explained in Section 3.2, once the ensemble of RNNs has been
fitted, the Mack-Net architecture proceeds with the calculation of 𝑓 𝑝

𝑗
and 𝜎̂2,𝑝𝑗 . Similar to 𝑓𝑗 and 𝜎̂2𝑗 in Mack’s model, Mack-Net parameters
define the variance and expected value of the cumulative payments
or incurred cost. Thus, Tables 1–4 present a comparison between the
average Mack and Mack-Net parameters by line of business.

The averages of the development factors of the payment models
(Table 1) present non-significant differences in most of the cases. The
only remarkable differences are the second development factor of OL,
and the first and second parameters of WC. Mack-Net development

Table 2
Average 𝑓 𝑝

𝑗 and 𝑓𝑗 by line of business (Incurred data).
Source: Own elaboration.

Dev year CA PA WC OL

Mack Mack Mack Mack Mack Mack Mack Mack
Net Net Net Net

1 1.27 1.33 1.14 1.15 1.31 1.40 1.45 1.56
2 1.09 1.09 1.03 1.03 1.07 1.09 1.21 1.20
3 1.03 1.03 1.01 1.01 1.02 1.03 1.07 1.07
4 1.01 1.01 1.00 1.00 1.01 1.01 1.03 1.03
5 1.00 1.01 1.00 1.00 1.00 1.01 1.04 1.01
6 0.99 1.01 1.00 1.00 1.00 1.01 1.01 1.02
7 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.01
8 1.00 1.01 1.00 1.00 1.00 1.01 1.01 1.01
9 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.01

Table 3
Average 𝜎̂2,𝑝

𝑗 and 𝜎̂2
𝑗 by line of business (Paid data).

Source: Own elaboration.
Dev year CA PA WC OL

Mack Mack Mack Mack Mack Mack Mack Mack
Net Net Net Net

1 13.25 12.43 12.96 11.96 14.98 13.94 26.94 25.47
2 6.82 5.96 5.73 5.09 6.06 5.43 10.35 10.21
3 4.43 3.76 3.61 3.29 4.07 3.70 6.67 5.58
4 2.97 2.31 2.59 2.55 3.07 2.78 4.96 4.29
5 1.76 1.39 1.40 1.47 1.55 1.76 3.21 2.30
6 0.98 0.74 0.87 0.79 1.46 1.19 1.95 1.23
7 0.65 0.44 0.68 0.50 1.10 0.86 0.97 0.54
8 0.42 0.26 0.19 0.24 0.71 0.55 0.78 0.42
9 0.32 0.17 0.15 0.15 0.53 0.36 0.44 0.18

Table 4
Average 𝜎̂2,𝑝

𝑗 and 𝜎̂2
𝑗 by line of business (Incurred data).

Source: Own elaboration.
Dev year CA PA WC OL

Mack Mack Mack Mack Mack Mack Mack Mack
Net Net Net Net

1 7.95 7.29 10.11 9.23 15.13 13.85 13.69 12.67
2 4.67 4.11 4.79 4.35 9.48 8.23 9.00 8.56
3 3.19 2.71 3.06 3.04 4.09 3.50 5.24 4.40
4 2.29 1.96 1.62 1.57 2.69 2.19 4.01 3.58
5 1.54 1.27 1.18 1.10 2.12 1.64 3.66 2.53
6 1.13 0.97 0.78 0.71 1.79 1.34 1.50 1.18
7 0.77 0.68 0.31 0.38 1.30 0.94 1.15 0.78
8 0.41 0.46 0.18 0.26 0.80 0.64 0.52 0.48
9 0.33 0.38 0.15 0.18 0.49 0.41 0.43 0.34

factors are lower than Mack’s parameters in all the lines of busi-
ness with the only exception of Workers’ Compensation. This can be
proved by computing the multiplicative development factors (product
of development factors by line of business and model).

With regard to the incurred cost development factors (Table 2),
the differences between both models are minor in the case of CA and
PA. However, they become more relevant in the case of WC and OL,
especially in the case of the first development year. It is also worth
mentioning that Mack-Net development factors are higher than Mack
parameters regardless of the line of business.

Before analysing the differences between 𝜎̂2,𝑝𝑗 and 𝜎̂2𝑗 , it is worth
mentioning that previous cumulative payments or incurred cost play
a key role in the model variance, defined in equations 2 and 20 for
Mack and Mack-Net model respectively. Thus, 𝜎̂2,𝑝𝑗 and 𝜎̂2𝑗 have to be
analysed by taking into consideration the analysis of the development
factors explained in the previous paragraphs.

With regard to the models for paid loss data, 𝜎̂2,𝑝𝑗 and 𝜎̂2𝑗 show non-
material differences. Nevertheless, it has to be pointed out that Mack
parameters are higher than those of Mack-Net in every line of business.
As the paid development factors of the Mack model are also higher, the
pattern shown in Table 3 reveals that Mack model generates a higher
volatility than the proposed methodology.

Expert Systems With Applications 201 (2022) 117146

7

E. Ramos-Pérez et al.

Table 5
%𝑅𝑀𝑆𝐸(𝑈 𝑡) by model and line of business.
Source: Own elaboration.

Line of business Mack Mack-Net Mack Mack-Net CSR Stacked
paid paid incurred incurred ANN

CA 7.98% 6.80% 8.18% 8.03% 9.29% 8.92%
PA 6.06% 5.01% 2.62% 4.26% 5.46% 7.78%
WC 7.86% 6.77% 8.15% 6.99% 13.29% 7.36%
OL 20.20% 17.31% 17.38% 13.48% 27.78% 19.80%

Table 6
%𝑀𝐴𝐸(𝑈 𝑡) by model and line of business.
Source: Own elaboration.

Line of Mack Mack-Net Mack Mack-Net CSR Stacked
business paid paid incurred incurred ANN

CA 5.96% 4.78% 5.46% 5.40% 6.35% 6.86%
PA 3.81% 3.44% 1.90% 2.86% 3.68% 3.76%
WC 5.32% 4.60% 5.27% 4.51% 6.01% 4.65%
OL 13.41% 12.16% 11.34% 9.88% 18.29% 13.47%

Table 4 shows that Mack’s parameters are higher than those of
the Mack-Net model fitted with incurred cost data. In contrast to the
models for paid loss data, this effect is partially offset by the Mack-Net
development factors that, as shown in Table 2, are higher than those
of the Mack’s model.

As incurred cost includes the payments and the reserve set up by
claim adjusters, this variable should be closer to the ultimate claim cost
than the payments. Thus, development factors and reserve volatility
should be lower in the case of the models fitted with incurred cost data.
The comparison of the average parameters of the models for incurred
(Tables 2 and 4) and paid loss data (Tables 1 and 3) reveals that this
trend is followed by both models.

4.2. Comparison against benchmark models

This subsection compares the performance of the Mack-Net model
with the original methodology proposed by Mack. The variability and
accuracy will be compared with the metrics and tests shown in Sec-
tion 2.2.

As previously explained, the aim of the Mack-Net model is to
improve the accuracy of the traditional Mack’s methodology by using
machine and deep learning algorithms and techniques such as RNNs.
Tables 5 and 6 show the empirical results of the metrics selected for
comparing the models accuracy.

With regard to the models for paid loss data, Mack-Net methodology
improves the accuracy of the Mack’s model in every line of business.
%𝑅𝑀𝑆𝐸(𝑈 𝑡) decreases by 14% in WC and OL, 15% in CA, and 17%
in the case of PA. Similar improvements are also observed in terms of
%𝑀𝐴𝐸(𝑈 𝑡).

The comparison of the %𝑅𝑀𝑆𝐸(𝑈 𝑡) and %𝑀𝐴𝐸(𝑈 𝑡) obtained from
the models for incurred loss data shows that Mack-Net model out-
performs the Mack’s procedure in all the lines of business with the
only exception of PA. It is worth mentioning that the accuracy of
the Mack-Net model is especially higher in OL, which is the line of
business with the longer duration of liabilities. Thus, an appropriate
estimation of reserves is particularly relevant in this case. Empirical
results demonstrate that Mack-Net model also outperforms general
insurance reserving approaches based on Markov Chain Monte-Carlo
or machine learning such as CSR or Stacked-ANN.

Tables 7 and 8 show the ranking proposed by Model Confidence Set
(MCS) considering %𝑅𝑀𝑆𝐸(𝑈 𝑡) and %𝑀𝐴𝐸(𝑈 𝑡) as loss functions. This
approach confirms the outcomes presented in the previous paragraphs.
In fact, Mack-Net Incurred and Paid are ranked as the best and second
best model respectively when all the lines of business are considered
together (row ‘Total’).

Table 7
Ranking of models according to MSC (%𝑅𝑀𝑆𝐸(𝑈 𝑡) and 𝛼 = 0.05).
Source: Own elaboration.

Line of business Mack Mack-Net Mack Mack-Net CSR Stacked
paid paid incurred incurred ANN

CA 2nd 1st 4th 3rd 5th 6th
PA 6th 3rd 1st 2nd 4th 5th
WC 6th 1st 5th 2nd 4th 3rd
OL 5th 2nd 3rd 1st 6th 4th
Total 5th 2nd 3rd 1st 6th 4th

Table 8
Ranking of models according to MSC (%𝑀𝐴𝐸(𝑈 𝑡) and 𝛼 = 0.05).
Source: Own elaboration.

Line of Mack Mack-Net Mack Mack-Net CSR Stacked
business paid paid incurred incurred ANN

CA 5th 1st 3rd 2nd 4th 6th
PA 6th 3rd 1st 2nd 5th 4th
WC 6th 3rd 5th 1st 4th 2nd
OL 5th 3rd 2rd 1st 6th 4th
Total 5th 2nd 3rd 1st 6th 4th

Table 9
Kupiec test (p-values) by model and line of business.
Source: Own elaboration.

Line of Mack Mack-Net Mack Mack-Net
business paid paid incurred incurred

CA ≥ 0.05 ≥ 0.05 < 0.05 ≥ 0.05
PA ≥ 0.05 ≥ 0.05 ≥ 0.05 ≥ 0.05
WC < 0.05 < 0.05 < 0.05 ≥ 0.05
OL ≥ 0.05 ≥ 0.05 < 0.05 ≥ 0.05

With regard to the validation of the reserves variability, Kupiec
test (Kupiec, 1995) is applied to assess the appropriateness of the
reserve distribution generated by the stochastic process. Table 9 collects
the p-values of the Kupiec test assuming a VaR percentile of 𝛼 = 0.995,
which is the value for evaluating the risk profile of insurance companies
under Solvency II Directive.

Companies included in each line of business have different volumes.
This fact was taken into consideration within the Kupiec test by giving
different weights to each company. The higher the standard deviation
generated by the company, the higher the weight given to compute the
Kupiec test. Table 9 collects the p-values by model and line of business.

According to the results of the models for paid loss data, Mack and
Mack-Net methodologies are unable to produce an appropriate Value at
Risk (VaR) for Workers Compensation. In the rest of lines of business,
the excesses of the VaR estimated by both models are aligned with the
confidence level selected (𝛼 = 0.995). It is worth mentioning that, as
discussed in Section 4.1, Mack-Net parameters reveal a lower level of
variance than those of the Mack’s model. Thus, the higher accuracy
of the Mack-Net model for paid loss data (Table 5) allows to generate
appropriate risk measures with a lower level of variability.

In the case of the models for incurred cost, Mack-Net model passes
the test in all the lines of business, while Mack’s model fails the test in
three out of four lines of business. As it will be presented in Table 10,
the coefficients of variation generated by the Mack-Net model are lower
than those of the traditional Mack’s methodology. Nevertheless, Mack-
Net model passes the test because the accuracy of the mean of the
stochastic process is higher (Table 5).

Mack’s model fails the test in most of the lines of business due to two
reasons. First, the lower level of accuracy leads to higher differences
between the actual reserve and the distribution function generated by
the model. Second, the model is unable to generate a higher variance
in order to offset the lack of accuracy. To illustrate this, Fig. 4 shows
one company of the OL segment where Mack’s model produces an
inappropriate VaR. The observed ultimate is represented by a black
dashed line.

Expert Systems With Applications 201 (2022) 117146

8

E. Ramos-Pérez et al.

Fig. 4. Company code 620. Other liability.

Table 10
% of companies where Mack-Net 𝐶𝑉 (𝑈 𝑡) < Mack 𝐶𝑉 (𝑈 𝑡).
Source: Own elaboration.

Line of business Paid loss data Incurred loss data
business

CA 56% 72%
PA 46% 66%
WC 56% 54%
OL 58% 68%

Table 11
Mack-Net: Training time and error versus input size.
Source: Own elaboration.

5 Years 6 Years 7 Years 8 Years 9 Years 10 Years

Time index 100.00 102.14 105.48 113.86 126.00 140.55
Error index 100.00 70.73 50.05 33.73 19.02 7.08

With the goal of comparing the volatility generated by the different
stochastic reserving models, Table 10 collects the % of companies where
the coefficient of variation, 𝐶𝑉 (𝑈 𝑡), of Mack-Net is lower than in the
case of Mack’s model:

The results shown in Tables 9 and 10 demonstrate that Mack-Net
model does not need to produce higher coefficients of variation in
order to generate more appropriate risk measures than Mack’s model.
Thus, the proposed methodology produces more efficient risk measures
thanks to its predictive power.

Finally, on the trade-off between time and accuracy, Table 11
presents how training time and error change when the input size
increases. The database used for fitting the algorithms (Schedule P of
the NAIC Annual Statement) contains a maximum range of 10 years
per each general insurance company. This analysis sets 5 years of data
as the initial scenario and, then, the input size is increased until the
maximum available data is reached. The results show that the error
decreases in a higher extent than training time in relative terms. This is
true even when the number of years is close the to maximum (10 years).
It is worth noticing that benchmark models accuracy will also decrease
if the input size is reduced. Therefore, Table 11 shows the trade-off
between time and accuracy of Mack-Net model in a standalone basis.

5. Conclusions

The Mack-Net model introduced in this paper has the aim of blend-
ing the traditional Mack’s reserving model with deep and machine
learning techniques. To do so, an ensemble of RNNs is fitted to the loss
triangle. Then, the predictions of this ensemble are used for calculating
Mack’s model parameters. In this paper, the predictive power and
reserve variability of the proposed architecture and the traditional

Mack’s methodology are compared. Models were fitted to 200 incurred
cost and paid loss triangles from NAIC Schedule P database (available
on CAS website) in order to generate a robust comparison.

Three main conclusions are drawn from the results presented in
Section 4. First, the comparison of the accuracy reveals that adding
deep learning techniques to Mack’s model improves the predictive
power. With regard to the models fitted with paid data, this paper
demonstrates that Mack-Net model outperforms Mack’s model in every
line of business. In the case of the models for incurred cost, Mack-Net is
also more accurate than Mack’s model in all the lines of business with
the only exception of Personal Auto (PA). The accuracy of reserving
models is particularly relevant for long-tail lines of business such
as Other Liability (OL). In the case of this last portfolio, Mack-Net
methodology reduces the RMSE by 14% and 22% when using paid
and incurred cost data respectively. Empirical results demonstrate that
Mack-Net model also outperforms other reserving approaches based
on Markov Chain Monte-Carlo or machine learning such as Changing
Settlement Rate or Stacked-ANN respectively.

Second, Kupiec test demonstrated that Mack-Net model generates
more appropriate risk measures (Value at Risk) than the traditional
Mack’s methodology. With regard to the paid data, both models fail
the test for Workers Compensation (WC). However, in the case of the
incurred data, Mack-Net model passes the test in every line of business,
while Mack’s model fails the test in three out of four lines. Thus,
Mack-Net model is not only more accurate but also generates a more
appropriate Value at Risk (VaR). The confidence level selected for the
VaR is 𝛼 = 0.995, which is the level required by Solvency II to evaluate
the reserving risk in insurance companies.

Third, the blending of traditional approaches with deep learning
techniques generates more efficient models for evaluating the reserv-
ing risk, which is the potential cost of deviations from the expected
reserve. In other risks such as changes in equity price, the mean of
the distribution does not play a relevant role (the mean of the returns
are almost always close to zero). As the expected reserve cannot be
easily predicted, this is not the case for reserving risk, where the
appropriateness of the risk measures strongly depends on both the
mean and the variance of the reserving model.

Due to the reasons explained in the previous paragraph, Mack-Net
model is able to generate more appropriate risk measures with a lower
variance. Thus, empirical results suggest that the proposed method is
more efficient (in terms of risk assessment) than Mack’s model because
it generates a more reliable VaR with a lower variability.

Taking into consideration the previous conclusions, the blending
of deep learning techniques with reserving models can be extended
to improve the accuracy and risk measures derived from the use of
other bootstrapping and Bayesian approaches. In the specific case of the
Bayesian reserving models, deep learning algorithms could be applied
in order to estimate the parameters of the distributions.

Expert Systems With Applications 201 (2022) 117146

9

E. Ramos-Pérez et al.

CRediT authorship contribution statement

Eduardo Ramos-Pérez: Conceptualization, Methodology, Formal
Analysis, Writing – original draft, Writing – review & editing. Pablo
J. Alonso-González: Methodology, Validation, Investigation, Writing
– original draft, Supervision, Project administration, Writing – review
& editing. José Javier Núñez-Velázquez: Methodology, Validation,
Investigation, Writing – original draft, Writing – review & editing,
Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

The APC has been funded by Universidad de Alcalá.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,
Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Zheng, X. (2015).
TensorFlow: Large-scale machine learning on heterogeneous systems. Retrieved
from http://tensorflow.org/ (Software available from tensorflow.org).

Antonio, K., & Plat, R. (2014). Micro-level stochastic loss reserving in general insurance.
Scandinavian Actuarial Journal, 2014, 649–669.

Baudry, M., & Robert, C. (2019). A Machine Learning approach for individual claims
reserving in insurance. Applied Stochastic Models in Business and Industry, 1–29.

Bornhuetter, R. L., & Ferguson, R. E. (1972). The actuary and IBNR. Proceedings of the
Casualty Actuarial Society, 181–195.

Braun, A., Schmeiser, H., & Schreiber, F. (2018). Return on risk-adjusted capital
under solvency II: Implications for the asset management of insurance companies.
The Geneva Papers on Risk and Insurance - Issues and Practice, 43(3), 456–472.
http://dx.doi.org/10.1057/s41288-017-0076-x, Retrieved from https://doi.org/10.
1057/s41288-017-0076-x.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. http://dx.doi.org/
10.1023/A:1010933404324.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C.,
Amodei, D. (2020). Language models are few-shot learners.

Chollet, F. (2015). Keras. GitHub.
Duma, M., Twala, B., Marwala, T., & Nelwamondo, F. (2011). Improving the perfor-

mance of the support vector machine in insurance risk classification: A comparative
study. In Proceedings of the international conference on neural computation theory and
applications (NCTA-2011) (pp. 340–346).

England, P. D. (2002). Addendum to Analytic and bootstrap estimates of prediction
errors in claims reserving. Insurance: Mathematics & Economics, 31.

England, P. D., & Verrall, R. J. (1999). Analytic and bootstrap estimates of prediction
errors in claims reserving. Insurance: Mathematics & Economics, 25(3), 281–293.

England, P. D., & Verrall, R. J. (2006). Predictive distributions of outstanding liabilities
in general insurance. Annals of Actuarial Science, 221–270.

Friedman, J. H. (2000). Greedy function approximation: A gradient boosting machine.
The Annals of Statistics, 29, 1189–1232.

Gabrielli, A. (2019). A neural network boosted double over-dispersed ppoisson claims
reserving model. Astin Bulletin, 1–36. http://dx.doi.org/10.1017/asb.2019.33.

Gabrielli, A., Richman, R., & Wüthrich, M. (2018). Neural network embedding of the
over-dispersed Poisson reserving model. http://dx.doi.org/10.2139/ssrn.3288454,
(Available at SSRN, https://ssrn.com/abstract=3288454).

Gabrielli, A., & Wüthrich, M. (2018). An individual claims history simulation machine.
Risks, 6, 29.

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine
Learning, 63, 3–42.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the international conference on
artificial intelligence and statistics (AISTATS’10). Society for Artificial Intelligence
and Statistics.

Halliwell, L. (2009). Modeling paid and incurred losses together (pp. 1–40). Spring: CAS
E-Forum.

Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set.
Econometrica, 79(2), 453–497.

Happ, S., Merz, M., & Wüthrich, M. (2012). Claims development result in the
paid-incurred chain reserving method. Insurance: Mathematics & Economics, 51,
66–72.

Happ, S., & Wüthrich, M. (2013). Paid-incurred chain reserving method with
dependence modeling. Astin Bulletin, 43, 1–20.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. (pp. 770–778). http://dx.doi.org/10.1109/CVPR.2016.90.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9, 1735–1780. http://dx.doi.org/10.1162/neco.1997.9.8.1735.

Joseph Lo, A. (2011). Extending the mack bootstrap: Hypothesis testing and resempling
techniques. The Actuarial Profession, 29–79.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR.
Kremer, E. (1982). IBNR claims and the two-way model of ANOVA. Scandinavian

Actuarial Journal, 1982.
Kuo, K. (2018). DeepTriangle: A deep learning approach to loss reserving. CoRR, abs/

1804.09253.
Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models.

The Journal of Derivatives, 3(2), 73–84. http://dx.doi.org/10.3905/jod.1995.407942.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.

http://dx.doi.org/10.1038/nature14539.
Leong, W. K., Wang, S., & Chen, H. (2014). Back-testing the ODP bootstrap of the paid

chain-ladder model with actual historical claims data. Variance.
Lopez, O., Milhaud, X., & Thérond, P. (2019). A tree-based algorithm adapted to

microlevel reserving and long development claims. Astin Bulletin, http://dx.doi.org/
10.1017/asb.2019.12.

Mack, T. (1991). A simple parametric model for rating automobile insurance or
estimating IBNR claims reserves. Astin Bulletin, 21(1), 93–109. http://dx.doi.org/
10.2143/AST.21.1.2005403.

Mack, T. (1993). Distribution-free calculation of the standard error of chain ladder
reserve estimates. Astin Bulletin. The Journal of the International Actuarial Association,
23(02), 213–225.

Martínez-Miranda, M., Nielsen, B., & Verrall, R. (2012). Double chain ladder. Astin
Bulletin, 42(1), 59–76.

Martínez-Miranda, M., Nielsen, B., & Verrall, R. (2013). Double chain ladder and
Bornhuetter-Ferguson. North American Actuarial Journal, 17, 101–113.

McCullagh, P., & Nelder, J. (1989). Chapman and Hall/CRC monographs on statistics and
applied probability series, Generalized linear models (2nd ed.). Chapman & Hall.

Merz, M., & Wüthrich, M. V. (2010). Paid-incurred chain claims reserving method.
Insurance: Mathematics & Economics, 46, 568–579.

Meyers, G. (2015). CAS monograph series: vol. 1, Stochastic loss reserving using Bayesian
MCMC models. CAS Ed., Casualty Actuarial Society.

Pigeon, M., Antonio, K., & Denuit, M. (2014). Individual loss reserving using
paid-incurred data. Insurance: Mathematics & Economics, 58, 121–131.

Posthuma, B., Cator, E., Veerkamp, W., & Van Zwet, E. (2008). Combined analysis of
paid and incurred losses (pp. 272–293). CAS E-Forum Fall.

Quarg, G., & Mack, T. (2004). Munich chain ladder. Blätter der Deutschen Gesellschaft
für Versicherungs und Finanzmathematik, XXVI, 597–630.

Ramos-Pérez, E., Alonso-González, P. J., & Núñez Velázquez, J. J. (2021a). Multi-
transformer: A new neural network-based architecture for forecasting S&P volatility.
Mathematics, 9(15), http://dx.doi.org/10.3390/math9151794.

Ramos-Pérez, E., Alonso-González, P. J., & Núñez Velázquez, J. J. (2021b). Stochastic
reserving with a stacked model based on a hybridized Artificial Neural Net-
work. Expert Systems with Applications, 163, http://dx.doi.org/10.1016/j.eswa.2020.
113782.

Renshaw, A. E., & Verrall, R. J. (1998). A stochastic model underlying the chain-
ladder technique. British Actuarial Journal, 4(4), 903–923. http://dx.doi.org/10.
1017/S1357321700000222.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Parallel distributed processing:
Explorations in the microstructure of cognition, Vol. 1 (pp. 318–362). MIT Press.

Saxe, A. M., McClelland, J. L., & Ganguli, S. (2013). Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks.

Silver, D., Huang, A., Maddison, C., Guez, A., Sifre, L., Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J.,
Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Grae-
pel, T., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks
and tree search. Nature, 529, 484–489. http://dx.doi.org/10.1038/nature16961.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M.,
Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T. P., Simonyan, K., & Hassabis, D.
(2017). Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. CoRR, abs/1712.01815.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15, 1929–1958.

Venter, G. (2008). Distribution and Value of Reserves Using Paid and Incurred Triangles
(pp. 348–375). CAS E-Forum, Fall.

Verrall, R. J. (2000). An investigation into stochastic claims reserving models and the
chain-ladder technique. Insurance: Mathematics & Economics, 26(1), 91–99.

Wüthrich, M. (2018a). Machine learning in individual claims reserving. Scandinavian
Actuarial Journal, 2018, 465–480.

Wüthrich, M. (2018b). Neural networks applied to chain-ladder reserving. European
Actuarial Journal, 8, 407–436.

References

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-
den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng (2015). TensorFlow: Large-
scale machine learning on heterogeneous systems. Software available from tensor-
flow.org.

Acerbi, C. and B. Szekely (2014). Backtesting expected shortfall. Risk , 1–14.

Aharon, D., I. Gavious, and R. Yosef (2010). Stock markets bubble effects on mergers
and acquisitions. The Quarterly Review of Economics and Finance 50 ((4)), 456–70.

Amari, S. (1967). A theory of adaptive pattern classifiers. IEEE Trans. EC 16 (3),
299–307.

Andersen, T. (2009). Encyclopedia of Complexity and System Sciences, Chapter
Stochastic volatility. Springer Verlag.

Andersen, T. and B. Sorensen (1999). GMM estimation of a stochastic volatility
model: A Monte Carlo study. Journal of Business and Economic Statistics 14,
329–352.

Antonio, K., J. Beirlant, T. Holdemakers, and R. Verlaak (2006). Log-normal mixed
models for reported claims reserves. North American Actuarial Journal 7, 1223–
1237.

Antonio, K. and R. Plat (2014). Micro-level stochastic loss reserving in general
insurance. Scandinavian Actuarial Journal 2014, 649–669.

Armano, G., M. Marchesi, and A. Murru (2005). A hybrid genetic-neural architec-
ture for stock indexes forecasting. Information Sciences 170 (1), 3–83.

Arneric, J. and T. Poklepovic (2016). Nonlinear Extensions of Asymmetric GARCH
Model within Neural Network Framework. AIRCC Publishing Corporation, Chennai,
India.

Artzner, P., F. Delbaen, J.-M. Eber, and D. Heath (1999). Coherent measures of
risk. Mathematical Finance 9 (3), 203–228.

Back, Y. and H. Kim (2018). ModAugNet: A new forecasting framework for stock
market index value with an overfitting prevention LSTM module and a prediction
LSTM module. Expert Systems with Applications 113, 457–480.

Baillie, R. T., T. Bollerslev, and H. O. Mikkelsen (1996). Fractionally integrated
generalized autoregressive conditional heteroskedasticity. Journal of Economet-
rics 74 (1), 3 – 30.

175

Barron, A. (1994). Approximation and estimation bounds for artificial neural net-
works. Machine Learning , 115–133.

Baudry, M. and C. Robert (2019). A Machine Learning approach for individual
claims reserving in insurance. Applied Stochastic Models in Business and Industry ,
1–29.

Bauwens, L., C. Hafner, and S. Laurent (2012). Handbook of Volatility Models and
Their Applications. Wiley Handbooks in Financial E. Wiley.

Bektipratiwi, A. and M. Irawan (2011). A RBF-EGARCH neural network model
for time series forecasting. pp. 1–8.

Bildirici, M. and O. Ersin (2009). Improving forecasts of GARCH family models
with the artificial neural networks: An applicaiton to the daily returns in Istanbul
Stock Exchange. Expert Systems with Applications 36 (4), 7355–7362.

Bildirici, M. and O. Ersin (2014). Modelling Markov Switching ARMA-GARCH
Neural Networks Models and an Application to Forecasting Stock Returns. Hindawi
Publishing Corporation: The Scientific World Journal 2014.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag.

Blier Wong, C., H. Cossette, L. Lamontagne, and E. Marceau (2021). Machine
learning in pc insurance: A review for pricing and reserving. Risks 9 (1).

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity.
Journal of Econometrics 31 (3), 307–327.

Bollerslev, T. (1990). Modeling the coherence in short-run nominal exchange rates:
A Multivariate Generalized ARCH Model. Review of Economics and Statistics 72,
498–505.

Bollerslev, T., R. Engle, and J. Wooldridge (1988). A Capital Asset Pricing Model
with time-varying covariances. Journal of Political Economy 96, 116–131.

Bornhuetter, R. L. and R. E. Ferguson (1972). The actuary and ibnr. Proceedings
of the Casualty Actuarial Society , 181–195.

Braun, A., H. Schmeiser, and F. Schreiber (2018, Jul). Return on risk-adjusted
capital under solvency ii: Implications for the asset management of insurance com-
panies. The Geneva Papers on Risk and Insurance - Issues and Practice 43 (3),
456–472.

Breiman, L. (1996). Bagging predictors. Machine Learning 24 (2), 123–140.

Breiman, L. (2001, Oct). Random forests. Machine Learning 45 (1), 5–32.

Broto, C. and E. Ruiz (2004). Estimation methods for stochastic volatility models:
A survey. Journal of Economic Surveys 18, 613–649.

176

Brown, T. B., B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. Mc-
Candlish, A. Radford, I. Sutskever, and D. Amodei (2020). Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin (Eds.), Advances in Neural Information Processing Systems, Volume 33, pp.
1877–1901. Curran Associates, Inc.

Brueckner, R. and B. Schulter (2014). Social signal classification using deep BLSTM
recurrent neural networks. pp. 4856–4860.

Bryson, A. E. (1961). A gradient method for optimizing multi-stage allocation
processes.

Bryson, Jr., A. E. and W. F. Denham (1961). A steepest-ascent method for solving
optimum programming problems. (BR-1303).

Caldeira, A. M., W. Gassenferth, M. A. S. Machado, and D. J. Santos (2015).
Auditing vehicles claims using neural networks. Procedia Computer Science 55,
62–71.

Castellani, G., U. Fiore, Z. Marino, L. Passalacqua, F. Perla, S. Scognamiglio, and
P. Zanetti (2018). An Investigation of Machine Learning Approaches in the Solvency
II Valuation Framework. Available at SSRN: https://ssrn.com/abstract=3303296.

Celikoglu, H. (2007, 10). A dynamic network loading process with explicit delay
modelling. Transportation Research Part C: Emerging Technologies 15, 279–299.

Chang, E., C. Han, and F. Park (2017). Deep learning networks for stock markets
analysis and prediction: Methodology, data representations and case studies. Expert
System with Applications 83, 187–205.

Charpentier, A. and M. Pigeon (2016). Macro vs Micro Methods in Non-Life Claims
Reserving: An Econometric Perspective. Risks 4, 12.

Chellapilla, K., S. Puri, and P. Simard (2006). High performance convolutional
neural networks for document processing.

Chen, T. and C. Guestrin (2016). XGBoost: A scalable tree boosting system. pp.
785–794.

Cho, K., B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio (2014, October). Learning phrase representations using RNN
encoder–decoder for statistical machine translation. pp. 1724–1734.

Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras.

Christoffersen, P. F., A. Bera, J. Berkowitz, T. Bollerslev, F. Diebold, L. Gior-
gianni, J. Hahn, J. Lopez, and R. Mariano (1997). Evaluating interval forecasts.
International Economic Review 39, 841–862.

177

Chu, C.-K. and J. S. Marron (1991, 12). Comparison of two bandwidth selectors
with dependent errors. Ann. Statist. 19 (4), 1906–1918.

Chui, C., X. Li, and H. Mhaskar (1994). Neural networks for localized approxima-
tion. Mathematics of computation.

Chui, C., X. Li, and H. Mhaskar (1996). Limitations of the approximation ca-
pabilities of neural networks with one hidden layer. Advances in Computational
Mathematics.

Cortes, C. and V. Vapnik (1995, Sep). Support-vector networks. Machine Learn-
ing 20 (3), 273–297.

Cox, J., J. Ingersoll, and S. Ross (1985, 02). A theory of the term structure of
interest rates. Econometrica 53, 385–407.

Cybenko, G. (1989). Approximation by Superpositions of a Sigmoidal Function.
Mathematics of Control, Signals and Systems 2, 303–314.

Danielsson, J. (2004). Stochastic volatility in asset prices: Estimation by simulated
maximum likelihood. Journal of Econometrics 64, 375–400.

de Faria, E., M. Albuquerque, J. González, J. Cavalcante, and M. Albuquerque
(2009). Predicting the Brazilian stock market through neural networks and adaptive
exponential smoothing methods. Expert Systems with Applications 36 (10), 12506–
12509.

Devlin, J., M. Chang, K. Lee, and K. Toutanova (2018). BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR abs/1810.04805.

Dias, F., R. Nogueira, G. Peixoto, and W. Moreira (2019). Decision-making for
financial trading: A fusion approach of machine learning and portfolio selection.
Expert Systems with Applications 115, 635–655.

Dickey, D. A. and W. A. Fuller (1979). Distribution of the estimators for autore-
gressive time series with a unit root. Journal of the American Statistical Associa-
tion 74 (366a), 427–431.

Dixon, M., I. Halperin, and P. Bilokon (2020, 05). Machine Learning in Finance:
From Theory to Practice.

Dreyfus, S. E. (1973). The computational solution of optimal control problems with
time lag. IEEE Transactions on Automatic Control 18(4), 383–385.

Duffie, D. (2019). Prone to fail: The pre-crisis financial system. Journal of Economic
Perspectives.

Duma, M., B. Twala, T. Marwala, and F. Nelwamondo (2011). Improving the
Performance of the Support Vector Machine in Insurance Risk Classification: A
Comparative Study. Proceedings of the International Conference on Neural Com-
putation Theory and Applications (NCTA-2011), 340–346.

178

Durbin, J. and S. Koopman (1997). Monte Carlo maximum likelihood estimation
for non-Gaussian state space models. Biometrika 84, 669–684.

England, P. D. (2002). Addendum to analytic and bootstrap estimates of prediction
errors in claims reserving. Insurance: Mathematics and Economics 31.

England, P. D. and R. J. Verrall (1999). Analytic and bootstrap estimates of pre-
diction errors in claims reserving. Insurance: Mathematics and Economics 25 (3),
281–293.

England, P. D. and R. J. Verrall (2002, 01). Stochastic Claims Reserving in General
Insurance. Br. Actuar. J. 8, 443–544.

England, P. D. and R. J. Verrall (2006). Predictive Distributions of Outstanding
Liabilities in General Insurance. Annals of Actuarial Science, 221–270.

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of
the variance of United Kingdom inflation. Econometrica 50, 987–1007.

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate
generalized autoregressive conditional heteroskedasticity models. Journal of Busi-
ness and Economic Statistics 20, 339–350.

Engle, R., C. Granger, and D. Kraft (1984). Combining competing forecasts of infla-
tion with a bivariate ARCH model. Journal of Economic Dynamics and Control 8,
151–165.

Engle, R. and F. Kroner (1995). Multivariate simultaneous generalized ARCH.
Econometric Theory 11, 122–150.

Engle, R. and G. Lee (1999). A permanent and transitory component model of stock
return volatility, pp. 475–497. Oxford: Oxford University Press.

Engle, R., V. Ng, and M. Rotschild (1990). Asset pricing with a factor-ARCH covari-
ance structure: Empirical estimates for Treasury Bills. Journal of Econometrics 45,
213–238.

Fan, Y., Y. Qian, F. Xie, and F. K. Soong (2014). TTS synthesis with bidirectional
LSTM based recurrent neural networks.

Fernandez, R., A. Rendel, B. Ramabhadran, and R. Hoory (2014). Prosody contour
prediction with Long Short-Term Memory, bi-directional, deep recurrent neural
networks.

Floros, C. (2008, 01). Modelling volatility using garch models: Evidence from egypt
and israel. Middle Eastern Finance and Economics 2.

Friedman, J. H. (2000). Greedy function approximation: A gradient boosting ma-
chine. Annals of Statistics 29, 1189–1232.

Frimpong, J. and E. F. Oteng-Abayie (2006, 01). Modelling and forecasting volatility
of returns on the ghana stock exchange using garch models. University Library of
Munich, Germany, MPRA Paper .

179

Fukushima, K. (1979). Neural network model for a mechanism of pattern recognition
unaffected by shift in position - Neocognitron. Trans. IECE J62-A(10), 658–665.

Funahashi, K. (1989). On the approximate realization of continuous mappings by
neural networks. Neural Networks 2.

Gabrielli, A. (2019, 12). A neural network boosted double Over-Dispersed Ppoisson
claims reserving model. ASTIN Bulletin, 1–36.

Gabrielli, A., R. Richman, and M. Wüthrich (2018, 11). Neural Network Em-
bedding of the Over-Dispersed Poisson Reserving Model. Available at SSRN,
https://ssrn.com/abstract=3288454.

Gabrielli, A. and M. Wüthrich (2018). An Individual Claims History Simulation
Machine. Risks 6, 29.

Geiger, J. T., Z. Zhang, F. Weninger, B. Schuller, and G. Rigoll (2014). Robust
speech recognition using long short-term memory recurrent neural networks for hy-
brid acoustic modelling.

Gestel, T., J. Suykens, D. Baestens, A. Lambrechts, and G. Laneknet (2001). Fi-
nancial time series prediction using least squares Support Vector Machines within
the evidence framework. IEEE Transactions on Neural Networks 12 (4), 8009–821.

Geurts, P., D. Ernst, and L. Wehenkel (2006). Extremely Randomized Trees. Ma-
chine Learning 63, 3–42.

Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training deep
feedforward neural networks.

Glosten, L., R. Jagannathan, and D. Runkle (1993). On the Relation between the
Expected Value and the Volatility of the Nominal Excess Return on Stocks. The
Journal of Finance 48 (5), 1779–1801.

Gonzalez-Dominguez, J., I. Lopez-Moreno, H. Sak, J. Gonzalez-Rodriguez, and P. J.
Moreno (2014). Automatic language identification using Long Short-Term Memory
recurrent neural networks.

Goodfellow, I. J., Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet (2014). Multi-
digit number recognition from street view imagery using deep convolutional neural
networks. arXiv preprint arXiv:1312.6082 v4 .

Goyal, A. and I. Welch (2002, February). Predicting the Equity Premium With
Dividend Ratios. (8788).

Graves, A., A.-R. Mohamed, and G. E. Hinton (2013). Speech recognition with deep
recurrent neural networks. pp. 6645–6649.

Gulay, E. and H. Emeç (2019, 01). The stock returns volatility based on the garch
(1,1) model: The superiority of the truncated standard normal distribution in fore-
casting volatility. Iranian Economic Review 23, 87–108.

180

Gupta, A. and B. Dhinga (2012). Stock markets prediction using hidden Markov
models. 2012 Students Conference on Engineering and Systems, 1–4.

Haas, M., S. Mittnik, and M. Paolella (2004a). Mixed normal conditional het-
eroskedasticity. Journal of Financial Econometrics 2, 211–250.

Haas, M., S. Mittnik, and M. Paolella (2004b). A new approach to Markov-switching
GARCH models. Journal of Financial Econometrics 2, 493–530.

Haas, M. and M. Paolella (2012). Mixture and regime-switching GARCH models,
pp. 71–102. John Wiley and Sons.

Hagan, P., D. Kumar, A. Lesniewski, and D. Woodward (2002, 01). Managing smile
risk. Wilmott Magazine 1, 84–108.

Hajizadeh, E., A. Seifi, F. Zarandi, and I. Turksen (2012). A hybrid modeling
approach for forecasting the volatility of S&P 500 index return. Expert Systems
with Applications 39 (1), 531–536.

Halliwell, L. (2009). Modeling Paid and Incurred Losses Together. CAS E-Forum,
Spring), 1–40.

Hamid, S. and Z. Iqbid (2002). Using neural networks for forecasting volatility of
S&P 500 index futures prices. Journal of Business Research 57 (10), 1116–1125.

Hansen, P. R., A. Lunde, and J. M. Nason (2011). The model confidence set.
Econometrica 79 (2), 453–497.

Happ, S., M. Merz, and M. Wüthrich (2012). Claims development result in the
paid-incurred chain reserving method. Insurance: Mathematics and Economics 51,
66–72.

Happ, S. and M. Wüthrich (2013). Paid-incurred chain reserving method with
dependence modeling. ASTIN Bulletin 43, 1–20.

Hastie, T. and R. Tibshirani (1986, 08). Generalized Additive Models. Statist.
Sci. 1 (3), 297–310.

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition. Springer Series
in Statistics. Springer New York.

He, K., X. Zhang, S. Ren, and J. Sun (2016, 06). Deep residual learning for image
recognition. pp. 770–778.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility
with applications to bond and currency options. Review of Financial Studies 6,
327–343.

Hochreiter, S. and J. Schmidhuber (1997a). Long short-term memory. Neural com-
putation 9 (8), 1735–1780.

181

Hochreiter, S. and J. Schmidhuber (1997b, 12). Long short-term memory. Neural
computation 9, 1735–80.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.
Neural Networks 4, 251–257.

Hornik, K. (1993). Some new results on neural network approximation. Neural
networks 6, 1069–1072.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks
are universal approximators. Neural Networks 2 (5), 359 – 366.

Howard, A., M. Sandler, B. Chen, W. Wang, L. Chen, M. Tan, G. Chu, V. Vasude-
van, Y. Zhu, R. Pang, H. Adam, and Q. Le (2019). Searching for mobilenetv3. pp.
1314–1324.

Hull, J. (2015). Risk management and Financial Institutions, 4th edition. Wiley
and Sons, London.

Hull, J. C. and A. White (1987). The pricing of options on assets with stochastic
volatilities. Journal of Finance 42 (2), 281–300.

Hutchinson, J., A. Lo, and T. Poggio (1994). A nonparametric approach to pricing
and hedgind derivative securities via learning networks. Journal of Finance 49,
851–859.

Igel, C. and M. Hüsken (2003). Empirical evaluation of the improved Rprop learning
algorithm. Neurocomputing 50 (C), 105–123.

Jeremic, Z. and I. Terzić (2014, 04). Empirical estimation and comparison of normal
and student t linear var on the belgrade stock exchange. pp. 298–302.

Jessen, A., T. Mikosch, and G. Samorodnitsky (2011). Prediction of outstanding
payments in a Poisson cluster model. Scandinavian Actuarial Journal 2011 (3),
214–237.

Johnson, J. and T. Khoshgoftaar (2019, 07). Medicare fraud detection using neural
networks. Journal of Big Data 6.

Joseph Lo, A. (2011, August). Extending the Mack Bootstrap: Hypothesis Testing
and Resempling Techniques. The Actuarial Profession, 29–79.

Jung, G. and S.-Y. Choi (2021, 03). Forecasting foreign exchange volatility using
deep learning autoencoder-lstm techniques. Complexity 2021, 1–16.

Karpathy, A., G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei (2014).
Large-scale video classification with convolutional neural networks.

Kelley, H. (1960). Gradient theory of optimal flight paths. ARS Journal 30, 947–954.

Kim, H. and C. Won (2018). Forecasting the volatility of stock price index: A
hybrid model integrating lstm with multiple garch-type models. Expert Systems
with applications 103, 25–37.

182

Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization.
CoRR abs/1412.6980.

Kraft, D. and R. Engle (1982). Autoregressive conditional heteroskedasticity in
multiple time series. Department of Economics, UCSD.

Kremer, E. (1982, 01). IBNR claims and the two-way model of ANOVA. Scandina-
vian Actuarial Journal 1982.

Kristjanpoller, W., A. Fadic, and M. Minutolo (2014). Volatility forecast using
hybrid neural network models. Expert Systems with Applications 41 (5), 2437–2442.

Kristjanpoller, W. and E. Hernández (2017). Volatility of main metals forecasted by
a hybrid ANN-GARCH model with regressors. Expert Systems with Applications 84,
290–300.

Kristjanpoller, W. and M. Minutolo (2015). Gold price volatility: A Forecasting
approach using the Artificial Neural Network-GARCH model. Expert Systems with
Applications 42 (20), 7245–7251.

Kristjanpoller, W. and M. Minutolo (2016). Forecasting volatility of oil price us-
ing an Artificial Neural Network-GARCH model. Expert Systems with Applica-
tions 65 (15), 233–241.

Kristjanpoller, W. and M. Minutolo (2018). A hybrid volatility forecasting frame-
work integrating GARCH, artificial neural network, technical analysis and principal
components analysis. Expert Systems with Applications 109, 1–11.

Krollner, B., B. Vanstone, and G. Finnie (2010). Financial time series forecasting
with machine learning techniques: A survey. European Symposium on Artificial
Neural Networks: Computational and Machine Learning .

Kuo, K. (2018). DeepTriangle: A Deep Learning Approach to Loss Reserving.
CoRR abs/1804.09253.

Kupiec, P. H. (1995, January). Techniques for verifying the accuracy of risk mea-
surement models. The Journal of Derivatives 3 (2), 73–84.

LeCun, Y., Y. Bengio, and G. Hinton (2015a). Deep Learning. Nature 521 (7553),
436–444.

LeCun, Y., Y. Bengio, and G. Hinton (2015b, 05). Deep learning. Nature 521,
436–44.

LeCun, Y., B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel (1990). Handwritten digit recognition with a back-propagation
network. pp. 396–404.

Leong, W. K., S. Wang, and H. Chen (2014). Back-testing the odp bootstrap of the
paid chain-ladder model with actual historical claims data. Variance.

183

Leshno, M., V. Lin, A. Pinkus, and S. Schocken (1993). Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function.
Neural Networks 6, 861–867.

Li, R., W. Zhang, H.-I. Suk, L. Wang, J. Li, D. Shen, and S. Ji (2014). Deep learning
based imaging data completion for improved brain disease diagnosis.

Linetsky, V. and R. Mendoza (2009). The constant elasticity of variance model.

Linnainmaa, S. (1970). The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. Master’s thesis, Univ.
Helsinki.

Lopez, O., X. Milhaud, and P. Thérond (2019). A Tree-Based algorithm adapted
to microlevel reserving and long development claims. ASTIN Bulletin.

Lowenstein, R. (2000). When genius failed: the Rise and Fall of Long-Term Credit
Management. Random House.

Lu, X., D. Que, and G. Cao (2016). Volatility forecast based on the hybrid artificial
neural network and garch-type models. Procedia Computer Science 91, 1044 – 1049.

Mack, T. (1991). A Simple Parametric Model for Rating Automobile Insurance or
Estimating IBNR Claims Reserves. ASTIN Bulletin 21 (1), 93–109.

Mack, T. (1993). Distribution-free Calculation of the Standard Error of Chain Lad-
der Reserve Estimates. ASTIN Bulletin: The Journal of the International Actuarial
Association 23 (02), 213–225.

Mandelbrot, B. (1963). The variation of certain speculative prices. Journal of
Business 36, 394–419.

Mapa, D. (2003, 12). A range-based garch model for forecasting volatility. Philippine
Review of Economics 40, 73–90.

Maqsood, A., S. Safdar, R. Shafi, and N. Lelit (2017, 01). Modeling stock market
volatility using garch models: A case study of nairobi securities exchange (nse).
Open Journal of Statistics 07, 369–381.

Marchi, E., G. Ferroni, F. Eyben, L. Gabrielli, S. Squartini, and B. Schuller (2014).
Multi-resolution linear prediction based features for audio onset detection with bidi-
rectional LSTM neural networks. pp. 2183–2187.

Margraf, C., V. Elpidorou, and R. Verrall (2018). Claims reserving in the presence
of excess-of-loss reinsurance using micro models based on aggregate data. Insurance:
Mathematics and Economics 80, 54–65.

Mart́ınez-Miranda, M., B. Nielsen, and R. Verrall (2012). Double Chain Ladder.
ASTIN Bulletin 42 (1), 59–76.

Mart́ınez-Miranda, M., B. Nielsen, and R. Verrall (2013a). Continuous Chain Lad-
der: Reformulating and generalizing a classical insurance problem. Expert Systems
with Applications 40, 5588–5603.

184

Mart́ınez-Miranda, M., B. Nielsen, and R. Verrall (2013b). Double Chain Ladder
and Bornhuetter-Ferguson. North American Actuarial Journal 17, 101–113.

Mart́ınez-Miranda, M., B. Nielsen, R. Verrall, and Wüthrich (2015). The Link
Between Classical Reserving and Granular Reserving Through Double Chain Ladder
and its Extensions. Scandinavian Actuarial Journal 2015, 383–405.

McCullagh, P. and J. Nelder (1989). Generalized Linear Models, Second Edition.
Chapman and Hall/CRC Monographs on Statistics and Applied Probability Series.
Chapman & Hall.

Mcculloch, W. and W. Pitts (1943). A logical calculus of ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5, 127–147.

McNeil, A. J., R. Frey, and P. Embrechts (2015). Quantitative Risk Management:
Concepts, Techniques and Tools. Princeton, NJ, USA: Princeton University Press.

Melino, A. and S. Turnbull (1990). Pricing foreign currency options with stochastic
volatility. Journal of Econometrics 45, 239–265.

Merz, M. and M. V. Wüthrich (2010). Paid-incurred chain claims reserving method.
Insurance: Mathematics and Economics 46, 568–579.

Meyers, G. (2015). Stochastic Loss Reserving Using Bayesian MCMC Models. CAS
Monograph Series, number 1. Casualty Actuarial Society.

Molodtsova, T. and D. Papell (2012, 06). Taylor rule exchange rate forecasting
during the financial crisis. NBER International Seminar on Macroeconomics 9,
55–97.

Monfared, S. A. and D. Enke (2014). Volatility forecasting using a hybrid gjr-garch
neural network model. Procedia Computer Science 36, 246 – 253.

Nakama, T. (2011). Comparisons of Single and Multiple Hidden Layer Neural Net-
works. pp. 270–279.

Nelder, J. A. and R. W. M. Wedderburn (1972). Generalized linear models. Journal
of the Royal Statistical Society. Series A (General) 135 (3), 370–384.

Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: A new ap-
proach. Econometrica 59 (2), 347–70.

Nigri, A., S. Levantesi, S. Marino, M. Scognamiglio, and F. Perla (2019). A deep
learning integrated lee–carter model. Risk 7, 33.

Oh, K.-S. and K. Jung (2004). GPU implementation of neural networks. Pattern
Recognition 37 (6), 1311–1314.

Omari, C., S. Nyambura, and J. Wairimu (2018). Modeling the Frequency and
Severity of Auto Insurance Claims Using Statistical Distributions. Journal of Math-
ematical Finance 8, 137–160.

185

Patel, M. and S. Yalamalle (2014). Stock price prediction using artificial neural
network. International Journal of Innovative Research in Science, Engineering and
Technology 3 (June 2014), 13755 – 13762.

Patton, A., D. N. Politis, and H. White (2009). Correction to “automatic block-
length selection for the dependent bootstrap” by d. politis and h. white. Econometric
Reviews 28 (4), 372–375.

Peng, Y., P. Melo, J. Camboim de Sá, A. Akaishi, and M. Montenegro (2018). The
best of two worlds: Forecasting high frequency volatility for cryptocurrencies and
traditional currencies with support vector regression. Expert Systems with Applica-
tions 97, 177–192.

Pigeon, M., K. Antonio, and M. Denuit (2013). Individual loss reserving with the
Multivariate Skew Normal framework. ASTIN Bulletin 43, 399–428.

Pigeon, M., K. Antonio, and M. Denuit (2014). Individual loss reserving using
paid-incurred data. Insurance: Mathematics and Economics 58, 121–131.

Poggio, T. and F. Girosi (1990). Networks for approximation and learning. Pro-
ceedings of the IEEE 78, 1481–1497.

Politis, D. and J. Romano (1991). A Circular Block-resampling Procedure for Sta-
tionary Data. Purdue University. Department of Statistics.

Politis, D. N. and J. P. Romano (1994). The stationary bootstrap. Journal of the
American Statistical Association 89 (428), 1303–1313.

Politis, D. N. and H. White (2004). Automatic block-length selection for the depen-
dent bootstrap. Econometric Reviews 23 (1), 53–70.

Poon, S. and C. Granger (2003). Forecasting volatility in financial markets. a review.
Journal of Economic literature 41 (2), 478–539.

Posthuma, B., E. Cator, W. Veerkamp, and E. Van Zwet (2008). Combined Analysis
of Paid and Incurred Losses. CAS E-Forum Fall , 272–293.

Quarg, G. and T. Mack (2004). Munich Chain Ladder. Blätter der Deutschen
Gesellschaft für Versicherungs und Finanzmathematik XXVI, 597–630.

R Core Team (2017). R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing.

Rajashree, P. and B. Ranjeeeta (2015). A differential harmony search based hy-
brid internal type2 fuzzy EGARCH model for stock market volatility prediction.
International Journal of Approximate Reasoning 59, 81–104.

Ramos-Pérez, E., P. Alonso-González, and J. Núñez-Velázquez (2019). Forecasting
volatility with a stacked model based on a hybridized Artificial Neural Network.
Expert Systems with Applications 129, 1–9.

186

Ramos-Pérez, E., P. J. Alonso-González, and J. J. Núñez Velázquez (2021a). Multi-
transformer: A new neural network-based architecture for forecasting s&p volatility.
Mathematics 9 (15).

Ramos-Pérez, E., P. J. Alonso-González, and J. J. Núñez Velázquez (2021b).
Stochastic reserving with a stacked model based on a hybridized artificial neural
network. Expert Systems with Applications 163.

Rastogi, S., J. Don, and N. N (2018, 02). Volatility estimation using garch family of
models: Comparison with option pricing. Pacific Business Review International 10,
54–60.

Rehman, Z. and S. Klugman (2009). Quantifying Uncertainty in Reserve Estimates.
Variance Journal 4, 30–46.

Renshaw, A. E. and R. J. Verrall (1998). A Stochastic Model Underlying the Chain-
Ladder Technique. British Actuarial Journal .

Richman, R. and M. Wüthrich (2018). A Neural Network Extension of
the Lee-Carter Model to Multiple Populations. SSRN . Available at SSRN,
https://ssrn.com/abstract=3270877.

Riedmiller, M. and H. Braun (1993). A direct adaptive method for faster backprop-
agation learning: The Rprop algorithm. pp. 586–591.

Roh, T. (2006). Forecasting the volatility of stock price index. Expert Systems with
Applications 33 (4), 916–922.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review 65 6, 386–408.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986a). Learning internal
representations by error propagation. 1, 318–362.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986b). Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1. pp. 318–362.

Rumelhart, D. E. and D. Zipser (1986). Feature discovery by competitive learning.
pp. 151–193.

Russell, S. and P. Norvig (2009). Artificial Intelligence: A Modern Approach (3rd
ed.). USA: Prentice Hall Press.

Ryan, J. A. and J. M. Ulrich (2017). quantmod: Quantitative Financial Modelling
Framework. R package version 0.4-12.

Sak, H., O. Vinyals, G. Heigold, A. Senior, E. McDermott, R. Monga, and M. Mao
(2014). Sequence discriminative distributed training of Long Short-Term Memory
recurrent neural networks.

Saxe, A. M., J. L. McClelland, and S. Ganguli (2013, December). Exact solutions
to the nonlinear dynamics of learning in deep linear neural networks.

187

Sermanet, P., D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun (2013).
OverFeat: Integrated recognition, localization and detection using convolutional
networks. arXiv preprint arXiv:1312.6229 .

Sheela, D. and S. Deepa (2013). Review on Methods to Fix Number of Hidden
Neurons in Neural Networks. Mathematical Problems in Engineering , 1–11.

Silver, D., A. Huang, C. Maddison, A. Guez, L. Sifre, G. Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,
and D. Hassabis (2016, 01). Mastering the game of go with deep neural networks
and tree search. Nature 529, 484–489.

Silver, D., T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan, and D. Hassabis
(2017). Mastering chess and shogi by self-play with a general reinforcement learning
algorithm. CoRR abs/1712.01815.

Singh, K. (2010). Fixing global finance: A developing country perspective on global
financial reforms.

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov (2014,
06). Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research 15, 1929–1958.

Surkan, A. and Y. Xingren (2001). Bond rating formulas derived through simplifying
a trained neural network. Proceedings of the IEEE International conference on
neural network 2, 1028–1031.

Sutskever, I., O. Vinyals, and Q. V. Le (2014). Sequence to sequence learning with
neural networks. (arXiv:1409.3215 [cs.CL]). NIPS’2014.

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning: An Introduction
(Second ed.). The MIT Press.

Swanson, N. R. (1998). Money and output viewed through a rolling window. Journal
of Monetary Economics 41 (3), 455 – 474.

Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich (2014). Going deeper with convolutions.
(arXiv:1409.4842 [cs.CV]).

Szegedy, C., A. Toshev, and D. Erhan (2013). Deep neural networks for object
detection. pp. 2553–2561.

Taylor, G., G. McGuire, and J. Sullivan (2008). Individual Claim Loss Reserving
Conditioned by Case Estimates. Annals of Actuarial Science 3 (1-2), 215–256.

Taylor, S. (1982). Financial returns modelled by the product of two stochastic pro-
cesses, A study of daily sugar prices 1961–79, Volume 1, pp. 223–226. North-
Holland.

188

Taylor, S. J. (1986). Modelling Financial Time Series. Wiley.

Temin, P. (2010). The great recession and the great depression. JSTOR.

Tse, Y. and K. Tsui (2002). A multivariate GARCH model with time-varying
correlations. Journal of Business and Economic Statistics 20, 351–362.

Ugurlu, E., E. Thalassinos, Y. Muratoglu, E. Thalassinos, and Y. Muratoglu (2014,
01). Modeling volatility in the stock markets using garch models: European emerg-
ing economies and turkey.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin (2017). Attention is all you need. CoRR abs/1706.03762.

Venter, G. (2008). Distribution and Value of Reserves Using Paid and Incurred
Triangles. CAS E-Forum, Fall), 348–375.

Verma, S. (2021, 03). Forecasting volatility of crude oil futures using a garch–rnn
hybrid approach. Intelligent Systems in Accounting, Finance and Management .

Verrall, R. J. (2000). An investigation into stochastic claims reserving models and
the chain-ladder technique. Insurance: Mathematics and Economics 26 (1), 91–99.

Vidal, A. and W. Kristjanpoller (2020). Gold volatility prediction using a cnn-lstm
approach. Expert Systems with Applications 157.

Vinod, H. (2006). Maximum entropy ensembles for time series inference in eco-
nomics. Journal of Asian Economics 17 (6), 955–978.

Vinod, H. D. and J. L. de Lacalle (2009). Maximum entropy bootstrap for time
series: The meboot R package. Journal of Statistical Software 29 (5), 1–19.

Weke, P. and C. Ratemo (2013). Estimating IBNR Claims Reserves for General
Insurance Using Archimedean Copulas. Applied Mathematical Sciences 7, 1223–
1237.

Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences. Ph. D. thesis, Harvard University.

Widrow, B. and M. E. Hoff (1962). Associative storage and retrieval of digital
information in networks of adaptive neurons. pp. 160–160.

Williams, M. (2010). Uncontrolled risk. McGraw-Hill Education.

Wu, J., B. Zhou, D. Peck, S. Hsieh, V. Dialani, L. Mackey, and G. Patterson
(2018, 05). Deepminer: Discovering interpretable representations for mammogram
classification and explanation.

Wüthrich, M. (2018a). Machine learning in individual claims reserving. Scandina-
vian Actuarial Journal 2018, 465–480.

Wüthrich, M. (2018b). Neural networks applied to chain-ladder reserving. European
Actuarial Journal 8, 407–436.

189

Zeiler, M. D. (2012). Adadelta: An adaptive learning rate method.
ArXiv abs/1212.5701.

Zhang, L., K. Zhu, and S. Ling (2018). The ZD-GARCH model: A new way to
study heteroscedasticity. Journal of Econometrics 202 (1), 1–17.

Zivot, E. and J. Wang (2006). Modeling Financial Time Series with S-PLUS®.
Berlin, Heidelberg: Springer-Verlag.

190

	Introduction
	Economic and statistical framework
	Aftermath of recent financial crises and thesis objectives
	Machine and deep learning: Background and methods applied
	Stock market volatility and machine learning
	Reserving in general insurance and machine learning

	Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network
	Introduction
	Benchmark models, risk measurements and statistical tests
	Stacked model
	Results
	Conclusions

	Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network
	Introduction
	Benchmark models and validation
	Stochastic reserving model based on the stacking algorithm approach
	Results
	Conclusions

	Multi-Transformer: A new neural network-based architecture for forecasting S&P volatility
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion

	Mack-Net model: Blending Mack's model with Recurrent Neural Networks
	Introduction
	Benchmark model and validation metrics
	Data and Mack-Net architecture
	Model fitting and results
	Conclusions

	Conclusions
	Main Findings
	Further research

	Annexes
	Annex I. Published Paper. Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network
	Annex II. Published Paper. Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network
	Annex III. Published Paper. Multi-Transformer: A new neural network-based architecture for forecasting S&P volatility
	Annex IV. Published Paper. Mack-Net model: Blending Mack's model with Recurrent Neural Networks

	References

